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Abstract

A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be 

sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic 

nanopore. The self-similar (length-independent) conic geometry allows us to match the singular 

heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar 

steady temperature profile along the cone and the resulting ionic current conductance enhancement 

due to viscosity reduction. The universal scaling, which depends only on a single dimensionless 

parameter Z, collapses the measured conductance data and computed temperature profiles in ion-

track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal 

values for the hot-spot location and temperature in an aqueous electrolyte.

Ohmic heating in a nanopore has recently been put forth as a means to rapidly establish 

stable thermal hot spots, with superheated temperatures [1,2]. Such hot spots can be 

indirectly detected by a stable increase in the ionic current due to the decreased viscosity of 

the heated water [3]. We extend this concept to slender conic nanopores, where the focused 

electric field can reduce the longitudinal dimension of the hot spot to nanoscales at the tips 

of macroscopic (cm-long) pores. Moreover, the self-similar conic geometry allows us to 

develop a universal size-independent theory for the conductance enhancement and the hot-

spot temperature, location, and dimension. With the smaller longitudinal dimensions and 

universal scaling of these conic nanopore hot spots, nanoscale phenomena such as single-

molecule thermophoresis [4], single-biomolecule binding kinetics and thermodynamics, and 

single-bubble nucleation [5,6] can be studied in a precisely controlled nanoscale location 

with distinct ion current signatures.

Because of field focusing, the electric field E blows up towards the tip in a conic nanopore 

as (R−2), where R is the local cross-section radius of the cone [see Fig. 1(b)]; hence, the 

Ohmic heating rate per unit volume, which scales as (E2), blows up as (R−4). The external 

temperature profile for a perfect cylinder, however, blows up as ln r in the radial direction 

and would be responsible for an R-independent heat loss rate per unit length along the 

*Corresponding author. hchang@nd.edu. 

HHS Public Access
Author manuscript
Phys Rev Lett. Author manuscript; available in PMC 2017 May 18.

Published in final edited form as:
Phys Rev Lett. 2016 September 23; 117(13): 134301. doi:10.1103/PhysRevLett.117.134301.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cylinder. This seems to suggest that a steady temperature profile with a balance between heat 

generation and heat loss cannot be established. However, as shown in our analysis, proper 

accounting of the far-field external longitudinal flux that eliminates the singular ln r 
dependence for an infinitely long cylinder [7] is able to produce the desirable (R−2) scaling 

for heat loss per unit length. Consequently, the stable steady-state temperature profile that 

results from a balance between two nearly singular fluxes at the tip of a cone is very 

mathematically similar to the balance of singular azimuthal capillary forces and electrical 

Maxwell or Coulombic forces for dc [8] and ac [9] to establish robust interfacial cones. All 

share the conic geometry responsible for singular electric fields and singular forces or 

fluxes, and all produce self-similar universal scaling results that are independent of the 

actual length of the cone. However, unlike the interfacial cones, this thermal analysis 

involves matched asymptotics instead of local analysis, though the outer length scale does 

not enter explicitly but only through the angle of the cone due to geometric self-similarity. 

We use the theory, which depends on only a single dimensionless parameter Z, to obtain 

scaling laws for our computed steady-state temperature profile within the conic nanopore 

and our conductance enhancement data from experiments. The collapsed experimental and 

numerical data then offer very precise estimates of the hot-spot features.

Our experiments were done with three kinds of conic nanopores: single polyethylene 

terephthalate (PET) polymer pores from ion-track irradiation and asymmetric etching [10], 

silica nanopipettes with a submicron tip radius, and patch pipettes with a 1–3 μm tip radius 

(for cellular patch-clamp experiments) from laser-assisted pulling. SEM and conductance 

measurement at room temperature shows a typical tip radius Rt of 5 nm for the polymer 

conic pores, 100 nm for the silica nanopipettes, and 500 nm for patch pipettes. The inner 

half angle is 2.6°± 0.15° for our polymer conic pores, 2.5°± 0.3° for our nanopipettes and 

4.5°± 0.8° for our patch pipettes. We reduce the surface charge of the silica pipettes with 

functionalization by N-(3-Triethoxysilylpropyl)gluconamide and validated their low surface 

charge with ion-current rectification measurements [11]. Fabrication procedures and 

characterization details are in the Supplemental Material [10,12–14].

Figure 1(a) shows our measured current-voltage characteristic curve of a polymer conic 

nanopore filled with KCl solutions of different concentrations. A roughly quadratic increase 

in current is observed with respect to voltage for both biases, and the rectification ratios for 

all data points of opposite biases are below 1.05. Because surface charge causes higher 

rectification as the voltage increases [11], the conductance enhancement at higher voltages 

for both biases must be due to temperature increase inside the pore caused by Ohmic 

heating. Note that, at the same voltage, conductance enhancement is more significant for 

electrolytes with higher ionic strength, indicating a higher temperature increase inside the 

pore. The conductance enhancement is more readily observed if it is normalized by 

conductance at low voltage when the Ohmic heating effect is negligible. The normalized 

conductance versus voltage for the polymer nanopore, nanopipette, and patch pipette are 

plotted in Fig. 2(a).

For a slender cone with a half-cone angle of θ, we assume, and check a posteriori, that heat 

generation in each cone element is balanced by transverse heat loss through side walls. 

Longitudinal heat flux through the tip will be shown to be smaller than the transverse loss 
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through the side walls by a factor of tan θ ≪ 1, which is small for a slender cone. Based on 

Gauss’s law, the electric field inside the cone is equal to Vzt/z2, where zt is the distance from 

the extrapolated cone apex O to nanopore tip [see Fig. 1(b)] and V is the applied voltage 

[11]. The heat-generation rate per unit volume is given by σE2, where σ is the conductivity 

of electrolyte and E is the local electric field. The electrolyte is at high ionic strength such 

that the Debye length is much shorter than the nanopore radius. Consequently, the 

conductivity is uniform within the nanopore. As such, the temperature gradient in the polar 

direction on the cone surface can be obtained by relating the heat generation per unit length 

to the heat loss per unit length, , where ε = tan 

θ is a measure of the slenderness and k is the thermal conductivity outside the cone. The 

thermal conductivity k for the polymer nanopore is for PET k = 0.15 W m−1 K−1, for water k 
=0.6 W m−1 K−1, and for silica k = 1.3 W m−1 K−1 [15]. For simplicity, all T represent local 

temperature difference with respect to the room temperature. We have also neglected electro-

osmotic flow or any convection effects on intrapore heat transfer. We have silanized our 

silica nanopores to reduce electroosmotic flow, but residue surface charge could still exist on 

the surface. Some reports [16] have shown electro-osmotic velocity in silica conic nanopores 

as high as 0.3 m=s because of field focusing. However, even with such a high velocity, we 

estimate our thermal Peclet number for water, UR/α, to be as low as 0.1 near the tip; hence, 

convective contribution to heat transfer within the conic nanopore is negligible.

Outside the cone, but still within an inner region close to the cone, we study the Laplace 

equation with the stretched variable ρ = r/εzt so that the polar coordinate on the cone surface 

is fixed to be , where . Using zt, the longitudinal distance of the tip from the cone 

apex, as the longitudinal length scale yields a stretched Laplace equation for thermal flux 

. The leading-order solution without 

longitudinal heat flux through the solution is then

(1)

where  is the unknown temperature on the cone surface. The ln ρ portion arises from the 

straight cylinder limit (ε → 0). The flux on the cone surface is determined by this term, and 

balancing with the previously determined Ohmic heat-generation rate at every longitudinal 

position z allows us to determine the coefficient 

. Thus, the line source strength with 

dimension of temperature is , where TOhm = tan2θσV2/2k is the 

characteristic temperature rise from Ohmic heating at the tip. It corresponds to a virtual 

sphere at the tip with higher heat loss than the true slender cone. The temperature rise TOhm 

is, hence, an underestimate of the true tip temperature that needs to be corrected with a 

slender-body-matched asymptotic theory.

Away from the cone, the far-field temperature can be described by the integral formulation 

with a convolution integral with the Green’s function (single-charge fundamental solution) 
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of the Laplace equation. In the original coordinates, this integral solution that satisfies the 

far-field condition T(r2 + z2 → ∞) = 0 is

In the limit of vanishing r, where the cone surface is, this integral has a simple pole at s = z 
and we can, hence, approximate it by choosing a smaller interval of integration about the 

pole, r ≪ δ ≪ zt, such that

after a change of variable s = z+rt. Expanding about r = 0 and respecting the relative scaling 

between z and r, we obtain

(2)

The finite temperature of the integral solution of a finite cone approaches an asymptote at r = 

0 that has the singular limits (at both vanishing r and infinite r) of an infinite cylinder, and z 
is of the order specified by δ. This limiting asymptote is of the form in Eq. (1) and, hence, 

allows matching between the two solutions. One can use the intermediate coordinate of 

Hinch [7] to match Eqs. (1) and (2) and relate q(z)/2π to  in the intermediate region at 

the surface of the tip where r = εz ~ εzt. It is, however, quite obvious by inspection that 

 ln ε and

(3)

Through matching, the slender-body heat loss to the bulk has introduced a − ln ε = − ln(tan 

θ) correction to the original characteristic temperature rise TOhm, to obtain a new 

temperature rise TH with proper respect to the nearly cylindrical geometry and the ln r 
fundamental solution.

Although there exists a finite normal gradient at the cone surface (∂T/∂r)|r=εz, the gradient 

resides in a thin boundary layer of thickness εR and the temperature is uniform to leading 

order within most of the local cross section of radius R. The temperature drop across this 

thin boundary layer is hence small (of order R) compared to the bulk temperature, and one 

can use the value on the cone surface from Eq. (3) to approximate the temperature within the 

conic pore.
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The conductivity has a temperature dependence of σ = [mT(z) + 1]σ0, where the 

conductivity expansion coefficient for aqueous electrolyte is m = 0.02K−1 =1/Tm [17] for 

water and σ0 has a linear concentration dependence. The normalized conductance of the 

cone can be derived from the integration of the equation 

. When TH=Tm is small, such that the conductivity 

does not increase significantly, the expression can be simplified as

(4)

where Z = − ln(tan θ)mtan2θσV2/6k. Figure 2(a) shows experimental data of normalized 

conductance for the polymer nanopore, nanopipette, and patch pipette, showing varying 

degrees of enhancement when measured at the same voltage. Figure 2(b) shows data to 

collapse with Eq. (4).

One of the most important results from the slender-body theory is that it provides a way to 

estimate the temperature inside the cone from normalized conductance even with an 

unknown cone angle and thermal conductivity. Based on Eqs. (3) and (4), the temperature 

rise normalized by  for any longitudinal z coordinate has a universal linear scaling 

relationship with respect to the normalized conductance, with a universal slope of 3. The 

matched asymptotic analysis breaks down at some neighborhoods of the conic tip, where a 

significant heat loss in the longitudinal direction that is not captured in the current slender-

body theory dominates. The temperature, hence, does not increase monotonically towards 

the tip , as predicted by Eq. (3), but exhibits a maximum at some distance from the tip. 

Nonetheless, due to the self-similarity of the conic geometry and the universal validity of the 

focused Ohmic heating scaling, we expect the hot-spot location to be universal, and the 

normalized hot-spot temperature to exhibit the same universal scaling of 3 with respect to 

the normalized conductance.

We have numerically solved the steady-state inhomogeneous heat equation with an Ohmic 

heating source for polymer nanopore and nanopipette geometry of different cone angles 

using COMSOL MULTIPHYSICS v3.5a. The temperature dependence of the electrical 

conductivity of the electrolyte and all physical parameters used in the simulation are the 

same as those used in the collapse in Fig. 2(b). The simulated data are also collapsed by Eq. 

(4). The normalized conductances are plotted against the maximum temperature rise 

normalized by  for various conic geometries in Fig. 3. The universal slope is found 

to be equal to 3 when , which agrees well with the actual position of the maximum 

temperature increase from the simulation results. This empirically established universality 

then allows us to predict the hot-spot temperature from Eq. (3) with .

That the hot-spot length is of order zt, the longitudinal distance of the tip from the cone 

apex, also allows us to validate our negligence of the longitudinal heat flux through the tip. 

Using the point-source solution of the Laplace equation, the radial heat flux density from the 

tip scales as k(Rt/r2), where r is the spherical radial coordinate from the tip and Rt is the tip 

radius. As such, the total longitudinal thermal diffusive flux into the solution scales as 
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πkRt/2. Using the line source solution in Eq. (2), the transverse heat flux through the wall 

scales as k(1/r), where r here is the cylindrical radial coordinate transverse to the cone, and 

the total transverse flux out of the wall scales as 2πkzt, using the confirmed longitudinal 

length scale of the hot spot from Fig. 4. Because Rt/zt = tan θ = ε ≪ 1 for a slender cone, the 

longitudinal flux into the solution is negligible compared to the radial flux through the side 

wall.

After defining an arbitrary cutoff temperature rise Tc =15 °C to estimate the dimension of 

the hot spot, we find in Fig. 4 that the theory estimates the lower temperatures well at low 

TH, but breaks down at high voltages or large TH. This error is due to the omission of the 

nonlinear conductivity variation in the Ohmic heating of our theory. A next-order correction 

(in the conductivity increase Z) can be made with E = [Vzt(1 + Z)]/z2 [1 + T(z)/Tm], where 

(1 + Z) accounts for the overall conductivity increase and  balances the current 

along the cone with varying local electrical conductivity. Using the same asymptotic 

matching, the expression for the temperature becomes: 

, which represents a higher-order correction to 

Eq. (3). The position  of the cutoff temperature Tc where  is then 

. This higher-correction collapses the large voltage 

simulation results in Fig. 4 and offers an estimate of the hot-spot dimension. Using the same 

cutoff temperature rise of 15 °C, at low Z (TH/Tm < 1), the thermal hot-spot dimension is 

quantitatively less than zt, or less than 100 nm for the membrane nanopore and 2 μm for the 

nanopipette.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
(a) Current voltage characteristic curves for the polymer nanopore. The rectification ratio for 

all data points is below 1.05. (b) Schematic of temperature profile in the z direction inside a 

cone with different but self-similar temperature profiles in the r direction at two positions on 

the cone surface.
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FIG. 2. 
(a) Measured conductance of a single conic nanopore ion-track PET membrane, charge-free 

nanopipette, and patch pipette, normalized by the zero-voltage conductance of each 

experiment, as a function of voltage. A quadratic increase with respect to voltage is 

observed, in violation of Ohmic law with constant conductance. (b) Membrane, nanopipette, 

and patch pipette data collapsed by the scaling theory into a linear correlation with respect to 

a normalization factor that contains cone angle θ (2.6°, 2.5° and 4.5° degrees for polymer 

nanopore, nanopipettes, and patch pipette, respectively), k = 0.15 and 0.6 W m−1 K−1 for the 

PET membrane pore and the silica pipettes, coefficient of temperature-dependent electrical 

conductivity m, thermal conductivity outside the cone k, conductivity σ at indicated ionic 

strength at room temperature, and voltage V. Insets show cavitation in both the nanopore 

membrane and patch pipette at the corresponding voltages. Cavitating bubbles are first 

observed within the patch pipette at some distance from the tip, as shown in the second inset, 

but will eventually grow sufficiently to exit the pipette, as is observed at the membrane 

surface.
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FIG. 3. 
Collapse of simulation result of highest temperature vs normalized conductance for the 

nanopipette and nanopore with voltages ranging from 2V to 25V. Rt indicates tip radius, 

which varies by a factor of 20 from polymer nanopores to nanopipettes. C indicates molarity 

of KCl. Contour plots of the temperature near the tip of the nanopipette and polymer 

nanopore at 24V are shown in the inset. Room temperature is 25 °C.

Pan et al. Page 10

Phys Rev Lett. Author manuscript; available in PMC 2017 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
Simulation results of the cutoff position for different voltages and cone geometry using a 

cutoff temperature rise of 15 °C. The theory that does not account for varying conductivity 

inside the cone is only valid at low voltages when conductivity variation throughout the cone 

is small. Once conductivity variation is considered, the theory is valid at both high and low 

temperatures.
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