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Introduction
The year 2015 witnessed a surge in the estimated new cases of 
pancreatic cancer to 48 960 and the associated 40 560 deaths in 
the United States, making it the third leading cause of cancer 
deaths.1 Moreover, 1 in 67 American is at a risk of pancreatic 
cancer. Pancreatic ductal adenocarcinoma (PDAC), a predomi-
nant histologic subtype making 90% of all pancreatic cancers, 
exhibits local invasion and distant metastasis during early dis-
ease stages that directly correlate with an extremely poor prog-
nosis and an overall survival rate of only 5%.2 At the time of 
diagnosis, 80% of patients are considered inoperable, and sur-
gery is the only hope for the remaining 20%. Pancreatic ductal 
adenocarcinoma postsurgical 5-year survival rates are signifi-
cantly low spanning from 15% to 20% with most of the patients 
dying due to local recurrence or metastasis.3 Nonsurgical 
approaches have been attempted in advanced-stage PDAC via 
targeting tumor growth using adjuvant chemotherapies or 
chemoradiotherapy (CRT) in combination with gemcitabine, 
5-fluorouracil (5-FU), cisplatin, erlotinib, or interferon alfa-2b. 
This approach demonstrated improved prognosis but the cura-
tive effects are limited.4–8 Poor prognosis of PDAC is attrib-
uted to anatomic and biological reasons. Pancreatic ductal 
adenocarcinoma–associated inflammation9 and subsequent 
epithelial-mesenchymal transition (EMT)10 are key factors in 
the development of chemoresistance in patients with PDAC, 
resulting in failure of therapy.11

Inflammation and PDAC: The Underlying 
Mechanisms
Interleukin 6-STAT3 signaling pathway

Under inflammatory conditions, the nuclear factor kappa-
light-chain enhancer of activated B cells (NF-κB) induce 

secretion of interleukin 6 (IL-6) in myeloid cells, a process 
known as trans-signaling where IL-6 forms a complex with 
soluble IL-6 receptors, which mediates the effects of secreted 
IL-6. Interleukin 6 induces phosphorylation of signal trans-
ducer and activator of transcription 3 (STAT3) and promotes 
synthesis of the neutrophil attractant CXCL1 in pancreatic 
acinar cells.12 In addition to IL-6, multiple growth factors 
and pro-inflammatory cytokines are involved in mediating 
STAT3 phosphorylation.13 As opposed to normal pancreatic 
microenvironment, in PDAC, tyrosine phosphorylation trig-
gers STAT3 activation and nuclear translocation leading to 
the transcription of numerous target genes involved in inflam-
mation as well as stem cell renewal.14–16 STAT3 plays a vital 
role in the development of acinar-to-ductal metaplasia 
(ADM) lesions; in some instances, these ADM lesions may 
develop into pancreatic cancer.17 The role of STAT3 as an 
inflammatory mediator of the development of pancreatic pre-
cursor lesion formation was observed in vitro, and in vivo 
studies confirmed its role in the development of preneoplastic 
lesions.18–21 Moreover, several studies using pancreatic cell 
lines and murine animal models highlighted the critical role 
of STAT3 in driving cancer progression at different stages.18 
Corcoran et al18 demonstrated that STAT3 is vital both for 
the formation of precursor lesions (ie, ADM, pancreatic 
intraepithelial neoplasia [PanIN]) and progression to PDAC. 
Another study showed that STAT3 contributes to PDAC ini-
tiation by enhancing the development of prepancreatic cancer 
lesions, cell proliferation, and inflammatory responses associ-
ated with metaplasia.19 Fukuda et al19 validated that STAT3 
overexpressed in the epithelial cells after cerulein-induced 
inflammation in a KrasG12D mouse model assists in the ini-
tialization of tumor development and progression. However, 
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STAT3 inhibition attenuates precursor lesion formation, cell 
proliferation and enhances apoptosis.19 In addition, the loss 
of STAT3 in the epithelial tissue reduces inflammatory cell 
infiltration and expression of inflammatory cytokines, indi-
cating that STAT3 does not only influence the proliferative 
and dedifferentiated state of epithelial cells but also regulate 
inflammatory processes associated with metaplasia.19 In an 
extension of this study, Lesina et al20 identified the myeloid 
origin cells as a source of pro-inflammatory cytokine IL-6 
that activates STAT3 in the pancreas and nourishes the for-
mation and progression of PanIN lesions.20 The recognition 
of this mechanism endorses the role of the inflammatory 
microenvironment in the development of PDAC in mouse 
models and stands true for human PDAC based on the analy-
sis of human PDAC specimen and patient data. Increased 
levels of mitochondrial pSTAT3 enhance the pool of available 
adenosine triphosphate and increase cellular proliferation.22

NF-κB signaling pathway

Nuclear factor κB is a key transcription factor that regulates 
inflammation and thus plays a critical role in the development 
of pancreatitis and pancreatic carcinogenesis.23 Under normal 
physiological conditions in pancreas, the IκB family of inhibi-
tory proteins (IκB-α, IκB-β, IκB-γ, IκB-ε, Bcl-3, p105/
NF-κB1, and p100/NF-κB2) keeps the NF-κB signaling 
pathway in an inactive state by sequestering the regulatory 
subunits of NF-κB in the cytoplasm.24–27 However, under the 
influence of microbial or viral infections or pro-inflammatory 
cytokines, the IκB kinase (IKK) complex is activated and phos-
phorylates the IκB proteins28 leading to its ubiquitination and 
subsequent degradation by the 26S proteasomal system.29 This 
allows the regulatory subunits of NF-κB to translocate to the 
nucleus and regulate the transcription of various genes respon-
sible for survival and inflammation.30,31 The activation of 
NF-κB pathway is one of the early events in pancreatitis where 
it promotes the pro-inflammatory response through the upreg-
ulation of inflammatory genes in addition to boosting antia-
poptotic genes32–34 assisting pancreatic cancer cells in evading 
apoptosis.35,36 Nuclear factor κB delivers its antiapoptotic 
effects on pancreatic cancer cells by upregulation of the antia-
poptotic gene B-cell lymphoma extra large (Bcl-xL) and the 
cell cycle gene cyclin D1.37 Another report demonstrates that 
low expression of the NF-κB subunit p65 in pancreatic cancer 
cells leads to downregulation of the antiapoptotic gene B-cell 
lymphoma 2 (Bcl-2), cyclin D1, vascular endothelial growth 
factor (VEGF) in addition to activation of caspase-3 leading to 
growth attenuation in the pancreatic cancer cell line BxPC-3.38 
Nuclear factor κB seems to act downstream of the epidermal 
growth factor receptor (EGFR) because EGFR pathway inhi-
bition in the pancreatic cancer cell line MDA Panc-28 results 
in lesser NF-κB binding activity and downregulation of the 
antiapoptotic genes Bcl-xL and Bfl-1.39

Recently, it was reported that persistent activation of NF-κB 
in pancreatic acinar cells leads to the development of chronic 
pancreatitis characterized by severe pancreatic damage, immune 
cell infiltration, and fibrosis.40 Another study showed that the 
deletion of IKK, IKK2, in all pancreatic epithelial cells averts 
the development of PanIN lesions in PdxCre/+, LSL-
KrasG12D/+ mice.41 IκB protein is a substrate of β-TrCP that 
encodes a member of the F-box protein family and plays an 
important role in regulating cell cycle checkpoints.42 High lev-
els of β-TrCP1 and constitutive activation of NF-κB are hall-
marks of chemoresistant PDAC cell lines compared with 
chemosensitive PDAC cell lines. Overexpression of β-TrCP1 
in chemosensitive PDAC cell lines results in enhanced NF-κB 
activity and reduced sensitivity to chemotherapy drugs, whereas 
small interfering RNA–dependent knockdown of β-TrCP1 in 
chemoresistant PDAC cell lines attenuates NF-κB activation 
and chemoresistance.43 Nuclear factor κB seems to enhance 
the development of chronic pancreatitis, pancreatic precursor 
lesions, and their transformation to invasive PDAC at least in 
part through mediating the interplay between oncogenic Kras 
signaling and inflammatory responses.40,44

Pancreatic ductal adenocarcinoma is believed to be mainly 
originated from the pancreatic duct cells. Nevertheless, under 
the activation mutation of KRasG12D, during pancreatitis, aci-
nar cells can go through ADM and form duct cells and eventu-
ally PanIN and PDAC.45,46 Hence, PDAC can also originate 
from acinar cells by means of ADM.45,46 Mitogen-activated 
protein kinase (MAPK), Wnt, Notch, and PI3K/Akt signaling 
are involved in this acinar transdifferentiation process. 
Moreover, during this transdifferentiation to ADM, acinar 
cells lose their grape-like phenotype and alter the transcrip-
tome from acinar-like (carboxypeptidase, amylase, elastase, and 
Mist expression) to duct-like (expressing cytokeratin-19, 20, 
and carbonic anhydrase II).45–47 Also, in vivo studies have dem-
onstrated that both acute and chronic pancreatitis can lead to 
ADM.48,49 These findings complement that chronic pancreati-
tis may be one of the etiologic factors of pancreatic cancer.45,50

In addition, mutant Kras mouse model system supports the 
idea that ADM might be a prerequisite for PanIN and PDAC 
development.47,51 Furthermore, inflammation is critical in 
mediating tumorigenesis was demonstrated in an in vivo study 
where the acceleration to PDAC lesions was seen with the 
chronic administration of cerulein to mutant Kras mice.52 
Fascinatingly, in mice, direct targeting of acinar cells with 
KrasG12D is sufficient for spontaneous transformation of acinar 
cells to PanIN lesions even in the absence of injury or inflam-
mation.53 However, the development of PanIN lesions in vivo 
may involve the emergence of a progenitor population that is 
either an indirect or direct precursor to cells that will contribute 
to a PanIN.54 This progenitor population expresses Pdx1, which 
is normally low or absent in ductal cells.54 It is possible that a 
resident progenitor population exists among ductal cells or cen-
troacinar cells, which undergoes neoplastic transformation 
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without ADM. The existence of such a population is suggested 
by the finding that a subset of adult mouse centroacinar cells/
terminal duct cells harbor high aldehyde dehydrogenase iso-
form 1 (ALDH1) enzymatic activity, which is important in reti-
noic acid metabolism and has been associated with stem and 
progenitor cells in a variety of tissue types.54,55

Inhibition of the MAPK and NF-κB survival pathways 
with U0126 and caffeic acid phenethyl ester (CAPE), respec-
tively, potently blocks pancreatic tumor growth without induc-
ing apoptotic death. Interestingly, apoptosis was induced by 
U0126 and CAPE after inhibition of autophagy in a caspase-
independent manner in Panc-1 cells and in a caspase-depend-
ent manner in MiaPaCa-2 cells.56

Transforming growth factor β signaling pathway

Transforming growth factor β (TGF-β), a secreted anti-
inflammatory cytokine that regulates apoptosis, cell growth, 
and differentiation, has been associated with advanced tumor 
stages57–59 where TGF-β plays an antitumorigenic role via 
restricting cell growth and enhancing apoptosis. On ligand 
binding, TGF-β receptors type I (TGF-βR1) and type II 
(TGF-βR2) undergo heterodimerization. The TGF-βR2 
phosphorylates TGF-βR1 kinase domain triggering phospho-
rylation and activation of various isoforms of SMAD pro-
teins.60 Phosphorylated SMAD shuttles to the nucleus and 
stimulates transcription of target genes responsible for tumor 
suppression.61

Similar to its overall tumor suppressive roles under homeo-
static conditions, TGF-β signaling inhibits cell growth in early 
stages of pancreatic cancer and in a number of pancreatic can-
cer cell lines such as Colo-357.62 However, during late stages of 
pancreatic cancer, TGF-β signaling is dysregulated on multiple 
levels. Defects in TGF-β receptors and mutations in SMADs 
have been observed in numerous pancreatic cancer cell lines.63 
These defects result in the emergence of an opposite role of 
TGF-β signaling where it promotes tumorigenesis through 
enhancing cancer cell growth, survival, invasion, and metastasis 
leading to reduced survival of patients with pancreatic can-
cer.61,64–66 The defective response of TGF-β signaling follow-
ing TGF-β stimulation has been confirmed in several pancreatic 
cancer cell lines including Panc-1, MiaPaCa, and BxPC3 by 
3[H] thymidine incorporation, and TGF-β–sensitive reporter 
assays. Along the same line, treatment of Panc-1 and 
IMIM-PC1 cells with recombinant TGF-β enhances their 
invasiveness, an effect that is completely blocked in the pres-
ence of TGF-β–neutralizing antibody. Transforming growth 
factor β–induced invasiveness could be attributed at least in 
part to the enhanced expression of matrix metalloproteinase 2 
(MMP2) and the urokinase plasminogen activator (uPA) sys-
tem in Panc-1 and IMIM-PC1 cell lines.67 Although SMAD2 
and SMAD3 do not seem to be part of the dysregulated TGF-
β system in pancreatic cancer, SMAD4 seems to be directly 
involved in the malfunctional response of TGF-β. Introducing 

SMAD4 into the SMAD4 homozygous-deficient pancreatic 
cell line, BxPC3 restores responsiveness to TGF-β.68 Similarly, 
inhibition of NF-κB pathway impairs invasiveness of BxPC3 
and Capan-1 cells only on restoration of SMAD4 expression, 
indicating the downstream role of SMAD4 in NF-κB signal-
ing.69 Kindlin-2, a target protein that is upregulated by TGF-
β1 in PDAC cells, is another mediator of TGF-β1–induced 
tumorigenic effects, where it enhances PDAC cell growth, 
migration, and invasion and promotes overall PDAC progres-
sion via downregulation of HOXB9 and E-cadherin.70 In 
addition, SMAD371 and SMAD472 together contribute to 
TGF-β1–induced invasiveness in PDAC cells by inducing 
expression of EMT-associated transcription factors and subse-
quent phenotypic changes.

Various tumor-stroma interactions have been reported of 
having the capability to foster pancreatic cancer cell invasion 
and metastasis. Growth factors that have been derived from 
cancer cells, mainly TGF-βs, along with fibroblast growth fac-
tors (FGFs), platelet-derived growth factor BB (PDGF-BB), 
and insulin-like growth factor 1 (IGF-1).73 These growth fac-
tors gets encompassed within the stromal areas and thus acts as 
a site of storage for these growth factors.73 The invading cancer 
cells release MMPs that cause the release of these growth fac-
tors.73–75 The stroma itself is a very complex structure consist-
ing of various cell types including mesenchymal cells 
(cancer-associated fibroblasts [CAF]), endothelial cells, extra-
cellular matrix (ECM) proteins (mainly, type I collagen), nerve 
cells, endothelial cells and pericytes, bone marrow–derived 
stem cells, and immune cells.76 Transforming growth factor β 
receptors are expressed by all these cell types, and the TGF-β 
pathway can thus influence tumor microenvironment by affect-
ing fibrosis, angiogenesis, and immune cell infiltration.77 Both 
the generation of cancer from a nontumoral environment and 
the maintenance of a favorable tumoral microenvironment are 
governed by the TGF-β pathway activation.76 The activated 
TGF-β pathway enhances production and lowers the degrada-
tion of ECM components, mainly type I collagen, as well as 
mesenchymal cell proliferation.78–80 Furthermore, TGF-β pro-
motes reactive oxygen species production via several mecha-
nisms (such as activation of nicotinamide adenine dinucleotide 
phosphate oxidases family members), leading to targeting 
downstream signaling pathways such as Src, EGFR, SMADs, 
and MAPK family, thus promoting profibrotic gene expression 
(eg, TGF-β1, angiotensinogen, PAI-1, and connective tissue 
growth factor).81 Overproduction of TGF-β not only drives 
the fibrotic process/chronic phases of inflammatory diseases 
but also precedes tumor formation and thus creates a favorable 
microenvironment for cancer cells’ growth.76,78,82

In addition, TGF-β activates surrounding CAFs and stellate 
cells. These activated CAFs and stellate cells are responsible for 
the secretion of several factors (such as PDGF, FGF, MMP, 
EGF, type I collagen, and IGF-1) that enhance tumor prolifera-
tion, growth, invasion, metastasis, and above all chemoresist-
ance.83 Furthermore, they take part in the creation of hypoxic 
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microenvironment, thus applying a selection pressure leading to 
an invasive cancer cell phenotype.83 In conclusion, the stroma, 
depending on collagen I structure, can behave as a barrier or a 
promoter to metastatic dissemination of cancer.76,84

IL-1α and IL-1β signaling pathways

Numerous pro-inflammatory molecules have been recognized 
as key players in PDAC invasion and metastasis. Interleukin 
1α (IL-1α) is a major inflammatory cytokine that promotes 
adhesion, proliferation, and migration of the pancreatic cancer 
cell lines SW1990, BxPC3, and Capan-2 by upregulating the 
expression of the urokinase receptor and integrin subunits α6 
and β1. These effects are linked with the activation of RAS-
ERK (extracellular signal–regulated kinase) signaling path-
way.85 Inhibition of α6 and β1 integrins and uPA leads to 
downstream inhibition of ERK signaling and subsequent 
impairment of proliferative, migratory, and adhesive responses 
of pancreatic cells.85 Xu et al86 showed that IL-1α synthesized 
by pancreatic cancer cells induces expression of hepatocyte 
growth factor (HGF) in fibroblasts. Coculture experiments 
demonstrated a paracrine effect of IL-1α–dependent fibro-
blast-driven HGF on neighboring cells where fibroblast-
secreted HGF promotes invasive and proliferative behavior of 
pancreatic cancer cells and human umbilical vein endothelial 
cells.86 In another study, forced expression of IL-1α in the pan-
creatic cancer cell line MiaPaCa-2 results in activation of 
NF-κB signaling pathway leading to an increase in the invasive 
phenotype of pancreatic cancer cells. Along the same line, 
blocking NF-κB pathway by the expression of a dominant-
negative IκB protein impairs the metastatic behavior of pan-
creatic cancer cells. Similar responses were observed when 
IL-1α was silenced in the metastatic pancreatic cancer cell line 
L3.6pl supporting the notion that IL-1α–induced NF-κB 
expression promotes the invasive and metastatic behavior of 
pancreatic cancer cells.87

The pro-inflammatory cytokine interleukin 1β (IL-1β) is 
another member of the IL-1 family that influences metastasis 
and tumor growth in various types of cancers.88 Interleukin 1β 
along with IL-1α induces the expression of pro-inflammatory 
genes including inducible nitric oxide synthase, cyclooxygenase 
2 (COX-2), and IL-6. Pancreatic cancer cell lines treated with 
recombinant IL-1β show a strong invasive behavior with no 
influence on ECM adhesion.89

CXC chemokine signaling

Recent studies also suggest the dysregulation of CXC 
chemokines in late-stage PDAC. Expression of CXCL5, a 
ligand for CXCR2, is enhanced in human PDAC and has been 
linked to increased tumor size, advanced tumor stage, and poor 
outcome. Genetic mutations that dysregulate chemokine sign-
aling, such as TP53 mutation, have been attributed to promot-
ing invasion and metastasis in PDAC.9 Another example is 

SMAD4 mutations that are found in 50% of PDAC cases and 
known to dysregulate chemokine signaling.90 In a mutant Kras 
mouse model–based study,91 TGF-βR2 knockout leads to 
aggressive PDAC that histologically resembles human disease. 
Mutant Kras mice are also characterized by enhanced secretion 
of CXCR2-specific chemokines, including CXCL1 and 
CXCL5, which are regulated by TGF-β and NF-κB signaling. 
Interestingly, stromal fibroblasts express markedly higher levels 
of CXCR2 than epithelial cells, and acute inhibition of CXCR2 
improves survival and reduces microvessel density, further vali-
dating the involvement of CXCR2 ligands in driving PDAC 
progression.9,90

Current reports suggest that metastasis may occur in PDAC 
even before primary tumor formation, a behavior associated 
with early epidermal mesenchymal transformation.92 This is 
accelerated in the presence of pancreatic inflammation where 
the most invasive areas of tumor are located at the foci of 
inflammation. This phenomenon is quenched by dexametha-
sone indicating the integral role played by tumor-associated 
inflammation. Hence, identification of inflammatory signaling 
pathways involved in PDAC metastasis is critical for develop-
ing combinatorial antimetastatic therapies in the near future.

The Role of EMT in PDAC Development and Drug 
Resistance
Epithelial-mesenchymal transition is a process by which epi-
thelial cells undergo numerous genotypic and phenotypic 
changes to attain mesenchymal phenotype. The mesenchymal 
phenotype is characterized by enhanced migratory capacity, 
invasiveness, resistance to apoptosis, and production of 
ECM.93,94 Newly transformed mesenchymal cells typically 
show poor cell adhesion parallel to loss of E-cadherin. This 
phenomenon also features the gain of mesenchymal markers, 
including vimentin, N-cadherin, and fibronectin.93,94 
Epithelial-mesenchymal transition plays a crucial role during 
development and in adult tissue repair following injury.95 
Epithelial-mesenchymal transition initiated by genetic and 
epigenetic changes in the tumor microenvironment represents 
a pivotal event during cancer progression and metastasis.93–97

Transition to mesenchymal phenotype is regulated at the 
cellular level by certain key zinc finger transcription factors, 
such as Snail, Slug, Zeb-1, and Twist, which perturb the regu-
lation of genes driving epithelial phenotype.93,94,98 Tumor-
budding cells in the tumor microenvironment of aggressive 
PDAC express EMT markers at both messenger RNA 
(mRNA) and protein levels. These budding cells display classi-
cal EMT phenotypic changes and are surrounded by a hetero-
geneous population of stromal cells that express high levels of 
the E-cadherin repressors ZEB1, ZEB2, and SNAIL1.99

There is a close association between chemoresistance and the 
gain of the EMT phenotype in various carcinoma cells including 
PDAC.100 Pancreatic ductal adenocarcinoma cell lines BxPC3, 
L3.6pl, CFPAC-1, and SU86.86 with enhanced E-cadherin 
expression and reduced expression of the mesenchymal marker 
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Zeb-1 display sensitivity to the chemotherapeutic agents 5-FU, 
gemcitabine, and cisplatin, whereas other cell lines Hs766T, 
Panc-1, MiaPaCa-2, AsPC-1, and MPanc96 express low 
E-cadherin, high Zeb-1 levels and display EMT as well as 
exhibit resistance to the aforementioned chemotherapeutic 
drugs.101 Zeb-1 downregulation in PDAC cells with EMT phe-
notype enhances the expression of epithelial markers and retrieve 
drug sensitivity, indicating the involvement of Zeb-1 and other 
EMT regulators in enhancing the resistance of PDAC cells  
to chemotherapy.102 This notion was further validated in an  
in vivo mouse model. In this report, although EMT suppression 
enhanced cancer cell proliferation, it also increased expression  
of nucleoside transporters leading to enhanced sensitivity to 
gemcitabine treatment and prolonged survival in mice.103 
Furthermore, this study highlights the need of a combination of 
EMT inhibitors to efficiently blunt chemotherapeutic resistance 
during treatment of pancreatic cancer.103

A small population of permanent proliferating cells and a 
large population of differentiated cells (with limited prolif-
eration potential) exist in the carcinoma tissue.102 Within the 
permanently proliferating cells, cancer stem cells (CSCs) are 
believed to be culpable for the initiation, chemoresistance, 
metastases, and tumor recurrence.102,104 Cancer stem cells are 
self-renewing cells that bear the potential to differentiate into 
other cell types, as well as initiate tumors in the immunodefi-
cient mice.105,106 It is known from the recent studies that 
CSC and EMT-type cells not only show similarities such as 
higher metastatic potential and chemoresistance but also have 
the molecular pathways such as Notch and Wnt in common, 
indicating the direct correlation among CSC property and 
EMT program.107 Moreover, constant Notch-1 overexpres-
sion is known to induce self-renewal potential, expression of 
CSC markers CD44 and epithelial surface antigen, as well as 
EMT properties via upregulation of Zeb-1 in the PDAC cell 
line AsPC-1.108 Similarly, forced expression of forkhead box 
protein M1 (FoxM1) induced EMT state by enhancing 
expression of vimentin, Zeb-1, and Snail2, as well as pro-
moted the gain of the CSC phenotype in PDAC cells.109 
Furthermore, reduced expression of stem cell–related  
transcription factors Sox2 and Oct4, reversal of the EMT 
phenotype, decreased sphere formations, and the in vivo 
tumorigenicity in PDAC cells were seen after silencing of 
Snail with small hairpin RNA introduction.110

One of the most critical property of CSCs is to gain the 
EMT-induced stemness phenotype that leads them to resist-
ance to several chemotherapeutic agents.111 Pancreatic ductal 
adenocarcinoma cells with the CSC phenotype under the 
influence of hypoxia gain EMT and enhanced migration abil-
ity.112 In addition, it was reported that only the CSC-like cells 
acquire high migratory potential and thus may be responsible 
for invasion and metastasis.102,112

Also, human pancreatic cancers have a cell subset known as 
side population.111 These side population cells are highly 

resistant to gemcitabine, a very routine chemotherapeutic agent 
in used in the therapy of pancreatic cancer.113 In addition, these 
cells exhibit enhanced gene expression profiles associated with 
multidrug resistance (ABCG2 and ABCA9), EMT (SNAI2, 
LEF1), and regulation of apoptosis (ETS1, FASLG,).113 Also, 
it is reported that in pancreatic CSCs, microRNAs (miRNAs) 
such as miR99a, miR100, miR-125b, miR-192, and miR-429 
are differentially expressed. These miRNA clusters are related 
to the stem cell–associated mRNAs in pancreatic CSCs.114 
These findings indicate that stem cell–like properties imparted 
during EMT could attribute to chemoresistance in pancreatic 
cancer.111

Tumor-Infiltrating Inflammatory Cells and EMT: 
Crosstalk in Cancer Pathogenesis and Progression
An important question that needs further investigation is 
“How do tumor-infiltrating inflammatory cells and EMT 
impact one another toward cancer progression?” Many mecha-
nisms have been described in literature, including autocrine/
paracrine extracellular signals as well as genetic and epigenetic 
modifications.

Epithelial-mesenchymal transition–inducing signals are 
released through a process where a reactive stroma is formed 
after the recruitment of variety of inflammatory cells, such as 
myofibroblasts, fibroblasts, macrophages, granulocytes, myeloid 
cell–derived suppressor cells, lymphocytes, and mesenchymal 
stem cells, under the influence of certain factors synthesized by 
islands of cancer cells in advanced primary carcinomas.115 Using 
human PDAC primary tumors and Kras(G12D)/Snail mice, it 
was shown that SNAIL overexpression is associated with 
enhanced infiltration of mast cells via stem cell factor.116 
Enhanced recruitment of Gr-1+ and F4/80+ cells was also 
reported in Kras(G12D)/Snail mice compared with control 
Kras (G12D) mice.116 Interaction between inflammatory and 
EMT pathways toward cancer progression is observed in multi-
ple types of cancers and not restricted to PDAC. Coculture of 
tumor-associated macrophages (TAMs) and ovarian cancer 
cells demonstrated that TAMs promote the invasive phenotype 
of cancer cells in tumor necrosis factor α (TNF-α) and NF-κB–
dependent manner.117,118 In PDAC, macrophage infiltration is 
seen at a significantly higher numbers than in normal pancreatic 
tissue, and their infiltration does not match with chronic pan-
creatitis-like features in the neighboring tissue.119,120 The TAM 
M2 subtype has been associated with a poor prognosis.121 It was 
shown in an in vivo mouse model that when human tumor cells 
were co-engrafted with high numbers of human monocytes, 
enhanced tumor growth was seen.122 But, when they co-
engrafted tumor cells with a low ratio of human monocytes, 
they noticed inhibition of tumor growth.122 Continuous and 
regular contact of monocytes with tumor cells downregulates 
the production of cytotoxic molecules (such as reactive oxygen 
intermediates, TNF-α, and IL-12) and upregulates the levels of 
immunosuppressive cytokine IL-10.122,123 This indicates that 
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there could be a threshold ratio of the tumor cells to the number 
of monocytes and a set-limit of the immune mediators/mole-
cules they make, which when exceeded antitumor effects are not 
seen and more protumor phenotype is displayed. Furthermore, 
it was reported in an in vitro study that TNF-α made by TAMs 
increased with macrophage motility as well as pancreatic tumor 
cell numbers and ultimately transforming the phenotype of 
tumor cells to EMT phenotype.124 These findings support the 
notion that the increment in the number of TAMs and their 
products such as TNF-α in PDAC could overpower a definite 
threshold and transform from an antitumor to a protumor 
response.119 However, further studies are required to better 
understand the importance and impact of the number and type 
of TAMs that play a critical role in PDAC.

Cancer-associated fibroblasts represent another major cell 
type present in chronic inflammatory microenvironment and 
express growth factors such as FGF and HGF in addition to 
matrix-degrading enzymes, which are known inducers of 
EMT.125–127 Pancreatic ductal adenocarcinoma cells and 
CAFs reciprocally enhance each other’s proliferation and dif-
ferentiation. Cell culture supernatants from PDAC cells trig-
ger the production of ECM proteins and proliferation of 
pancreatic stellate cells (PSCs).128,129 Similarly, coculture of 
PDAC cells with CAF cell culture supernatant enhances the 
proliferation and migration of PDAC cells, as well as the rate 
of growth of PDAC cells when PSCs are coinjected into nude 
mice.129–131 It was demonstrated that coculture of PSCs with 
PDAC cells leads to downregulation of epithelial markers, 
E-cadherin, cytokeratin 19, and β-catenin, and upregulation 
of mesenchymal markers, vimentin and Snail, subsequently 
leading to enhanced cancer cell migration.132 Furthermore, in 
an in vivo study, male human CAFs were orthotopically coin-
jected along with female PDAC cells as a xenograft into the 
pancreas of female mice. It was observed that CAFs followed 
the pancreatic cancer cells to the metastatic sites, indicating 
that CAFs could play a potential role in the colonization of 
metastatic PDAC cells.133

Furthermore, it has been reported that CAFs protect pan-
creatic cancer cells from CRT.130 In an in vitro study, it was 
shown that when pancreatic cancer cells were cultured in the 
presence of culture supernatant (conditioned medium) from 
PSCs, the components in the PSC-conditioned media blocked 
the apoptosis of the gemcitabine-treated (100 µmol/L) or radi-
ation therapy (100 Gy)–treated pancreatic cancer cells.130 
Moreover, pancreatic cancer cell survival during radiation was 
enhanced in the presence of PSCs in both the monocultures or 
direct coculture-based conditions131,134 However, in another 
study, contact between CAFs and the PDAC cells was neces-
sary for PDAC cells to gain radioprotective, but when β1-
integrin signaling was blocked using blocking antibodies, this 
radioprotective effect of CAFs was significantly attenuated.131 
Furthermore, in an in vivo xenograft model system, it was 
shown that CAFs provide radioprotection to the implanted 

tumor cells when coinjected with pancreatic cancer cells, indi-
cating critical role of CAFs in pancreatic cancer.128,131,134

Inflammation and EMT: A Vicious Cycle in PDAC 
Progression
Inflammation, EMT and cancer are closely interconnected 
(Figure 1).78,135–137 In this section, we will discuss the molecular 
mechanisms involved in the regulation of inflammation and 
EMT in cancer pathogenesis and progression with a focus on 
the interplay between NF-κB, TGF-β, TNF-α, and STAT3 
signaling pathways.

Nuclear factor κB is not only a direct and powerful inducer 
of EMT but also promotes mobilization of innate immunity 
and inflammation, thus representing a molecular bridge 
between inflammation, EMT, and cancer.78,138–147 Akt-
mediated activation of NF-κB leads to enhanced SNAIL 
expression and induction of EMT.143,148 Subsequently, upreg-
ulated SNAIL inhibits expression of the metastasis suppres-
sor gene products Raf kinase inhibitor protein (RKIP) and 
phosphatase and tensin homology (PTEN) leading to block-
ing of NF-κB/MAPK and PI3K/AKT pathways, respec-
tively.149–151 Nuclear factor κB has been shown to regulate a 
number of miRNAs. Nuclear factor κB upregulates expres-
sion of miR-9,152 a miRNA whose overexpression in breast 
cancer cells directly targets CDH1 (the E-cadherin–encoding 
messenger RNA) leading to enhanced cell motility and inva-
siveness.153 Nuclear factor κB also directly binds to miR-448 
promoter and downregulates miR-448 transcription leading 
to EMT induction. miR-448 suppression induces EMT via 
targeting special AT-rich sequence-binding protein-1 
(SATB1) mRNA, enhancing EGFR-mediated TWIST1 
expression and NF-κB activation. Moreover, patients who 
were subject to combinatorial chemotherapy exhibited lower 
miR-448 levels and higher SATB1 and TWIST1 levels. 
Thus, a feedback loop between miR-448 and NF-κB seems 
to play a critical role in the regulation of chemotherapy-
induced EMT.154 Nuclear factor κB activation in myeloid 
cells has also been associated with EMT and tumor progres-
sion in inflammation-associated cancer models.155

Transforming growth factor β is another major regulator of 
EMT through canonical SMAD-dependent156 and noncanon-
ical SMAD-independent pathways. Transforming growth fac-
tor β also modulates the expression of other EMT regulators, 
such as SLUG157 and SNAIL,158,159 through SMAD and 
MAPK activation in both normal and malignant mammary 
epithelial cells (MECs).160–163 In addition, TGF-β-TGF-βR-
SMAD2 signaling axis controls maintenance of epigenetic 
silencing of crucial EMT genes in breast cancer progression.164 
Along with canonical SMAD-dependent pathways, several 
reports demonstrate that TGF-β can also regulate MECs 
behavior and induce EMT independently of SMADs. 
Noncanonical SMAD-independent effectors include phos-
phatidylinositol-4,5-bisphosphate 3-kinase (PI3K), MAPKs, 
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guanine triphosphate–binding proteins, and NF-κB.165–171 In 
addition, TGF-β targets include Na and K-ATPase,172 
IGFBP3,173 ZAG174 SKIP, TGF-βR1,175 Dab2, ROCK and 
LIMK, PIAS1, as well as multiple nuclear transcription factors, 
including members of SNAIL, SIP1, TWIST, and 6 family of 
homeobox (Six1).176,177 Transforming growth factor β regula-
tion of EMT does take place at the miRNA level as well in 
both normal and cancerous cells. In normal MECs, TGF-β 
stimulation enhances miR-155 expression through a SMAD4-
dependent pathway. Transforming growth factor β also medi-
ates miR-21 and miR-29a expression leading to EMT 
induction.178,179 miR-200 is another miRNA that falls under 
the umbrella of TGF-β–regulated small RNAs. Transforming 
growth factor β downregulates miR-200 expression, thus 
enhancing expression of E-cadherin repressors ZEB1 and 
ZEB2, which in turn results in E-cadherin downregulation 
and EMT induction.180,181 Moreover, TGF-β signaling induces 
hypermethylation of E-cadherin promoter leading to differen-
tiation of Ras-transformed MECs that have undergone a 
serum-induced stable EMT.182 Overall, a long list of targets 
have been identified downstream of TGF-β in the regulation 
of EMT. Nevertheless, the relative importance of these down-
stream targets and the crosstalk among them in TGF-β–
mediated EMT is not yet fully understood. However, TGF-β 
signaling in EMT has been shown to be regulated by a number 
of miRNAs, such as miR-30 and/or miR-200 family members, 
in cells derived from anaplastic thyroid carcinoma cells.183

Similar to NF-κB and TGF-β, TNF-α is a potent stimula-
tor of EMT. Transforming growth factor α induces SNAIL1 
promoter activity and stabilizes SNAIL1 protein.124,184,185 

Transforming growth factor α–induced EMT is partly medi-
ated by TGF-β1 activation.185,186 Transforming growth factor 
α and TGF-β act in a synergistic manner expediting EMT via 
a p38 MAPK-dependent pathway.187 Transforming growth 
factor α also promotes CD44 expression and moesin phospho-
rylation via TGF-β and protein kinase C activation along with 
actin remodeling. This leads to the dissociation of cell-cell con-
tacts and increase in cellular motility.188 In addition to TGF-
β–mediated EMT induction, TNF-α induces EMT via 
NF-κB activation or IKK2 constitutive upregulation and acti-
vation.189,190 As previously discussed, the downstream targets 
of TNF-α, TGF-β, and NF-κB are also interconnected.160,191 
Transforming growth factor β–mediated NF-κB activation 
induces EMT and metastasis by upregulation of an autocrine 
cascade of Cox-2/prostaglandin E2 (PGE2) receptor 2 (EP2) 
signaling.170,192–196 Altogether, these findings elucidate the reg-
ulation of EMT induction via a triad system of NF-κB, TGF-
β, and TNF-α pro-inflammatory signaling pathways.

Another pro-inflammatory mechanism that primarily con-
tributes to EMT induction is STAT3-mediated expression of 
TWIST.146 However, STAT3 has been reported to be a nega-
tive regulator of adenoma-carcinoma transition in colon can-
cer197 in contrast to the general dogma where pro-inflammatory 
signals induce EMT and promote tumor progression.

Current Treatment Options and Therapeutic 
Approach
For patients diagnosed with PDAC, at the moment, only surgi-
cal resection is the hope.198,199 But, about 80% of the patients 
with PDAC at the time of diagnosis already have a locally 

Figure 1.  Proposed mechanisms of induction of inflammation-mediated EMT and its subsequent effects on PDAC chemoresistance and progression, 

which eventually end up in poor survival rates in patients with PDAC. In this figure, we show that protumor inflammation can shift the balance and transform 

the epithelial cells toward mesenchymal phenotype. These newly gained mesenchymal traits promote tumor invasion and resistance to chemotherapy 

leading to bad prognosis. CAFs indicates cancer-associated fibroblasts; EMT, epithelial-mesenchymal transition; PDAC, pancreatic ductal adenocarcinoma.
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advanced or metastatic disease, thus rendering surgical inter-
vention ineffective.199,200 For the past 2 decades, the standard 
therapeutic strategy for these patients has been a combinatorial 
strategy of chemotherapy along with the nucleoside analogue 
gemcitabine.199 Despite this, only a meager 5-week increase in 
median survival of these patients has been observed using gem-
citabine.201 Moreover, therapeutic strategy to combine either 
thymidylate synthetase inhibitor (capecitabine) or platin-based 
agents (cisplatin and oxaliplatin) along with gemcitabine has 
been unsuccessful in enhancing the therapeutic efficacy.202–204 
A limited increase in the median survival (6.24 vs 5.91 months) 
for the patients with unresectable PDAC was seen in a phase 3 
study with the combinatorial treatment of erlotinib, an EGFR 
inhibitor along with gemcitabine in comparison with gemcit-
abine alone.205 Recent advances show that the use of 
FOLFIRINOX (irinotecan, oxaliplatin, leucovorin, and FU) 
has shown a significant increase in the median survival of 
patients by more than 4 months in comparison with gemcit-
abine alone (11.1 vs 6.8 months).206

Precision medicine in oncology bas been critical in under-
standing diverse molecular mechanisms of PDAC oncogen-
esis.207 Nevertheless, transforming this knowledge toward 
the development of targeted therapy has been a daunting 
task due to the complex biology of PDAC.207 Axitinib, an 
oral inhibitor of VEGF receptors (VEGFR), was investi-
gated in a randomized, placebo-controlled phase 2 study 
enrolling 103 patients with unresectable or metastatic PDAC 
as supplement to gemcitabine. Median overall survival for 
gemcitabine with axitinib was 6.9 months, whereas for gem-
citabine alone was 5.6 months.208,209 Although the study was 
extended with a phase 3 trial including 632 patients,210 an 
interim analysis suggested that the study was a failure and 
hence was terminated.208

Germline mutations in the BRCA1 or BRCA2 genes render 
PDAC tumors highly sensitive to poly (ADP-ribose) polymer-
ase (PARP) inhibitors.211 To this effect, several PARP inhibi-
tors, such as olaparib, are being tested in clinical trials. In a 
recent multicenter phase 2 study, olaparib (400 mg twice per 
day) was given to the enrolled 298 patients, including a sub-
group of patients with pancreatic cancer with a germline 
BRCA1/2 mutation.212 The overall response rate for patients 
with PDAC (treated previously with gemcitabine) was 21.7 (5 
of 23).212 In another study, treatment of Marimastat 25 mg, an 
oral MMP inhibitor did not change the survival rate for 
patients in a randomized study enrolling 414 patients with 
unresectable pancreatic cancer in comparison with patients 
receiving gemcitabine alone.213 In a mouse model–based study, 
a combination of gemcitabine along with saridegib, an inhibi-
tor of the Hh pathway, depleted desmoplastic stroma, enhanced 
delivery of gemcitabine to tumor cells, and thus displayed a 
significant improvement in the survival of tumor-bearing 
mice.214 Conversely, a randomized, double-blind, placebo-con-
trolled phase 2 trial with gemcitabine plus saridegib resulted in 

worse median survival in comparison with gemcitabine plus 
placebo arm; this study was discontinued.208

In patients with solid tumors, targeting ERBB family mem-
bers (eg, EGFR) and VEGF) and VEGFR using monoclonal 
antibodies has been most effective.208 But some of these anti-
bodies have not been successful in the trials with patients with 
advanced PDAC. Monoclonal antibodies targeting PD-1, 
PD-L1, and CTLA-4 (so-called checkpoint blockade, 
reviewed by Postow et al215) have been shown in recent clinical 
trials to promote endogenous antitumor immune activity.216–218 
Various phase 1 and 2 trials are going on to study the effect of 
antibodies against PD-1, PD-L1, and CTLA-4 in the solid 
tumors including advanced or metastatic pancreatic adenocar-
cinoma.208 Furthermore, new studies have been started to test 
monoclonal antibodies against tissue factor (CD142), Notch, 
human growth factor receptor, and tumor endothelial marker 1 
(TEM1, endosialin) in patients with PDAC.208

In addition, vaccines and immunotherapies are being used 
to target PDAC. Algenpantucel-L is a vaccine derived of 2 
irradiated allogeneic pancreatic cancer cell lines (HAPa-1 
and HAPa-2) transfected to express murine α-1,3-
galactosyltransferase has reached phase 3. It was successfully 
tested in a phase 2 trial (multicenter, open label) with 70 
resected (R0-1) patients with PDAC along with the combi-
nation of gemcitabine chemotherapy and chemoradiation.208 
In this study, the median overall survival was 86% and dis-
ease-free survival was 62% for the first year during a follow-
up of 21 months.208 The GVAX, a granulocyte-macrophage 
colony-stimulating factor–secreting allogenic pancreatic 
tumor cell vaccine was investigated recently in 90 patients 
with metastatic PDAC along with low-dose cyclophospha-
mide (Cy/GVAX) to block regulatory T cells, and with or 
without CRS-207, a live-attenuated Listeria monocytogenes 
expressing mesothelin. This was performed in a prime/boost 
vaccination manner, ie, Cy/GVAX followed by CRS-207 
(arm A) in comparison with Cy/GVAX alone (arm B),219 
where overall survival of 6.1 months in arm A and 3.9 months 
in arm B (P = .02) was seen. Higher levels of mesothelin-
specific CD8+ T-cell responses were linked to the longer 
overall survival.208

For adoptive immunotherapy, ex vivo genetic engineered T 
cells collected from patients are used to generate chimeric 
antigen receptors (CAR), efficient in detecting mesothelin 
expressed on PDAC cells.220,221 The CAR-T cell infused  
back into the patient immediately detects tumor cells and  
thus avoids antigen processing and HLA expression. In pre-
clinical studies, CAR-T cells displayed strong antitumor 
activity.222 Also, CAR-T cell therapy is now a discipline of 
active research in PDAC and there are ongoing studies in  
this field. (ClinicalTrials.gov identifiers: NCT01897415 and 
NCT01583686).207

In context to this article, although targeting signaling path-
ways downstream from KRAS has been unsuccessful so far,207 
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but there is a renewed fascination for targeting the outcome of 
an activated Janus kinase/signal transducer and activator of 
transcription ( JAK/STAT) signaling pathway in PDAC due to 
the association of PDAC and cachexia.20,223 Furthermore, 
addition of ruxolitinib, the JAK inhibitor to capecitabine for 
refractory metastatic patients with PDAC in a phase 2 trial 
exhibited overall benefit for a patient subgroup with increased 
levels of C-reactive protein207,224 and thus has created the 
rationale for phase 3 trials for the evaluation of ruxolitinib in 
patients with metastatic PDAC (ClinicalTrials.gov identifiers: 
NCT02117479 and NCT02119663). Analysis of data from 
global genomic studies also disclosed alterations in the gene 
expression patterns of the Wnt/Notch and TGF-β signaling 
pathways in all PDACs.225 To this effect, at present, there are 
ongoing clinical trials to study the potency of specific inhibi-
tors of these pathways (ClinicalTrials.gov identifiers: Wnt 
inhibitors: NCT02050178, NCT01764477; mAb against 
Notch:NCT01647828; Oral anti TGF-β receptor type 1: 
NCT01373164).207

Conclusions
Low survival rates of patients with PDAC have been primarily 
attributed to the resistance to chemotherapy. Inflammation 
does not only contribute to PDAC initiation but also promote 
cell survival, inhibit apoptosis, and induce EMT eventually 
leading to chemoresistance and enhanced invasiveness and 
metastasis of PDAC. Hence, simultaneous targeting of inflam-
mation and EMT is crucial to overcome chemoresistance and 
improve survival in the battle against PDAC.
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