Skip to main content
. Author manuscript; available in PMC: 2017 May 18.
Published in final edited form as: Urban Stud. 2015 Oct 20;53(15):3279–3295. doi: 10.1177/0042098015608058

Table 6.

Difference-in-differences estimates of the effect of LOG 2.0 community reuse treatment on crime.

Outcome
variable
Model 1: Model 2: Model 3: Spatial Durbin model



GLS
regression
Poisson
regression
1/8 mile distance threshold 1/4 mile distance threshold




Coefficient IRR Direct
effect
Indirect
effect
Direct
effect
Indirect
effect
Felony assault −0.93***
(0.16)
1.01
(0.03)
−0.27***
(0.07)
−0.70**
(0.24)
−0.18**
(0.06)
−0.88
(0.48)
Burglary −0.19**
(0.06)
0.83***
(0.04)
−0.02
(0.04)
−0.12
(0.10)
−0.01
(0.04)
−0.14
(0.19)
Robbery −0.22
(0.19)
0.99
(0.06)
−0.18*
(0.07)
−0.45
(0.26)
−0.11
(0.06)
−0.24
(0.47)
Theft 0.00
(0.04)
0.97
(0.02)
−0.00
(0.02)
−0.04
(0.06)
0.00
(0.02)
−0.03
(0.13)
Motor vehicle theft 0.79**
(0.27)
0.94
(0.07)
0.32***
(0.09)
0.87**
(0.27)
0.21**
(0.07)
1.36**
(0.42)
*

P < 0.05,

**

P < 0.01,

***

P < 0.001, based on z-score.

N = 9625 (= 385 groups * 25 times).

Robust standard errors are shown for GLS, Poisson and SDM regression.