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Candidiasis, which includes both superficial infections and invasive disease, is the most com-

mon cause of fungal infection worldwide. Candida bloodstream infections (BSI) cause signifi-

cant mortality and elicit a major threat to intensive care unit (ICU) patients [1]. The annual

global burden of Candida spp. BSIs is about 400,000 cases, with most cases reported from the

developed world. Although Candida albicans remains the most frequently isolated Candida
species in the clinical setting, in some countries, a marked shift towards species of Candida
that have increased resistance to azoles such as fluconazole (FLU), the standard antifungal

drug of choice in many countries, and to the recently introduced antifungals known as echino-

candins, is reported. Several species of non-albicans Candida, such as C. tropicalis, C. glabrata,

and C. parapsilosis, are well-recognized pathogens in BSIs in different geographic locations.

More recently, Candida auris, a multidrug-resistant (MDR) yeast that exhibits resistance to

FLU and markedly variable susceptibility to other azoles, amphotericin B (AMB), and echino-

candins, has globally emerged as a nosocomial pathogen (Fig 1) [2–20]. Alarmingly, in a span

of only 7 years, this yeast, which is difficult to treat and displays clonal inter- and intra-hospital

transmission, has become widespread across several countries, causing a broad range of

healthcare-associated invasive infections [4, 5, 10, 12, 21, 22].

Why is C. auris often misidentified in the routine microbiology

laboratory?

In 2009, a novel Candida species, C. auris, in the C. haemulonii complex (Metchnikowiaceae),

was first described from a patient in Japan after its isolation from the external ear canal [23].

The species exhibits a close phylogenetic relationship to C. haemulonii and is differentiated

based on sequence analysis of the D1/D2 domain of the large ribosomal subunit (LSU) of 26S

rRNA gene and the internal transcribed spacer (ITS) regions of the nuclear rRNA gene operon

[23]. The first 3 cases of nosocomial fungemia due to C. auris reported in 2011 from South

Korea highlighted the fact that this yeast is commonly misidentified as C. haemulonii and Rho-
dotorula glutinis by the commercial identification systems VITEK (BioMérieux, Marcy l’Etoile,

France) and API-20C AUX (BioMérieux), respectively [3]. These systems involve precast pan-

els of assimilation/growth tests using sets of carbon and nitrogen compounds and are still

widely used for routine identification of yeasts. A comprehensive study from India investigated

C. auris prevalence among 102 clinical isolates previously identified as C. haemulonii or C.

famata with the VITEK system and found that 88.2% of the isolates were C. auris, as confirmed

by ITS sequencing [9]. It is evident from several studies published recently that C. auris in
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routine microbiology laboratories remains an unnoticed pathogen, as 90% of the isolates

characterized by commercial biochemical identification systems are misidentified primarily

because of a lack of the yeast in their databases [3–9, 12, 16–19, 24, 25]. Different biochemical

systems are used in microbiology laboratories, and the majority of them listed in Table 1 mis-

identify C. auris. A recent study on validating the identification of C. auris with 4 biochemical

identification platforms found that all C. auris isolates were misidentified as R. glutinis by API-

20C AUX, as C. haemulonii (except 1, as C. catenulata) by Phoenix (BD-Diagnostics, Sparks,

MD), as C. haemulonii by VITEK, and as C. famata, C. lusitaniae, C. guilliermondii, or C. para-
psilosis by MicroScan (Beckman Coulter, Pasadena, CA) [25] (Table 1). However, Matrix-as-

sisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is

considered a more rapid and robust diagnostic technique for C. auris identification [9, 10, 13,

16]. Currently, the MALDI-TOF MS approach is commercialized by mainly 2 manufacturers,

namely MALDI Biotyper (Bruker-Daltonics, Bremen, Germany) and VITEK MS (BioMér-

ieux). The MALDI Biotyper (Bruker-Daltonics) has a database library that contains spectra of

3 strains of C. auris: 2 from Korea and 1 from Japan. Although both the Bruker-Biotyper and

VITEK-MS MALDI-TOF systems lack C. auris entries in the FDA-approved libraries, the

research-use-only libraries contain the C. auris database in both MALDI-TOF MS systems

[25]. Due to the fact that this yeast is MDR, it is important to identify these species correctly in

order to provide optimal patient care.

Fig 1. A global map depicting rapid emergence of multidrug-resistant clinical Candida auris strains in 5 continents. The value in parentheses

denotes the year of report of C. auris from the respective country or state.

https://doi.org/10.1371/journal.ppat.1006290.g001
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Does genetic predisposition make C. auris virulent?

A recently published draft genome of C. auris shows that it has a genome size of approximately

12.3 Mb [26, 27]. A significant percentage of genes in C. auris are devoted to central metabo-

lism, a property that is common to pathogenic Candida and crucial for adaptation to divergent

environments. In addition, C. auris shares numerous virulence attributes with C. albicans,
including genes and pathways involved in cell wall modelling and nutrient acquisition, histi-

dine kinase-2 component systems, iron acquisition, tissue invasion, enzyme secretion, and

multidrug efflux [21, 26, 27]. However, in vitro results in a single study that tested the produc-

tion of phospholipase and secreted proteinase in multiple isolates of C. auris from different

geographical regions showed that both secreted proteinase and phospholipase production was

strain dependent. The phospholipase activity and secreted proteinase were detected in 37.5%

and 64% of the tested isolates, respectively [20]. In general, the tested C. auris strains tended to

have weak phospholipase activity, with the majority of isolates being non-phospholipase pro-

ducers [20]. Furthermore, a significant portion of the C. auris genome encodes the ATP-bind-

ing cassette (ABC) and major facilitator superfamily (MFS) transporter families along with

drug transporters that may explain the exceptional multidrug resistance in this pathogen [21,

27]. ABC-type efflux activity by Rhodamine 6G transport was significantly greater among C.

auris than C. glabrata isolates, suggesting the intrinsic resistance of C. auris to azoles [18].

Interestingly, comparison of whole genome sequencing (WGS) data shows C. auris to be a

close phylogenetic relative of C. lusitaniae, a species recognized for intrinsic antifungal resis-

tance [21, 27]. C. auris also demonstrates thermotolerance, growing optimally at 37˚C and

maintaining viability at up to 42˚C, salt tolerance, and cell aggregation into large, difficult-to-

disperse clusters, which may help some strains to persist in the hospital environment [11, 23].

In a Galleria mellonella model, the aggregate-forming isolates exhibit significantly less pathoge-

nicity than their non-aggregating counterparts [11]. Importantly, the non-aggregating isolates

exhibited pathogenicity comparable to that of C. albicans, which is the most pathogenic mem-

ber of the genus [11]. However, it is important to mention here that the observations made in

this study are yet to be correlated with clinical cases and thus, assuming the same results in

patients, need further experimentation. Furthermore, the virulence of C. auris tested in a

mouse model of hematogenous-disseminated candidiasis showed distinct yeast cell aggregates

in the kidneys of mice, with lethal C. auris infection suggesting that aggregation might be a

mode of immune evasion and persistence in tissue [18]. Another significant factor involved in

C. auris virulence is its ability to differentially adhere to polymeric surfaces, form biofilms, and

resist antifungal agents that are active against its planktonic counterparts [28]. However, a

more recent study reported that C. auris biofilms were significantly thinner, i.e., exhibited

50% thickness compared to C. albicans biofilm [20]. Also, C. auris exhibits minimal ability to

adhere to silicone elastomer (a representative catheter material) relative to C. albicans [20]. C.

auris’s weak adherence ability suggests that it is likely to play some role in catheter-associated

candidiasis but not a large one, in contrast to C. albicans and C. parapsilosis, which are known

to cause such infections [20]. Although, C. auris expresses several virulence factors, albeit to a

lesser extent than C. albicans and in a strain-dependent manner [20].

The past and present of C. auris: Is the emergence of C. auris a

menace to public health?

In 2009, 15 isolates of C. auris were recovered from the ear canals of patients suffering from

chronic otitis media in South Korea [2]. Most of these isolates showed a reduced susceptibility

to AMB and azole antifungals. This report was followed by the first 3 cases of nosocomial fun-

gemia caused by C. auris from South Korea [3]. The latter study reported that the earliest
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isolate of C. auris was found in 1996 in the Korean isolate collection [3]. All 3 patients had per-

sistent fungemia for 10 to 31 days, and 2 patients who received FLU therapy followed by AMB

showed therapeutic failure and had fatal outcome. Subsequently, 2 larger series of candidemia

and deep-seated infections from India in 2013 and 2014 clearly showed that clonal strains of

MDR C. auris had emerged in 3 hospitals [4, 5]. The isolates were resistant to FLU and 5-flucy-

tosine (FC) and had elevated minimum inhibitory concentrations (MICs) of voriconazole

(VRC) and caspofungin (CFG) [4, 5]. The most worrisome findings were persistent candide-

mia and high attributable mortality rates [4, 5]. C. auris accounted for >5% of candidemia in a

national ICUs survey and up to 30% of candidemia at individual hospitals in India [4, 19]. In

the subsequent 2 years, several reports of hospital-associated infections emerged from South

Africa, United Kingdom, Venezuela, Colombia, United States, Pakistan, Israel, Kenya, and

Spain [7, 11–18, 24]. Table 1 lists several countries reporting C. auris infection published so far

across 5 continents. A collaborative project undertaken by the US Centers for Disease Control

and Prevention (CDC) to understand the global emergence and epidemiology of C. auris
reported that isolates from 54 patients with C. auris infection from Pakistan, India, South

Africa, and Venezuela showed that 93% of isolates were resistant to FLU, 35% to AMB, and 7%

to echinocandins; 41% were resistant to 2 antifungal classes, and 4% were resistant to 3 classes

[15]. The fact that this yeast exhibits MDR clonal strains that are nosocomially transmitted is

unusual in other Candida species [3, 5, 21]. Therefore, the possible threat of rapid spread in

affected countries and its emergence in unaffected countries will not only challenge clinicians

for its effective therapeutic management but will also bring high economic burden, especially

to countries in resource-limited settings where modern identification facilities and access to

antifungals other than FLU are limited.

What are the drivers of clonal transmission and nosocomial

outbreaks of C. auris?

There is increasing evidence that suggests likely transmission of C. auris in healthcare settings.

Recent reports highlight the persistent colonization by C. auris of hospital environments and

multiple body-sites of patients, leading to high transmissibility and protracted outbreaks [13,

14]. A large outbreak of 50 C. auris cases in a London cardio-thoracic center between April

2015 and July 2016 showed persistent presence of the yeast around bed-space areas [13]. Geno-

typing with amplified fragment length polymorphism (AFLP) demonstrated that C. auris iso-

lates clustered. Similarly, the investigation of the first 7 cases of C. auris infection identified in

the US, which occurred between May 2013 and August 2016, showed colonization with C. auris
on skin and other body sites weeks to months after their initial infection, which could possibly

lead to contamination of the healthcare environment and pose a risk of continuous transmis-

sion [14]. Furthermore, C. auris was isolated from samples taken from the mattress, bedside

table, bed rail, chair, and windowsill [14]. WGS results demonstrate that isolates from patients

admitted to the same hospital in New Jersey were nearly identical, as were isolates from patients

admitted to the same Illinois hospital [14]. Also, in the London outbreak, a healthcare worker

caring for a heavily C. auris–colonized patient had a C. auris–positive nose swab [13]. Effective

implementation of strict infection-prevention control measures are required to prevent trans-

mission of C. auris. These include isolation of patients and their contacts, wearing of personal

protective clothing by healthcare workers, screening of patients on affected wards, skin decon-

tamination with chlorhexidine, environmental cleaning with chlorine-based reagents, and

terminal decontamination with hydrogen peroxide vapor or ultraviolet (UV) light [13, 29].

Enhanced terminal cleaning with UV light has recently been shown to reduce infections with

many nosocomial pathogens and might also be of use for preventing C. auris transmission [30].
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Previously, several geographically related clusters have been reported from South Korea [2,

3], India [4, 5, 10], South Africa [10], Pakistan [15], and hospitals in Latin America [12, 16].

Clonality within C. auris has been shown using AFLP, multilocus sequence typing, and MAL-

DI-TOF MS among strains in India, South Africa, and Brazil [10]. A recent study applying

WGS demonstrated highly related C. auris isolates in 4 unrelated and geographically separated

Indian hospitals, suggesting that this pathogen exhibits a low diversity [21]. A large-scale appli-

cation of WGS analysis suggests recent independent and nearly simultaneous emergence of

different clonal populations on 3 continents, demonstrating highly related C. auris isolates in

the same geographic areas [15]. So far, no reservoir of C. auris has been identified, although

future studies on its isolation from animals, plants, and water sources are warranted.

Is antifungal resistance in C. auris a therapeutic challenge?

Patients with C. auris infections have risk factors similar to those of other Candida spp. infec-

tions, including abdominal surgery (25%–77%), broad-spectrum antibiotics (25%–100%), ICU

admission (58%), diabetes mellitus (18%), presence of central venous catheters (25%–94%), and

malignancies (11%–43%) [3–5, 7, 12, 14–16]. The overall crude in-hospital mortality rate of C.

auris candidemia ranges from 30% to 60%, and infections typically occur several weeks (10-50

days) after admission [4, 5, 10, 12, 13]. C. auris invasive infections represent a therapeutic chal-

lenge, and no consensus exists for optimal treatment. A few studies report breakthrough funge-

mia while on FLU, and this correlates with commonly reported high MICs (>32 μg/ml),

suggesting intrinsic resistance against this drug [3–5]. Although epidemiological cutoff values

(ECVs) or clinical breakpoints are not yet defined for C. auris, newer azoles such as posacona-

zole (range, 0.06–1 μg/ml) and isavuconazole (range,<0.015–0.5 μg/ml) show excellent in vitro

activity against C. auris [4, 5, 7, 15, 19]. Analysis of antifungal data published in various studies

and depicted in Table 1 clearly shows that about 90% of strains tested are resistant to FLU.

Regarding VRC, elevated MICs are reported in 50% of isolates in 2 large series published from

India and the CDC [9, 15]. Furthermore, variable susceptibility has been seen with AMB: 15%–

30% of the isolates exhibit high (>2 μg/ml) MICs [9, 15]. Up till now, echinocandin resistance

is noted in fewer isolates (2%–8%) [9, 14, 15], but almost half of isolates are MDR (resistant to

�2 antifungal classes), and a low number (4%) exhibit resistance to all classes of antifungals [2,

9, 12, 15, 16, 19]. Echinocandins remain the first-line therapy for C. auris infections, provided

that specific susceptibility testing is undertaken at the earliest opportunity. Although CFG is

normally highly effective against Candida biofilms, a recent report demonstrated that CFG was

predominately inactive against C. auris biofilms [29]. FC (MIC50, 0.125–1 μg/ml) is a treatment

option in renal tract or urinary tract infections, as the echinocandins fail to achieve therapeutic

concentrations in urine [4, 5, 7, 9, 11–13, 15, 18]. Also, a novel drug, SCY-078, which is the first

orally bioavailable 1, 3-β-D-glucan synthesis inhibitor, has been shown to possess potent activity

against various Candida spp. and exhibit potent antifungal activity against C. auris isolates [20].

Furthermore, SCY-078 showed growth-inhibition and anti-biofilm activity and could be an

important antifungal to treat this MDR species [20]. At present, the mechanism of antifungal

resistance in C. auris is unclear. The recently published draft genome of C. auris revealed the

presence of single copies of ERG3, ERG11, FKS1, FKS2, and FKS3 genes [21]. Detection of azole-

resistant mutations by comparing ERG11 amino acid sequences between C. albicans and C.

auris showed that alterations at azole-resistance codons in C. albicans were present in C. auris
isolates [15]. These substitutions were strongly associated with country-wise–specific geo-

graphic clades [15]. Resistance is probably inducible under antifungal pressure, resulting in

rapid mutational changes. However, future studies with emphasis on several molecular mecha-

nisms, including efflux and transporters, could provide insight on C. auris resistance.
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What are the important things that we still need to learn about

C. auris?

We are just beginning to know the epidemiology and behavior of C. auris, but at the present,

far more gaps exist in our knowledge. The earliest findings of C. auris are from 1996. The perti-

nent question remains whether this pathogen existed far earlier than 1996, and we were just

unable to identify it. The latter is less plausible because many centers have reviewed archived

isolate collections that have not shown any isolates of C. auris before 1996. We also do not

know why C. auris is independently, almost simultaneously, emerging in so many places

worldwide. It has been shown that there is a profound phylo-geographic structure with large

genetic differences among geographic clades and high clonality within the geographic clades.

However, a common characteristic is the high level of antifungal resistance, which is rare in

other Candida spp. C. auris is the only species in which several isolates have been identified

with resistance to all 4 classes of human antifungal drugs. It seems reasonable to opine that

changes or misuse of antifungal drugs is one of the factors, although no specific risk factors

for acquiring C. auris seem to exist. What we do know is that environmental factors probably

play a role in outbreaks in healthcare settings that include prolonged survival in healthcare

environments, probably due to skin colonization of patients and asymptomatic carriers. It is

obvious that future research is warranted on multiple aspects of C. auris, which seems to have

the typical characteristics of well-known, healthcare-associated pathogens such as carbapene-

mase-producing gram-negatives, Clostridium difficile, vancomycin-resistant Enterococcus
(VRE), and methicillin-resistant Staphylococcus aureus (MRSA). Given the behavior of the

latter 4, a further spread of C. auris in healthcare settings on a worldwide scale is expected.

C. auris worldwide emergence has prompted the CDC, (http://www.cdc.gov/fungal/diseases/

candidiasis/candida-auris-alert.html [last accessed February 2017]), Public Health England

(PHE), London (https://www.gov.uk/government/uploads/system/uploads/attachment_data/

file/534174/Guidance_Candida__auris.pdf [last accessed February 2017]), and the European

Centre for Disease Prevention and Control (ECDC), Europe (http://ecdc.europa.eu/en/

publications/Publications/Candida-in-healthcare-settings_19-Dec-2016.pdf) to issue health

alerts for strict vigilance of C. auris cases. International collaborative consortia and timely

efforts by the medical community are indispensable in controlling this super bug before it

adapts in our healthcare facilities. Furthermore, more intensive efforts are required, and one

such crucial step is the support from funding agencies to initiate multidisciplinary research to

better understand its ecology, evolution, and resistance mechanisms, which will go a long way

for its treatment and prevention.
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