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Abstract

Purpose Hypoxia is a condition of insufficient oxygen to

support metabolism which occurs when the vascular supply

is interrupted, or when a tumour outgrows its vascular

supply. It is a negative prognostic factor due to its asso-

ciation with an aggressive tumour phenotype and thera-

peutic resistance. This review provides an overview of

hypoxia imaging with Positron emission tomography

(PET), with an emphasis on the biological relevance,

mechanism of action, highlighting advantages, and limi-

tations of the currently available hypoxia radiotracers.

Methods A comprehensive PubMed literature search was

performed, identifying articles relating to biological sig-

nificance and measurement of hypoxia, MRI methods, and

PET imaging of hypoxia in preclinical and clinical settings,

up to December 2016.

Results A variety of approaches have been explored over

the years for detecting and monitoring changes in tumour

hypoxia, including regional measurements with oxygen

electrodes placed under CT guidance, MRI methods that

measure either oxygenation or lactate production conse-

quent to hypoxia, different nuclear medicine approaches

that utilise imaging agents the accumulation of which is

inversely related to oxygen tension, and optical methods.

The advantages and disadvantages of these approaches are

reviewed, along with individual strategies for validating

different imaging methods. PET is the preferred method for

imaging tumour hypoxia due to its high specificity and

sensitivity to probe physiological processes in vivo, as well

as the ability to provide information about intracellular

oxygenation levels.

Conclusion Even though hypoxia could have significant

prognostic and predictive value in the clinic, the best

method for hypoxia assessment has in our opinion not been

realised.

Keywords Hypoxia � MRI � Positron emission

tomography � Hypoxia radiotracers

What is hypoxia?

Hypoxia generally refers to sub-physiologic tissue oxygen

levels (\5–10 mmHg). Tumour hypoxia, a hallmark of

malignancy, is a common and important feature of the

tumour microenvironment. It is the consequence of an

oxygen delivery versus consumption mismatch that occurs

when cell proliferation outstrips neoangiogenesis during

tumour growth. This results in very low oxygen levels

(\5 mmHg) in tumours versus 40–60 mmHg in healthy

tissues [1]. Hypoxia can generally be classified as (1)

perfusion-related (acute) hypoxia due to insufficient blood

flow, (2) diffusion-related (chronic) hypoxia caused by an

increase in diffusion distances with tumour expansion, and

(3) anaemic hypoxia caused by a decrease in oxygen

transport capacity [2]. The latter two are considered rela-

tively stable, whereas the degree of acute hypoxia may

change in a short time. Cancer cells respond differently to

decreased oxygen tension by eliciting cell death or cell

survival, which partially depends on the time of exposure

to hypoxia.

& Eric O. Aboagye

eric.aboagye@imperial.ac.uk

1 Department of Clinical Oncology, Bristol Cancer Institute,

Horfield Road, Bristol, United Kingdom

2 Department of Surgery and Cancer, Imperial College, GN1,

Commonwealth Building, Hammersmith Hospital, Du Cane

Road, London W120NN, United Kingdom

123

Clin Transl Imaging (2017) 5:225–253

DOI 10.1007/s40336-017-0231-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s40336-017-0231-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40336-017-0231-1&amp;domain=pdf


The origin of chronic hypoxia in human tumours was

postulated by Thomlinson and Gray in 1955 [3]. Chronic

hypoxia, also referred to as diffusion-limited hypoxia

(DLH), is caused by consumption of oxygen by cells close

to vessels, leaving inadequate oxygen for the cells further

away from the vessels ([100 lm of capillary blood ves-

sels), as demonstrated by means of phosphorescence life-

time imaging of R3230AC tumours in dorsal flap window

chambers [4]. Chronic hypoxic changes are exacerbated in

larger tumours and contribute to long-term cellular changes

such as high frequency of DNA breaks, accumulation of

DNA replication errors, potentially leading to genetic

instability and mutagenesis [5, 6].

Brown and colleagues [7] were the first to present a

second form of hypoxia: acute hypoxia. Acute hypoxia is

an abrupt and brief exposure to short-term hypoxia (be-

tween a few minutes and up to 72 h) which occurs con-

sequent to fluctuations in tumour perfusion accompanying

functionally and structurally defective vascular network in

tumour (overdilated, hyperpermeable, tortuous, and dis-

rupted), and associated with high-interstitial pressure of

the extracellular matrix [8]. This leads to periods of better

or worse oxygenation [9, 10] promulgating the lexicon—

cycling hypoxia [11]. Temporal occlusion of blood ves-

sels caused by blood clots or tumour emboli can also

cause acute hypoxia [12]. Acute hypoxia can lead to

generation of high levels of reactive oxygen species

(ROS) that can damage cells [13]. Cellular adaptations to

these conditions have been enumerated and include

decreasing oxidative metabolism and activating autophagy

[14, 15]. Increased radio-resistance of cancer cells

[13, 16], induction of spontaneous metastasis [10, 17, 18],

and genomic instability due to delayed DNA damage

response and rapid p53-dependent apoptosis [19, 20] can

also result from hypoxia, leading to an aggressive tumour

phenotype.

Hypoxia represents a unique tumour vulnerability to be

exploited in the context of newly emerging personalised

medicine strategies. Undoubtedly, both chronic and acute

tumour hypoxia directly affect clinical responses to therapy

by influencing tumour growth, ability to metastasize, and

resistance to cell death.

Methods

A comprehensive PubMed literature search was performed,

identifying articles relating to types of hypoxia, biological

significance of hypoxia, measurement of hypoxia, MRI

methods, and PET imaging of hypoxia in preclinical and

clinical settings, up to December 2016. Search terms that

were used to identify such articles were ‘‘hypoxia imag-

ing,’’ ‘‘MRI,’’ ‘‘FMISO’’, ‘‘FAZA’’, ‘‘FETNIM’’, ‘‘EF5’’,

‘‘HX4’’, ‘‘RP-170’’, ‘‘Cu-ATSM’’, and ‘‘PET’’ or ‘‘positron

emission tomography.’’ Original publications in English

were selected for inclusion in this review.

Biology and clinical significance of hypoxia

Tumour hypoxia is frequently seen in solid tumours, and

tumour cells survive by activating different signalling

pathways leading to a plethora of temporally or spatially

heterogeneous changes in tumours (Table 1), elicited at

different thresholds of oxygen tension [21–52]. In fact,

during malignant growth, hypoxic regions are associated

with increased genetic instability and more aggressive

phenotype which correlate with tumour metastasis risk.

Likewise, hypoxia causes unequivocal resistance to cancer

treatments, such as reduced drug penetration, intrinsic

chemoresistance (by mechanisms including loss of sensi-

tivity to p53-mediated apoptosis or diminution of cell

proliferation by metabolic stress), and resistance to ioniz-

ing radiation (reduced ability of oxygen to fix DNA

lesions).

A number of biological consequences of low oxygen

levels have been elegantly described by Höckel and Vaupel

[53]. At pO2 levels less than 10–15 mmHg, cells become

radioresistant and gene expression of hypoxia-regulated

genes under control of hypoxia-inducible factor (HIF1)

increases. Decreased adenosine triphosphate (ATP) syn-

thesis is seen at pO2 levels less than 10 mmHg and together

with decreased protein synthesis leads to lower oxygen

consumption by cells. Finally, pO2 levels less than

1 mmHg reduce oxidative phosphorylation and conversely

enhance glycolysis to maintain adequate ATP levels [54].

Role of HIF1alpha

Pathological hypoxia is a common microenvironment fac-

tor in tumours that facilitates cell survival and propagation

of the tumour. The cross-talk between tumour and its

microenvironment is essential for tumour survival [55].

Hypoxia-inducible changes not only affect tumour cells but

also the tumour microenvironment [56]. Hypoxia-inducible

factor 1 and 2 (HIF1 and HIF2, respectively) are oxygen-

sensitive, heterodimeric transcription factors that act as key

mediators of the cellular adaptation to low oxygen. HIF1

regulates glycolysis and pyruvate metabolism, and HIF-2

controls fatty acid metabolism. HIF1 is a heterodimeric

protein consisting of HIF1alpha (oxygen regulated) and

HIF1beta (constitutively expressed) dimers. Hypoxia sta-

bilises HIF1alpha which stimulates expression of a variety

of genes controlling metabolic pathways, pH regulation,

angiogenesis, metastatic potential, DNA replication, pro-

tein synthesis, and treatment resistance, which (1) enhances

cell survival via growth factor signalling and inhibition of
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pro-apoptotic pathways, (2) contribute to tumour neovas-

cularization via VEGF, VEGF receptors, COX-2, iNOS,

(3) regulate cell detachment via down regulation of

adhesion molecules such as cadherins, and (4) induce cell

migration and invasion through matrix degrading enzymes

[57–59] (Table 1, Fig. 1).

Table 1 Signalling pathways activated by tumour hypoxia promoting cell survival

Signalling pathways Comments

Hypoxia inducible factor (HIF1)

[21–27, 38–51]

Mediates tumour cell responses to hypoxia

Glucose metabolism

HIF1alpha regulates the switch from pyruvate catabolism and oxidative phosphorylation to glycolysis in

both hypoxic and normoxic cells, by activating the expression of glucose transporters (GLUT 1 and 3)

and glycolytic enzymes [39, 44, 47]

Lipid metabolism

HIF2 regulates fatty acid metabolism and induces significant changes in the expression of glycolipids and

glycoproteins [51].

DNA repair

Tumour hypoxia increases mutation rate and decreases DNA repair resulting in genetic instability

Acute hypoxia can result in high levels of reactive oxygen species (ROS), which causes DNA damage and

malignant progression upon reoxygenation [38, 43]

Chronic hypoxia can also lead to accumulation of DNA replication errors or DNA breaks over time [49]

Apoptosis

HIF1 initiates hypoxia-mediated apoptosis (during prolonged severe hypoxia) by enhancing the

expression of the several genes such as Bcl-2, p53, BNIP3, and BNIP3L [48].

Angiogenesis

Hypoxia induces the imbalance between pro- and anti-angiogenic factors’ production, which results in

chaotic blood vessel formation.

HIF1 is involved in all steps of blood vessel formation [40] by contributing to i) Endothelial progenitor

cell (EPC) recruitment and differentiation into endothelial cells (ECs), by VEGF, FGF & PDGF

regulation, [42] ii) induction of matrix metalloproteinases (MMPs) and iii) recruiting smooth muscle

cells and pericytes to stabilise blood vessels [45]. However, in tumours, new blood vessels are often

abnormal, immature, leaky, and dysfunctional, resulting in hypoxia [40] [41]

Metastases

Contributes to metastases by altering cancer cell adhesion and motility [41], through regulation of

epithelial-to-mesenchymal transition (EMT), which is characterised by a decrease in epithelial-

associated and an increase in mesenchymal-associated gene expression [50], promotes migration and

invasion abilities through induction of CXCR4, CA9, MMP [46]

Unfolded protein response (UPR)

[28–32]

This is an oxygen-sensitive signalling pathway mediating cell survival under hypoxic conditions

UPR restores homeostasis by alleviating the ER stress due to accumulation of misfold proteins under

hypoxic conditions

This is mediated through protein kinase R–like endoplasmic reticulum kinase (PERK), inositol-requiring

protein 1 (IRP-1), and activating transcription factor 6 (ATF6), which induce hypoxia-associated

metastases and radioresistance

AKT-mTOR pathway [28] Mediates cell survival under hypoxia

Hypoxia-induced inhibition of mTOR-complex will induce autophagy, similar to the ER-stress-induced

UPR

Other down stream changes

miRNAs [32] These interact with target mRNA’s thereby suppressing target gene and consequent protein expression,

thus regulatingproliferation, apoptosis, angiogenesis and DNA repair

Epigenetic changes [33, 34] Chromatin alterations such as histone acetylation/deacetylation allow cells to adapt to hypoxic stress

p53 [35] TH is one of the earliest driving forces which leads to loss of p53 function during tumourigenesis leading

to treatment resistance

Metabolic changes [36, 37] Hypoxia causes tumour cells to switch to glycolysis for energy production (due to decrease in

mitochondrial oxidation)

Glycolytic products such as pyruvate and lactate induce HIF1alpha accumulation (Feed forward

mechanism)
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Resistance to chemotherapy and radiotherapy mediated

by HIF1 signalling

Drug resistance could potentially occur at the cellular level

or secondary to changes in the tumour microenvironment.

Tumours have convoluted vasculature which results in

proliferating well-nourished cells closer to the functional

blood vessels and regions of hypoxic cells located away

from the functional blood vessels. Irregular blood flow and

large distances between functional blood vessels in solid

tumours lead to poor drug distribution, resulting in thera-

peutic resistance [60].

It is often difficult to discriminate between the effects of

hypoxia per se and HIF1, and the literature on the effects of

the hypoxic microenvironment and HIF1 on drug efflux

and multidrug resistant phenotype [61], for instance, is

controversial. Zhao and co-workers recently reported that

HIF1alpha suppresses MDR1/P-glycoprotein in gastric

cancer by inhibiting miR-27a expression in gastric cancer

[62], and in colon cancer cells, inhibition of HIF1 leads to

downregulation of p-glycoprotein and reversal of multidrug

resistant phenotype [63]. In contrast, pronounced hypoxia

has minor effect on p-glycoprotein expression and activity

[64], while acidosis, a feature of the hpoxic micro-envi-

ronement, increases p-glycoprotein activity [65]. In addi-

tion, regarding drug efficacy, the hypoxic environment can

modify the efficacy of drugs that require molecular oxygen

as part of their mechanism of action, e.g., bleomycins

[66, 67], or are activated by reductases under hypoxia, e.g.,

evofosfamide, tarloxotinib, tirapazamine, and SN30000

[68, 69], and is a barrier to drug delivery generally inde-

pendent of HIF1 [70]. Hypoxia and HIF1 also confer

treatment resistance of cancer cells by inducing cell cycle

arrest (quiescence) [71], making drugs that target cycling

cells ineffective), and by supporting the highly tumouri-

genic stem cell niche [72]. In glioblastoma, HIF1alpha?

quiescent stem-like are found to locate within the peri-

necrotic region and confer higher tumourigenic potential

[73]. During severe or prolonged hypoxia, most of the cells

undergo programmed cell death. However, some of the

tumour cells adjust to environmental stress and survive by

avoiding necrosis, inhibition of apoptosis [48, 74, 75], and

decreasing senescence of cells [76], mediated by HIFalpha,

resulting in an aggressive phenotype and resistance to

treatment.

During fractionated radiotherapy, HIF1alpha protects

the tumour microvasculature from radiation-induced

endothelial apoptosis, via induction of vascular endothelial

growth factor (VEGF) and other pro-angiogenic factors and

facilitates tumour cell survival by increasing the antioxi-

dant capacity of tumours to counteract radation-induced

oxidative stress [21]. Irradiation also induces changes in

the tumour microenvironment such as vascular, stromal,

and immunological changes which may promote radiore-

sistance and tumour recurrence [77]. These effects even-

tually lead to the resistance of tumour cells to

chemotherapy and radiation.

Measurement of hypoxia

Knowledge of the hypoxia state enables prediction of

treatment outcome and selection of patients for hypoxia

modifying treatment. The relative prevalence of diffusion

limited hypoxia (DLH), cyclic and perfusional hypoxia in
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human tumours or animal models is not known, and it is

predicted that different hypoxia modes require different

diagnostic and therapeutic approaches. Several noninvasive

techniques (direct or indirect measurements) are available

to obtain an absolute or relative value of the oxygenation

status of tumours. The various strategies available are

described in Table 2 [78–103]. Each of the techniques

described interrogates different aspects of the hypoxic

microenvironment, and they provide information on

hypoxia at different locations: Oxygen electrodes and

OxyLite sampling predominantly measure interstitial

hypoxia. PET, SPECT, and extrinsic markers report on

intracellular hypoxia and PET/SPECT images quantify

data on a macroscopic scale in tumour regions. Blood

oxygen level-dependent (BOLD)-MRI and Oxy-R fraction

allow assessment of blood oxygenation, while indirect

methods that report on hypoxia-induced molecular events

(e.g., GLUT1, CA9 expression) rather than hypoxia itself

have also been utilised as markers of tumour oxygenation.

MRI methods

These include MR-based gradient-recalled echo tech-

niques, electron paramagnetic resonance, and MR spec-

troscopy. MRI methods for interrogating tumour

oxygenation are attractive since MRI scanners are widely

available and they avoid the complication of short-lived

radioactivity.

Blood oxygen level dependent (BOLD)-MRI

The most facile contrast mechanism, which depends on

blood oxygenation—blood oxygen level dependent

(BOLD) MRI—avoids the need for reporter molecules by

imaging differences between diamagnetic oxy-haemoglo-

bin and paramagnetic deoxy-haemoglobin. The presence of

deoxy-haemoglobin in a blood vessel causes susceptibility

differences between vessel and its surrounding tissue

resulting in a decrease in T2* leading to darkening in tis-

sues containing the vessel in a T2*-weighted imaging

protocol. A limitation is that it is also sensitive to changes

in Hb concentration (due to alterations in vascular volume

and flow as well as interconversion of oxy- and deoxy-

haemoglobin). Therefore, this technique provides qualita-

tive assessment of changes in oxygenation rather than

quantitative measurements. The technique is widely used

for functional brain mapping [104, 105], where it is thought

to primarily reflect changes in flow.

Baudelet and Gallez have rigorously investigated corre-

lations between pO2 estimated using fibre optic probes and

BOLD signal changes and have found general correlations,

but a given BOLD response may reflect vastly different

changes in pO2 [102]. BOLD MRI has the advantage of

both high spatial and temporal resolution and it can be

repeated as needed; however, it can be susceptible to subtle

motion artefacts [106]. Rijpkema et al. used BOLD to

evaluate patients during the ARCON trial for head and neck

cancer and found significant changes in T2*-weighted MRI

contrast accompanying hyperoxic gas breathing [107]. No

accompanying changes were observed by traditional T1-

weighted gadolinium dynamic contrast-enhanced MRI.

Preliminary analysis of 11 women being treated with

chemotherapy for locally advanced breast cancer showed a

significantly different BOLD response to breathing oxygen

before the course of chemotherapy for tumours of women

with good therapeutic outcome versus those with poor

response. Indeed, three women with complete pathologic

response showed a signal change greater than 7%, whereas

those with poor outcome showed less than 3% [108]. It is

arguable whether the differential response reflects perfusion

or oxygenation, but traditional dynamic contrast-enhanced

MRI failed to provide similar discrimination.

The biologic sequelae of hypoxia are also amenable to

imaging. Prolonged hypoxia can lead to increased lactate in

tissues and 1H MRI can be used to image lactate

[109, 110]. Furthermore, alteration of the redox state of

nonprotein thiols, such as glutathione, adenine nucleotide

redox state, NADH or NADPH in hypoxic cells can lead to

accumulation of radiopharmaceuticals in hypoxia. All of

these tests measure downstream consequences of hypoxia

and often do not instantly return to normal values after an

adequate O2 supply has been established. For more infor-

mation, the reader is referred to a recent review that

addressed the role of functional MRI (fMRI) methods to

assess tumour oxygenation for predicting outcome [111].

PET imaging of hypoxia

Positron emission tomography (PET) has inherent advan-

tages for studying hypoxia, as it can employ radiotracer

probes that directly report on cellular oxygen levels, and

not via hypoxia-mediated changes in phenotype, thereby

permitting the non-invasive and three-dimensional assess-

ment of intratumour oxygen levels in a more direct manner

[112]. In contrast to histologic characterisation, PET can

monitor whole tumours although at low spatial resolution

[113]. PET has very high sensitivity and specificity com-

pared to MR imaging and it enables the identification of

regional hypoxia in vivo in preclinical and clinical settings

[103].

PET tracers for hypoxia imaging and their mechanisms

of action

The criteria for development of radiotracer probes includes

improving relative tumour uptake by using isotopes with
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Table 2 Methods of hypoxia assessment

Technique Oxygen

sensing

range (pO2)

Mechanism Advantages Disadvantages

Direct measurements

Oxygen electrodes

(Eppendorf probes)

[77–82]

0–100 mmHg Allows direct point measurements

of the partial oxygen pressure

A polarographic needle is inserted

in a tumour and several

measurements along a track are

obtained

Strong correlation with clinical

outcome in patients with HN,

cervical, or prostate cancer

Invasive, technically

demanding

Suitable only for accessible

tumours

Results are operator dependent

No longer commercially

available

Risks modifying the oxygen

concentration

OxyLite (fibre optic

technique) [84]

Allows continuous measurement

at a single spot in a tumour,

whereby changes in

oxygenation within a short

period of time (several hours)

can be obtained

Promising preclinical studies Invasive

Never approved for clinical use

Indirect measurements

Exogenous biomarkers

Bioreductive

Nitroimidazole drugs

Pimonidazole [85] and

EF5 [86] Fluorescent

Pimonidazole [87, 88]

\1 mmHg Bioreduction and trapping under

hypoxia. Predominantly

derivatives of nitroimidazole

compounds

These can be chemically bound to

an immune-reactive side chain,

or fluorescent marker, for IHC

detection of hypoxia

Estimates the distance from cells

to a vessel (radioresistant cells

are further away from vessels)

Can be used with biopsies or

surgical specimens

Objective quantitation of

hypoxia using

immunohistochemistry or

flow cytometry or fluorescent

probes

Provides information about the

microregional distribution of

hypoxia Indicate biologically

relevant hypoxia because of

its radioresistance

Invasive (requires biopsy or

resection)

Drug administered in advance

Binding of drug dependent on

the presence of tissue

reductases

Careful tumour sampling

necessary to account for

heterogeneity

Endogenous biomarkers

[89–97]

\10 mmHg Consist of proteins that are

predominantly under control of

HIF: HIF1, HIF2, CA9, GLUT-

1, and vascular endothelial

growth factor (VEGF)

High expression of these is

correlated with treatment failure

in various cancers

Can be used with archival

biopsies or surgical

specimens without the need

for prior drug administration

Provides information about the

microregional distribution of

hypoxia

Invasive (requires biopsy or

resection)

Gene and protein expression

influenced by hypoxia-

independent factors

Careful tumour sampling

necessary to account for

heterogeneity

MRI Blood oxygen-

dependent level (BOLD)

and tissue oxygen level-

dependent (TOLD)

magnetic resonance

imaging (MRI) [102]

Poor correlation

with

absolution

pO2

levels(BOLD)

BOLD: paramagnetic

deoxyhemoglobin molecules

in red blood cells cause magnetic

susceptibility, which increases

the local transverse MRI

relaxation rate (R2; units ms-1)

Noninvasive

Assessment of the entire

tumour volume

Spatial mapping of hypoxia

Serial assessment over time

Better spatial and temporal

resolution of TH than PET

provides

Indirect measure of hypoxia

(deoxyhemoglobin

concentration)

Strong dependence on perfusion

Susceptible to motion artefacts

(BOLD), or absolute value is

influenced by adequacy of

oxygen saturation during

inhalation (Oxy-R fraction)

Oxy-R fraction derived

from oxygen enhanced

MRI [98]

Probably

0–100 mmHg

Oxy-R fraction: dissolved oxygen

in blood plasma and/or

interstitial space when

hyperoxic gas is breathed

increases longitudinal MRI

relaxation rate (R1; units s-1) in

well perfused tissue

Quantifies the spatial

distribution and extent of

tumour oxygen delivery

in vivo

Can be readily quantified on

clinical MRI scanners

Awaiting oncology clinical

translation

MR Oximetry Based on

perfluorocarbons (PFCs)

[99–101]

Probably

0–100 mmHg

Sequestered in the

reticuloendothelial system

(liver, spleen, bone marrow) due

to macrophage accumulation

Correlates with pO2

Long half-life enables chronic

hypoxia evaluation

Susceptible to flow artefacts

Doses for imaging causes

hepatosplenomegaly
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longer half-lives and ensuring rapid clearance of the parent

compound from systemic circulation and normoxic tissue

(hydrophilic compounds), while being sufficiently lipo-

philic to enter cells and allow uniform tissue distribution.

The charcteristics of an ideal hypoxic tracer include:

retention in low partial oxygen pressure (pO2) regions

(hypoxia specific), pharmacokinetic profile and tissue dis-

tribution independent of confounding factors such as blood

flow/tissue perfusion or pH, high stability, suitable tissue

kinetics to enable imaging in a specified time frame, ease

of synthesis, favourable dosimetry profile, reproducibility

and effectiveness in multiple tumour types .

Radionuclide detection of hypoxia in tumours was first

reported in 1981 with [14C]misonidazole autoradiography

[114]. Subsequently, two main tracer classes have been

developed to specifically study regional tumour hypoxia

with PET: [18F]labelled nitroimidazoles and Cu-labelled

diacetyl-bis(N4-methylthiosemicarbazone) analogues

[112]. Multiple PET tracers suitable for the detection of

hypoxia have been developed, validated and shown to

exhibit different characteristics; some of these are dis-

cussed in Table 3 [115–127]. The first [18F]labelled drug to

be clinically tested was fluoromisonidazole (FMISO) [128]

and it remains the most extensively tested agent [129, 130].

[18F]Nitroimidazoles

2-Nitroimidazole compounds were originally developed as

hypoxic cell radiosensitisers and were introduced as

hypoxia markers in the 1970s (Fig. 2) [115]. Nitroimida-

zoles enter cells by passive diffusion and subsequently

undergo reduction forming reactive intermediate species.

Hypoxic conditions cause further reduction of the nitro-

anion radical, which is irreversibly trapped in the cell when

the oxygen tension is less than 10 mmHg [129]. The

reduction of nitroimidazoles requires the presence of

ubiquitously expressed tissue reductases, which enables

these compounds to accumulate within viable hypoxic

cells, but not apoptotic or necrotic cells [130–132]. Under

normoxic conditions, nitro-anion radical is re-oxidised into

the parent compound, which can diffuse out of the cell. The

mechanism of of [18F]MISO intracellular trapping is shown

in Fig. 3 [133]. Therefore, hypoxic tissues can be delin-

eated as an area of high tracer uptake after allowing a

sufficient period of time for the nonspecific tracer to be

excreted from the cells [134, 135].

FMISO uptake was closely correlated with pimonida-

zole immunohistochemistry and has been found to reflect

hypoxia in head-and-neck cancer [136–146], glioma

[147–152], colorectal cancer [153], breast cancer [154],

lung cancer [155, 156], and renal cell carcinoma

[157, 158].

In view of FMISO’s slow plasma clearance, FMISO

imaging usually requires an interval of longer than 2 h

(ideally 4 h) after administration to obtain good contrast

[159] with a hypoxia threshold in general defined as

SUVmax of 1.5 or tumour:muscle ratio of 1.4 [103].

Although its biodistribution properties do not result in

high-contrast images, the 2-h image unambiguously

reflects regional pO2 in the range where it is clinically

significant. However, due to perceived concerns regarding

FMISO stability in vivo [160], metabolite formation, slow

clearance properties [129], and failure to achieve image

intensities in humans comparable to what had been

achieved in animal models, alternative hypoxia PET tracers

with different clearance and hydrophilicity characteristics

have been developed in an attempt to overcome these

limitations. These include fluoroazomycin arabinoside

(FAZA), fluoroerythronitroimidazole (FETNIM), fluo-

roetanidazole (Fig. 4), and fluorinated etanidazole deriva-

tives (EF3, EF5), HX4 [161–163].

[18F]Fluoroazomycin-arabinofuranoside (FAZA)

[18F]Fluoroazomycin-arabinofuranoside (FAZA) is more

hydrophilic than FMISO. Consequently, it has faster

Table 2 continued

Technique Oxygen

sensing

range (pO2)

Mechanism Advantages Disadvantages

PET 2-Nitroimidazole

[18F]labelled tracers

(MISO, FMISO, EF5,

FAZA, and HX4) Other

tracers ([60Cu]Cu-ATSM)

[103]

\1 mmHg Redox-based trapping Noninvasive

Assessment of the entire

tumour volume

Spatial mapping of hypoxia

Serial assessment over time

No consensus about preferred

tracer

False-positive results from

unbound tracer

Uptake in bladder and other

normal tissues

Limited spatial resolution

Low tumour-background ratio
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clearance kinetics, resulting in improved tumour-to-ref-

erence tissue ratios, and thus hypoxia-to-normoxia con-

trast. Head-to-head comparisons between FAZA,

[124I]IAZA, and FMISO in preclinical animal studies

imaged at 3 h after injection demonstrated faster vascular

clearance of FAZA, resulting in an increased tumour-to-

blood ratio (5.19) relative to that of [18F]fluo-

romisonidazole (3.98). More recently, clinical studies

have successfully evaluated the feasibility of FAZA for

imaging hypoxia in gliomas [118], lymphomas [118],

lung [164, 165], head-and-neck [118, 166–168], cervical

[169], and rectal tumours [170], and the results have been

shown to compare favourably with equivalent FMISO

data, especially as improved hypoxic–normoxic contrast

was obtained at earlier time points. High FAZA tumour-

to-reference tissue values have been associated with

reduced disease-free survival and have shown prognostic

potential in the detection of hypoxia in head-and-neck

patients [167]. Due to the higher tumour-to-reference

tissue ratios in comparison with FMISO, FAZA is gain-

ing popularity for PET imaging of tumour hypoxia.

Despite the fact that FAZA is not widely available at

present, increasing research demand may persuade more

sites to produce it.

Table 3 Salient characteristics of hypoxic radiotracers

Class Mechanism of action Advantages Limitations

Nitroimidazoles

[18F]FMISO

[115]

Nitroimidazole compounds are used for

imaging oxygen-deprived hypoxic

cells, based on the intracellular

accumulation of radicals formed after

the reduction by ubiquitous

nitroreductases. Under oxygenated

conditions, in contrast, the nitro

radical anions of the compounds are

reoxidized and cleared from cells by

back-diffusion

Lipophilicity ensures facile cell-

membrane penetration and diffusion

into tissue

FMISO uptake correlates with

pimonidazole immunohistochemistry

in various cancers

Only available for research purposes.

Modest hypoxic-to-normoxic tissue

ratios (due to limited clearance) and

limited hypoxic contrast potentially

impedes visual detection of hypoxic

regions: limited diagnostic utility in

routine practice

Slow tracer accumulation and low

tumour-to-background contrast

requires delayed scans to allow

background activity to decrease

[116, 117]

[18F]FAZA

[118]

More hydrophilic: faster clearance

kinetics, resulting in improved

hypoxia-to-normoxia contrast

Not widely available

[18F]EF5

[119]

Greater cell membrane permeability and

slower blood clearance leads to

improved rates of tumour uptake and

homogeneity of tracer distribution

Complex labelling chemistry and slow

elimination due to higher lipophilicity

[18F]HX4

[120]

Hydrophilic

Shorter acquisition times

No advantage over FMISO

[18F]FETNIM

[121, 122]

Rapid renal clearance and low liver

uptake

No advantage over FMISO

Not widely available

[18F]RP-170

[123]

Shorter acquisition times,

Improved hypoxic contrast

Not widely available

SR4554

[124, 127]

MR spectroscopy method analogous to

FMISO but requiring measurement of

elimination kinetics

Not widely available

Copper-diacetyl- bis(N4-methylthiosemicarbazone) (Cu-ATSM)

Cu-ATSM

[124, 125]

The hypoxic specificity of Cu-ATSM is

thought to be partly imparted by the

intracellular reduction of Cu(II) to

Cu(I). Under hypoxic conditions, the

unstable Cu(I)-ATSM complex may

further dissociate into Cu(I) and

ATSM, leading to the intracellular

trapping of the Cu(I) ion

Simpler synthesis/radiolabelling

methodology

Reveals ‘hypoxic’ tissue within

10-15 min after IV administration

mainly due to its rapid tracer kinetics

Cu-ATSM uptake might better

represent a general prognosticator of

poor treatment response

Limited availability of Cu isotopes,

Only produced at a few research sites
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Next-generation tracers

[18F]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-

Pentafluoropropyl)-acetamide (EF5)

The nitroimidazole EF5 has been extensively used for

ex vivo immunohistochemical detection of bioreduced

adducts, which indicate regions of tumour hypoxia. How-

ever, [18F]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-

pentafluoropropyl)-acetamide (EF5), first investigated as a

hypoxia PET tracer in 2001 [171], has only recently appeared

in the clinical setting. In contrast to many of the second-

generation hypoxia tracers, EF5 is highly lipophilic, result-

ing in greater cell membrane permeability and slower blood

clearance [119], thus improving rates of tumour uptake and

homogeneity of tracer distribution. The main drawback of

EF5 is the complex labelling chemistry in comparison to the

simple nucleophilic displacement reactions used for the

mono-fluorinated 2-nitroimidazoles [171].

[18F]3-fluoro-2-(4-((2-nitro-1H-imidazol-1-

yl)Methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol (HX4)

[18F]3-fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-

1,2,3-triazol-1-yl)propan-1-ol (HX4), a next-generation

2-nitroimidazole tracer contains a 1,2,3-anti-triazole moi-

ety (as a synthetic convenience) rendering it more hydro-

philic than FMISO, specifically designed to maximize

pharmacokinetic and clearance properties. Initial studies in

humans demonstrate rapid renal clearance and urinary

excretion of HX4, with a favourable dosimetry profile

similar to that of FMISO [120].
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Preclinical studies validated that the tracer uptake was

indeed oxygen-dependent though tumour-to-background

ratios appeared similar to those reported for FMISO in

studies using the same tumour model [172]; thus, it

remains to be seen if HX4 provides any significant

advantage over FMISO in a clinical setting. A phase I

study of 6 patients (4 non-small-cell lung carcinoma, 1

thymus carcinoma, and 1 colon carcinoma) has shown a

median tumour-to-muscle ratio of 1.40 at 120 min after

injection, although no attempt was made to determine the

optimal imaging time points [120]. In head-and-neck

tumours, HX4 produced tumour-to-reference tissue values

similar to FMISO at relatively early time points post

injection, indicating the potential advantage of shorter

acquisition times [173]. A more recent study in non-small

cell lung cancer (NSCLC) patients [174] suggested that

later scan times (2–4 h p.i.) can further enhance the

hypoxic-to-normoxic signal.

[18F]Fluoroerythronitromidazole (FETNIM)

The hydrophilic nature of [18F]Fluoroerythronitromidazole

(FETNIM) accounts for its rapid renal clearance and low

liver uptake, compared with FMISO. This also could

explain the positive correlation between tumour blood

flow and initial tumour FETNIM uptake [121]. Recent

clinical studies in head-and-neck [121, 175, 176], lung

[177, 178], cervical cancer [179], and oesophageal cancer

[180] showed that high tissue uptake of FETNIM was

indicative of reduced progression-free and overall sur-

vival. However, as with HX4, it is not clear whether the

use of this tracer presents any advantages over FMISO

imaging protocols. Clinical studies with FETNIM have

been mainly carried out at the University of Turku,

Finland.

[18F]1-(2-1-(1H-methyl)ethoxy)-methyl-2-

nitroimidazole (RP-170)

1-(2-1-(1H-methyl)ethoxy)-methyl-2-nitroimidazole was

developed as a 2-nitroimidazole-based hypoxic

radiosensitiser, which has also been labelled with fluo-

rine-18 ([18F]RP-170). The hypoxic selectivity of RP-170

was demonstrated in glioma patients on the basis of

significant correlations between uptake, oxygen tension

measurements, and HIF1alpha immunostaining [123].

Studies in brain [123, 181] and lung [182] tumours

indicated higher SUV (calculated at 1 h post injection),

for hypoxic than normal tissues. The shorter interval

before scanning, combined with improved hypoxic con-

trast compared with FMISO, could make it attractive for

clinical imaging.

N N

NO2

N
H

O 18F
(a)

(b)

(c)

Fig. 4 Hypoxia imaging with radiolabelled 2-nitroimidazole.

a Chemical structure of [18F]fluoroetanidazole. The nitro moiety is

necessary for hypoxia selective retention. b Cellular uptake of

[18F]fluoroetanidazole in RIF-1 cell line culture grown under

normoxia or hypoxia (nitrogen gas). The amount of radioactivity

bound to cells was counted. c Imaging of [18F]fluoroetanidazole by

PET showing tracer localisation in HT1080 (subclone 1-3C)

xenograft. A 0.5-mm transverse slice of the 30–60 min image

acquired in a small animal PET scanner is shown. Arrow, tumour.

Courtesy of EOA Published in Br J Cancer 2004 (Barthel et al.)

(Color figure online)
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Copper (Cu)-diacetyl-bis (N4-

methylthiosemicarbazone) (Cu-ATSM)

An alternative class of agents for the study of hypoxia with

PET that has been intensively investigated in both pre-

clinical and clinical studies is the complex of Cu with

diacetyl-bis(N4-methylthiosemicarbazone) (ATSM)

ligands, among which ATSM is the prototype (Fig. 5). The

potential of these agents for hypoxia imaging was first

reported by Fujibayashi et al. [124]. Copper (Cu)-diacetyl-

bis (N4-methylthiosemicarbazone) (Cu-ATSM) is a

hypoxic marker that is selectively retained in hypoxic tis-

sues. Cu-ATSM rapidly diffuses into the cells due to its

high membrane permeability and low redox potential,

secondary to its lipophilicity and low molecular weight.

After cellular entry, Cu(II)-ATSM is reduced to an unsta-

ble Cu(I)-ATSM species, which further dissociates into the

metal complex Cu(I), and ATSM, thus irreversibly trapping

the Cu(I) within the cellular copper metabolic processes

(Fig. 6) [183]. In normoxic conditions, the [Cu(I)-ATSM]

can be re-oxidised to its parent compound, allowing efflux

from the cell [184]. One of the advantages of Cu-ATSM is

that it can reveal molecular contrast within 10–15 min post

injection mainly due to its rapid tracer kinetics [125, 185].

However, it has been observed that high uptake in

tumours may only partly be a direct consequence of

hypoxia [185]. Nevertheless, extremely high-contrast

images of Cu-ATSM have been obtained in a variety of

tumour sites [186]. The lack of correlation between Cu-

ATSM distribution and immunohistochemistry hypoxia

markers casted some doubt on the hypoxia selectivity of

Cu-ATSM [187]. The suggested reason for the low corre-

lation between Cu-ATSM uptake and hypoxic distribution,

in some tumours, was the differing redox status of the

tumour types. This has been further seen in pre-clinical
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experiments, where it was demonstrated that in the cell

lines tested, [64Cu]Cu-ATSM and [64Cu]Cu-acetate had

almost identical uptake in vivo over 2–16 h, post injection.

However, up to 1 h post injection, [64Cu]Cu-acetate had a

superior tumour-to-muscle ratio [188]. Several factors

could explain the phenomenon; indeed, some tumours

might have a lower than-average redox potential with high

concentrations of electron donors causing reduction and

trapping of Cu-ATSM in both hypoxic and normoxic areas.

This observation does not discount the fact that [64Cu]Cu-

ATSM may still be clinically relevant as a tracer for

hypoxia, perhaps HIF1 status, as suggested by some

investigators [189]. The timing of image acquisition is

crucial, as the initial phase of tracer uptake can be perfu-

sion and hypoxia-driven, whereas at later time points

uptake is probably more indicative of tumour hypoxia.

Validation of MRI and PET hypoxia imaging

As discussed thus far, both MRI and PET play an important

role in hypoxia imaging. However, there are few reports

that compare these two imaging modalities. Preclinically, a

clear correlation between [18F]FAZA PET image intensi-

ties and tumour oxygenation was demonstrated by Tran

et al. [190]. [18F]FAZA accurately showed improved

uptake when rats with subcutaneous rhabdomyosarcomas

were treated with air, in contrast to carbogen. This corre-

lated well with an invasive OxyLite probe, although the

probe demonstrated a relatively high heterogeneity in the

oxygen value measured depending on the specific point

within the tumour. Functional MRI ([19F]MRI, however,

did not show any discernible difference in T1 spin–lat-

tice relaxation time. In a more recent study, Valable et al.

validated tissue saturation studied by MRI against FMISO

PET wth high sensitivity and specificity in a rat glioma

model [191].

In the clinical setting, Swanson et al. performed a

detailed spatial analysis of the hypoxic tumour burden

visible on the FMISO PET relative to the imaging changes

associated with tumour neovasculature, necrosis, invasion,

and edema seen on gadolinium-enhanced T1-weighted

MRI (T1Gd) in 24 patients with glioblastoma [152].

Hypoxic Volume (HV), defined within the tumour as sec-

tions that had a tumour-to-blood ratio of higher than 1.2,

showed a consistent correlation with the MRI-defined

regions within the tumour, supporting the idea that there is

a definite link between the PET and MRI images of

hypoxia. Furthermore, it was found that HV, and the

respective surface areas of HV and T1Gd abnormality were

the most significant predictors of survival. Simoncic et al.,

showed a strong correlation between FMISO PET and

dynamic contrast enhanced MRI (DCE-MRI) kinetic

parameters in 6 head and neck cancer patients [192].

These studies suggest that both MRI and PET could

complement each other and provide a future direction in

selecting the best modality to image hypoxia.

Clinical applications

There is evidence from numerous clinical studies across a

range of tumour types to support the existence and

importance of the ‘‘hypoxia driver’’ phenotype both in pre-

clinical [193–219] (Table 4) and clinical studies [220–247]

(Table 5).

Identification of tumour hypoxia and prediction

of prognosis/response to treatment

The clinical significance of hypoxia PET imaging is to

identify individuals with poor prognosis and those likely to

benefit from hypoxia-targeted therapy. Several studies have

shown that hypoxia PET imaging predicts outcome. High

FMISO retention has been associated with higher risk of

loco-regional failure and shorter progression-free survival

in head-and-neck [142, 248, 249, 252–254] and renal

cancer [158]. Furthermore, a meta-review of the clinical

data of over 300 patients concluded that FMISO is a pre-

dictor of poor treatment response and prognosis [131].

Similarly, FETNIM uptake in lung [176], head-and-neck

[175], and oesophageal cancer [180], were also associated

with poor outcomes. Studies conducted with FAZA in

squamous cell carcinomas of the head and neck [167] and

Cu-ATSM in patients with cervical [125, 261, 263], lung

[125, 261], and rectal cancer [262] have shown that lower

tumour-to-muscle ratio (TMR) is indicative of better

prognosis.

These findings have been discussed in a recent meta-

analysis of PET hypoxia studies which have demonstrated

a common tendency towards predicting outcome in

tumours showing higher tracer accumulation [162].

Decreased FMISO uptake with treatment has been widely

reported in brain [152], head-and-neck [250, 255], lung

[258, 260], and renal tumours [158]; although this was not

seen in some tumours [142, 156]. Decrease in semi-quan-

titative imaging parameters such as tumour-to-muscle

ratios (TMRs) signifying response to chemotherapy have

also been demonstrated with Cu-ATSM in lung [125, 261]

and head-and-neck tumours [257], and FAZA in lung

cancer [165].

Radiotherapy planning

It is well known that tumours demonstrate temporal

changes and/or heterogeneity in the spatial distribution of

hypoxia. Identification of these areas with PET hypoxia

scans enables image guidance and hence, radiation dose
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Table 4 Preclinical studies of hypoxia imaging

FMISO

Rasey et al. [213] Uptake of FMISO by V79 multicellular spheroids after 4 h of incubation with [3H]FMISO, provided a visual and

a quantitative measure of hypoxia. Autoradiographs revealed heavily labelled cells in an intermediate zone

between the well-oxygenated periphery and the necrotic center

Martin et al. [205] Evaluated the relationship between oxygen concentration and [3H]FMISO binding in monolayer preparations of

isolated adult rat myocytes. Under anoxic conditions, [3H]FMISO binding after 3 h was approximately 25-fold

greater than normoxic controls, which reduced to 40% at a pO2 of 4 mmHg. [3H]FMISO uptake was

independent of glucose or thiol concentrations, cellular pH, potential confounding variables in the tumour

microenvironment

Martin et al. [204] Confirmed that FMISO uptake was independent of blood flow, both in individual tumours and normal tissues

Troost et al. [216] FMISO can be used to monitor treatment-induced changes in tumour hypoxia, similar to that seen with

pimonidazole in various tumour models

Troost et al. [138] Established a correlation between pimonidazole staining and FMISO distribution in head-and-neck xenografts.

FMISO accumulation was dependent on the presence of hypoxia and on the tumour microarchitecture

Oehler et al. [153] It is feasible to distinguish between different tumor responses to DMXAA treatment. A reduction in FMISO

uptake was related to reduced perfusion and, therefore, delivery of FMISO, rather than a reduction in tumour

hypoxia

Murakami et al. [157] Early changes in the tumour microenvironment following anti-angiogenic therapy confirmed tumour starvation

with FMISO hypoxia imaging

Hatano et al. [147] Intratumoral FMISO distribution reflected tumor hypoxia and expression of the hypoxia related gene product

GLUT-1. However, it did not reflect tumor proliferation or glucose metabolism

Schutze et al. [219] Showed that pretreatment FMISO hypoxic volume in FaDu hSCC xenografts is prognostic. SUVmax was not

associated with local control

FAZA

Sorger et al. [215] In vitro and invivo study in rat carcinosarcoma tumour models comparing FMISO with FAZA, demonstrated

similar tracer accumulation in sites of hypoxia on early PET imaging. However, FAZA had faster elimination

kinetics and was cleared via the renal system

Piert et al. [212] Confirmed the faster clearance of FAZA in murine mammary carcinoma, squamous cell carcinoma, and

pancreatic acinar cell carcinoma. FAZA had a lower tumour/blood ratio compared with FMISO

Chapman et al. [196] Sunitinib treatment resulted in improved tumour oxygenation as shown by significant reduction in FAZA uptake

in Caki-1 renal cell xenografts. FAZA uptake increased again upon sunitinib withdrawal, indicating a rebound in

tumour hypoxia

Chang et al. [195] Demonstrated the feasibility of FAZA PET as an early pharmacodynamic monitor on the efficacy of anticancer

agent BAY 87-2243 that targets the mitochondrial complex I and intratumour oxygen levels

EF5

Chitneni et al. [197] Demonstrated the utility of EF5 PET for monitoring early response to tumour treatment with SN30000 (a novel

hypoxia-activated prodrug) plus RT in H640 non-small cell lung cancer xenografts

Silvoniemi et al. [215] In their evaluation of the relationship between hypoxia (evaluated with EF5 PET) and tumour growth, have

demonstrated that uptake of EF5 in the late phase of exponential tumor growth is associated with the tumour

growth rate in mice bearing HNC xenografts

Chitneni et al. [198] Evaluated EF5 tumour uptake versus EF5 binding and hypoxia as determined from immunohistochemistry at both

macroscopic and microregional levels. It was shown that the uptake and hypoxia selectivity of [18F]EF5 varied

among tumour models-PC3, HCT116, and H460

Ali et al. [193] Evaluated the relationship between pre-treatment EF5 PET and the response of preclinical tumor models (HT29,

A549 and RKO tumours grown in nude mice) to a range of fractionated radiotherapies. Irradiated tumours

exhibited reduced EF5 uptake 1 month after treatment compared to control tumours, suggesting that pre-

treatment EF5 PET can predict the response of tumours to single fraction radiation treatment

HX4

Dubois et al. [200] In a rhabdomyosarcoma rat tumour model, HX4 binding was dependent on tumoural oxygenation status. A

significant spatial relationship was shown between HX4 distribution and pimonidazole staining

Carlin et al. [187] In a SQ20b head and neck xenograft mouse model similar tumour to muscle ratios for FMISO, FAZA, and HX4

were seen. The fluorinated nitroimidazoles all showed radiotracer uptake increasing with pimonidazole and CA9

staining. However, (64)Cu-ATSM showed and inverse relationship. However, these results were obtained at

80–90 min post injection, a time point which is probably too early for evaluation since normal tissue clearance

is still ongoing. Cu-ATSM had the highest tumour accumulation and low renal clearance compared to

fluorinated nitroimidazoles
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Table 4 continued

Peeters et al. [211] In a comparative study within a rat rhabdomyosarcoma model, FMISO, FAZA, and HX4 uptake (tumour to blood

ratio (TBR)), reproducibility and reversibility were assessed. Blood clearance for FAZA and HX4 was similar

3 h p.i., while for FMISO, as expected, clearance from normal tissues was significantly lower. Differences in

tumour uptake resulted in significantly higher TBR for HX4 compared to the other tracers. Reproducibility was

similar for both FMISO and HX4. Furthermore, decreasing the hypoxic fraction using carbogen resulted in loss

of FMISO uptake, whilst modifying the hypoxic fraction by breathing 7% oxygen further enhanced FAZA and

HX4 uptake

Peeters et al. [210] Evaluated the efficacy of the hypoxia-activated cytotoxic prodrug TH-302. The hypoxic fraction assessed with

HX4 PET imaging in the rhabdomyosarcoma model was significantly reduced at day 4 upon TH-302 treatment,

while vehicle treatment was ineffective

FETNIM

Gronroos et al. [201] Comparison of FMISO and FETNIM uptake in C3H mammary carcinoma mice model demonstrated equivalence

of both the tracers in terms of tumour oxygenation status and intratumoural uptake

Cu-ATSM

Fujibayashi et al. [124] Demonstrated that [62Cu]Cu-ATSM is reduced and retained in hypoxic tissues, whereas it rapidly washes out of

normoxic tissues

Lewis et al. [203] One of the first [64Cu]Cu-ATSM preclinical study in tumour hypoxia imaging in mice bearing EMT6 breast

carcinoma cell line, has shown an heterogeneous uptake of the radiotracer (intense uptake was observed in

15–30% of the tumour)

Ko et al. [202], Obata

et al. [209]

In an epidermoid rabbit tumour (with a high glycolytic/high hexokinase rate) accumulation of [64Cu]Cu-ATSM

was seen around the outer rim of the tumour masses which on histology correlated with active, viable, and

expected hypoxic cells

O’Donoghue et al. [185] A good correlation of the intratumour distribution of Cu-ATSM and FMISO was seen at later imaging time points

in a FaDu squamous carcinoma model but not at early time points in an R3327-AT anaplastic rat prostate

tumour model. This is consistent with the hypothesis that the spatial distribution of FMISO and [64Cu]Cu-

ATSM at later times reflects tumour hypoxia

Burgman et al. [194] A similar study indicated that for early images, the distribution of Cu-ATSM was inconsistent with tumour

hypoxia and might be more representative of perfusion. Correlation of Cu-ATSM and FMISO uptake at later

time points was confirmed. The authors did not dispute the potential utility of Cu-ATSM imaging as a tool, but

they pointed out that the mechanism of uptake in hypoxic tumour was unclear

McQuade et al. [208] Demonstrated that tumour uptake of hypoxia-selective Cu-ATSM analogues (Cu-ATSE) decreases with increased

oxygenation

Yuan et al. [218] [64Cu]Cu-ATSM was shown to be a valid PET hypoxia marker (correlation of the autoradiographic distributions

with hypoxia markers as EF5, pimonidazole, and CA9) for adenocarcinoma and glioma tumour cell line, but not

in the fibrosarcoma model, where a hypoxia-independent uptake of [64Cu]Cu-ATSM was observed

Matsumoto et al. [206] In a direct comparison involving Cu-ATSM, FMISO and pimonidazole in the SCCVII tumour model, uptake of

both FMISO and pimonidazole decreased as oxygenation increased, as would be expected for a hypoxia imaging

agent, but uptake of Cu-ATSM increased under identical conditions

Dence et al. [199] The affinity of [64Cu]Cu-ATSM for viable and hypoxic cells was confirmed with the comparison of the regional

distribution between [64Cu]Cu-ATSM and FMISO, FLT, and FDG. A very strong correlation of Cu-ATSM

uptake with classical hypoxia (FMISO) and proliferation (FLT) was seen but there was no correlation with

metabolic activity (FDG)

McCall et al. [207] Confirmed a rapid tumour uptake and retention of [64Cu]Cu-ATSM (tumour-to-muscle ratio was 4:1 within

20 min after injection) with a strong positive spatial correlation to the highly perfused areas. At later time points

(18 h post injection), the tumour-to-muscle ratio was 12:1 and there was no spatial correlation with the perfused

areas

Valtorta et al. [217] Evaluated the kinetics of [64Cu]Cu-ATSM distribution using [18F]FAZA as the gold standard in different

xenograft mouse models (FaDu, EMT-6, and PC-3). Cu-ATSM showed a higher tumor-to-muscle ratio than

FAZA with overlapping radioactivity distribution profiles in the FaDu mouse model, but heterogeneous

distribution in EMT-6 and PC-3 models. This study confirmed the cell-dependent distribution and retention

kinetics of Cu-ATSM and underlined the need for proper validation of animal models and PET acquisition

protocols before exploration of any new clinical applications

Hueting et al. [188] Demonstrated that the distribution of radiocopper from Cu-ATSM in tumours essentially mirrors Cu-acetate

suggesting that copper metabolism might play a role in the mechanism of selectivity of Cu-ATSM

238 Clin Transl Imaging (2017) 5:225–253

123



Table 5 Clinical hypoxia PET imaging studies in various tumours

Brain tumours

FMISO

Valk et al. [148] The first clinical FMISO feasibility study in high-grade glioma involved 3 patients, where initial FMISO uptake in

tumours was found to be greater than in normal cerebral cortex. Concurrent Rubidium-82 imaging showed blood

brain barrier (BBB) defect at tumour site

Bruelhmeier et al.

[149]

Evaluation of tumour perfusion with [15O]H2O PET scan in 11 patients with residual or recurrent brain tumour has

shown that early FMISO uptake correlated with perfusion, but late FMISO uptake was independent of perfusion.

Late FMISO PET provides a spatial description of hypoxia independent of BBB disruption and tumour perfusion

Cher et al. [151] In 17 patients with malignant glioma, preoperative FMISO scans have been shown to be an accurate noninvasive

marker of hypoxia (significant correlation between FDG and FMISO uptake with Ki-67 and VEGFR-1 expression),

with FMISO uptake seen in all high-grade gliomas, and was prognostic for treatment outcomes

Swanson et al. [152] In 24 patients with high-grade gliomas, the distribution of hypoxia seen on FMISO correlated spatially and

quantitatively with the amount of leaky neovasculature seen on T1 weighted MRI images. The hypoxia volume

generally straddled the outer edge of the T1 weighted MRI abnormality

FRP-170

Shibahara et al. [181] Imaging with FRP-170 PET aids visualisation of hypoxic lesions in 8 patients with glioma. SUVmax correlated

positively with HIF–1a immunostaining

Beppu et al. [123] Intratumoural pO2 measured using microelectrodes during tumour resection and HIFa immunostaining correlated

with FRP-170 uptake in 12 patients with high-grade gliomas. The mean pO2 was significantly lower in the areas of

high uptake than in those of low uptake, suggesting that high accumulation of FRP-170 might indicate viable

hypoxic tissues

Cu-ATSM

Hino-Shishikura et al.

[225]

Tumour hypoxia assessed by [62Cu]Cu-ATSM PET/CT correlates with diffusion capacity obtained by diffusion

weighted MRI imaging and may be useful for grading gliomas. [62Cu]Cu-ATSM uptake was significantly higher in

high-grade gliomas than in normal or lower grade tumour tissues

Head and neck cancer (HNC)

FMISO

Gagel et al. [139] A correlation was reported between the tumour-to-muscle ratio (TMR), the uptake of FMISO PET and pO2

polarography in 16 patients with HNC, indicating that FMISO-TMR is a suitable method for measuring tumour

hypoxia. No correlation between tumour oxygenation status and FDG uptake was seen

Rajendran et al. [150] FMISO imaging detected hypoxia in all tumour types, but there was poor correlation between glucose metabolism and

hypoxia

Hicks et al. [141] Positive FMISO uptake in 13 patients. Qualitative decrease in FMISO and FDG uptake induced by therapy

Thorwarth et al. [244] Different types of hypoxia-perfusion patterns identified in tumours

Thorwarth et al. [142] Preradiotherapy FMISO uptake was a prognostic indicator of treatment response to radiotherapy in 12 patients with

HNC. There was no correlation between FDG and FMISO tumour uptake

Rajendran et al. [248] In a study of 73 patients with HNC, pretreatment uptake of FMISO was found to be an independent prognostic factor

and a stronger predictor of outcome. (Rajendran CCR 2006)

Rajendran et al. [237] Evaluated the feasibility of FMISO guided radiotherapy boost in a patient with H and N cancer. This was feasible

while respecting the organs at risk tolerance

Rischin et al. [249] FMISO indicated the hypoxia status of each tumour. Higher risk of locoregional failure in hypoxic tumours, while

patients on tirapazamine had lower risk of locoregional failure

Zimny et al. [143] In metastatic HNC, FMISO retention is significantly greater in hypoxic tumours than in normoxic tumours, with a

strong correlation between the FMISO uptake and Eppendorf pO2 histography readings of\5 mmHg. No correlation

was found with FDG

Eschmann et al. [250] Radiotherapy decreased FMISO tumour uptake

Gagel et al. [140] Moderate correlation between oxygen measurements and FMISO uptake. Poor correlation between FDG and FMISO

Lee et al. [251] Variable FMISO tumour distribution

Nehmeh et al. [235] Good correlations of intratumour FMISO distributions was seen in 6/13 patients, (consistent with chronic hypoxia)

when imaged 3 days apart in a reproducibility study

Dirix et al. [252] Quantitative evaluations of FMISO uptake are expected to play an important role in dose escalation radiotherapy

planning. Disease-free survival correlates negatively with baseline tracer uptake and initial hypoxic volume

Okamoto et al. [235] Evaluated the reproducibility of FMISO uptake in HNC in 11 patients on two separate occasions 48 h apart. FMISO

PET can identify hypoxic areas with high reproducibility, thus enabling accurate target delineation during

radiotherapy planning
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Table 5 continued

Head and neck cancer (HNC)

Lee et al. [252] Heterogeneous distribution of FMISO was seen in the primary and/or nodal disease in majority of the patients

Jansen et al. [225] Gadopentetate dimeglumine (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)

was combined with FMISO PET in 13 node-positive HNC patients. FMISO uptake negatively correlated with tumour

perfusion as assessed by DCE-MRI

Abolmaali et al. [145] FMISO contrast increases 2–4 h post injection

Kikuchi et al. [254] Disease-specific survival was significantly lower in patients with high baseline FMISO uptake

Yamane et al. [255] FMISO tumour uptake and hypoxic volume significantly decreased after neo-adjuvant chemotherapy in 13 patients

with HNC

Zips et al. [247] Hypoxia PET imaging with FMISO after 1 or 2 weeks of radiotherapy correlated better with outcome than imaging

pre-treatment

Sato et al. [146] HIF1 expression was strongly correlated with FMISO uptake, but not with FDG uptake, suggesting that FMISO uptake

in the primary site of oral squamous cell carcinoma (SCC) indicates a hypoxic environment with HIF1 expression

Tachibana et al. [243] Showed that 9 of 10 patients with HNC had positive FMISO uptake before radiation therapy. A significant decrease in

FMISO uptake was noted at 2 weeks of fractionated radiation therapy in all of the FMISO-positive tumours,

indicating reoxygenation during radiotherapy

Sato et al. [240] In a prospective study in 22 patients with oral SCC, FMISO, and FDG PET, done prior to neoadjuvant chemotherapy,

demonstrated inverse relation between therapy response and FMISO uptake, whereas the FDG uptake was not

significantly correlated with the chemotherapy response. Histological response was used as gold standard

FAZA

Souvatzoglou et al.

[168]

In 11 patients with HCN, FAZA uptake was seen in 7 of 11 primary tumours and 3 of 11 lymph node metastases.

Physiological uptake in the kidney and hepatobiliary tree hampered diagnostic interpretation

Grosu et al. [166] In patterns of uptake evaluation, FAZA uptake was seen as a single confluent region in 11/18 patients and as multiple

diffuse regions in 4/18 patients

Postema et al. [118] High tumour to blood ratio (TBR) in all 7 gliomas; high TBR, SUVmax observed in 6/9 H&N tumours; moderate

TBR, SUVmax in 3/21 lymphomas; increased TBR, SUVmax in 7/11 lung patients

Mortensen et al. [167] In a small series of 40 patients with HNC, pretreatment tumour hypoxic fraction measured using FAZA PET and an

intensity threshold analysis technique was predictive of survival following radiotherapy. High uptake was associated

with lower disease-free survival

Servagi-Vernat et al.

[242]

Semi-quantitative assessment of hypoxic volume using FAZA PET before and during intensity-modulated radiation

therapy (IMRT) for 12 patients with locally advanced HNC aids in the delineation of hypoxic volumes for dose

escalation protocols

EF5

Komar et al. [227] EF5 PET could potentially be a surrogate marker of radioresistance. In 22 patients with HNC, high uptake of the

hypoxia tracer EF5 showed a stronger correlation with a poor clinical outcome than FDG uptake

Maity et al. [233] Ongoing trial at the University of Pennsylvanian evaluating reversal of hypoxia in HNC using nelfinavir which may

assist the process of re-oxygenation that can occur with fractionated therapy. Patients will be evaluated using EF5

PET before and after the nelfinavir treatment, just prior to radiotherapy

HX4

Chen et al. [173] A comparative study in head and neck cancer patients found similar tumour to muscle ratios for HX4 imaging at 1.5 h

p.i. and FMISO imaging at 2 h p.i

Zegers et al. [246] In HNC, hypoxia PET imaging with HX4 provides complementary information to FDG imaging. On average 24% of

the HX4 hypoxic volume was outside the FDG volume

FETNIM

Lehtio et al. [121] Uptake of FETNIM in HNC is highly variable and seems to be governed by blood flow at least in the early phase of

tissue accumulation. Tumour distribution volume correlated strongly with FETNIM uptake and blood flow

(measured by [15O]H2O), but not with FDG uptake. Values compare favourably with FMISO uptake

Lehtio et al. [176] Tumour to plasma (T:P) ratio of FETNIM provided an estimate of tumour hypoxia in 10 patients with HNC

Lehtio et al. [174] Patients with higher fractional hypoxic volumes and T:P ratio correlated with poorer survival

Gronroos et al. [224] In 15 HNC patients treated with radiation, no correlation between FETNIM imaging results and endogenous

expression of hypoxia markers such as HIF1 and GLUT-1 was found
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Table 5 continued

Head and neck cancer (HNC)

Cu-ATSM

Chao et al. [256] Hypoxia imaging with 64Cu-ATSM guided IMRT dose escalation in a phantom study

Minagawa et al. [257] All 5 patients with 64Cu-ATSM SUVmax\ 5 were complete responders

Breast cancer

FMISO

Cheng et al.

[154]

Showed that there is correlation between FMISO uptake and endocrine therapy outcome and poor correlation between

FMISO uptake and HIF-1a immunostaining

Lung cancer

FMISO

Koh et al. [258] In a study of 7 patients with non-small-cell lung cancer (NSCLC), no correlation between tumour size and fractional

hypoxic volume, defined by FMISO PET, was observed. Radiotherapy reduced median fractional hypoxic volume

from 58 to 22%

Eschmann et al.

[259]

FMISO scans performed preradiotherapy in a group of 14 patients with NSCLC: a high TMR and tumour/mediastinal

ratio was associated with a higher risk of relapse. FMISO imaging could identify postradiotherapy tumour recurrence

due to differential uptake of tracer

Cherk et al. [155] In 21 patients with NSCLC, low FMISO uptake was seen, with no correlation with FDG uptake and surrogate tissue

markers of hypoxia, such as microvessel density and GLUT1 and angiogenesis

Gagel et al. [260] In 8 patients with NSCLC treated with a combination of chemotherapy and/or radiotherapy, a decrease in FDG and

FMISO uptake after treatment was associated with a favourable outcome, and a high initial FMISO uptake was a poor

prognostic indicator

Vera et al. [156] FMISO uptake higher in tumours than in nodes and did not change during therapy

Thureau et al. [245] Low reproducibility and inter-observer agreement for FMISO volume measurements on the basis of visual assessment

Francis et al. [222] Visual analysis demonstrated tumour FMISO activity in 17 of 20 patients with malignant mesothelioma. This pilot study

confirmed that mesothelioma is a tumour with significant areas of hypoxia, particularly in dominant tumour masses

FAZA

Bollineni et al.

[164]

FAZA PET is able to detect heterogeneous distributions of hypoxic sub-volumes on visual analysis. No significant

correlation between FAZA uptake and FDG SUVmax or lesion size

Trinkhaus et al.

[165]

11/17 patients had baseline hypoxia, 6/8 patients with scans following chemoradiation had resolution of hypoxia based

on qualitative assessment

HX4

Zegers et al. [174] In NSCLC patients, image contrast was found to be superior 4 h p.i. compared with earlier time points and uptake

patterns were strongly correlated between two scans

FETNIM

Li l et al. [177] FETNIM tumour to blood ratio and hypoxic volume were strong predictors for overall survival. No correlation between

FETNIM and FDG uptake

Hu m et al. [178] FETNIM uptake was higher in tumours than in normal tissue. Similar data observed at 60 and 120 min p.i

FRP-170

Kaneta et al. [182] FRP-170 accumulation in normal lung shows stable tumour to blood ratio at 60–120 min p.i. Images may allow

evaluation of tumour accumulation in a clinical setting

Cu-ATSM

Dehdasthi et al.

[261]

Imaging with [60Cu]Cu-ATSM is feasible in NSCLC. In 14 patients with biopsy-proven NSCLC, [60Cu]Cu-ATSM

uptake predicted response to radiation or chemotherapy

Lohith et al. [232] FDG and [62Cu]Cu-ATSM had spatially similar distributions in adenocarcinomas

Gastrointestinal tract cancers

FMISO

Roels et al. [239] Mismatch between FDG and FMISO scans. FMISO uptake reduced after therapy

Segard et al.

[241]

FMISO accumulation was observed in 2/10 patients with pancreatic cancer on the basis of visual analysis
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Table 5 continued

Gastrointestinal tract cancers

FAZA

Havelund et al.

[170]

[18F]FAZA-PET is feasible for visualisation of hypoxia in rectal cancer

Nascente et al.

[234]

In patients with pancreatic cancer FAZA PET imaging of hypoxia revealed a range of hypoxic fractions which correlated

with pimonidazole staining. These preliminary results provide evidence of clinical feasibility and utility of FAZA PET in

pancreatic cancer

FETNIM

Yue et al. [180] In this study, 11 of 14 tumours with FETNIM uptake responded poorly and only 1 of 14 tumours without uptake failed.

High baseline SUVmax associated with poor clinical response

Cu-ATSM

Dietz et al. [262] Median tumour-to-muscle activity ratio of 2.6 discriminated those with worse prognosis from those with better prognosis

in patients with rectal cancer. Overall and progression-free survival worse in hypoxic tumours

Genitourinary/gynaecological cancers

FMISO

Lawrentschuk et al.

[228]

In a recent study correlating FMISO uptake with direct pO2 histographic measurements in 17 patients with renal cell

carcinoma, the degree of FMISO uptake correlated with low tissue oxygen tension. Mild FMISO uptake may reflect

renal tumour oxygenation of[10 mmHg

Hugonet et al. [158] Reduction in hypoxic volume post-therapy

Rasey et al. [137] The first clinical evidence to suggest hypoxia in prostate cancer came from a small study of four patients who

underwent FMISO PET imaging

FAZA

Schuetz et al. [169] 5/15 patients with cervical cancer had visually identifiable tumours

Garcia-Parra et al.

[223]

FAZA uptake was not increased in prostate tumours as seen with CA9 immunohistochemistry staining

EF5

Lin et al. [231] In a pilot study of 8 patients with cervical carcinoma undergoing chemo-radiotherapy, TMR of[1.35 was shown to

predict development of metastatic disease

FETNIM

Vercellino et al.

[179]

High uptake associated with lower progression-free and overall survival in patients with cervical cancer

Cu-ATSM

Dehdasthi et al.

[125]

Tumour uptake of [60Cu]Cu-ATSM inversely related to progression-free survival and overall survival. No

correlation between FDG and [60Cu]Cu-ATSM uptake

Grigsby et al. [263] In 15 patients with cancer of the uterine cervix who were imaged with [60Cu]-ATSM, hypoxia as determined by the

PET images was a significant independent predictor of tumour recurrence.

Fouryear overall survival estimates were 75% for patients with non-hypoxic tumours and 33% for those with hypoxic

tumours

Lewis et al. [230] Cu-ATSM uptake in 10 patients with cancer of the uterine cervix correlates with prognosis and patient outcome. The

uptake pattern was reproducible with two scans 1–9 days apart, suggesting that the microscopic distribution of

chronic hypoxia did not change greatly over this interval

Dehdasthi et al.

[221]

Tumour uptake of [60Cu]-ATSM was inversely related to progression-free survival and cause-specific survival. 3-year

progression-free survival of patients with non-hypoxic tumours was 71%, and 28% for those with hypoxic tumours

Soft tissue sarcoma

FMISO

Rajendran et al.

[238]

In 19 soft-tissue sarcoma (STS) patients FMISO uptake has been correlated with VEGF expression, although there was no

correlation between tumour grade, hypoxic volume, and FDG uptake

Bentzen et al.

[220]

In a further study of 13 patients with soft-tissue tumours (7 confirmed malignant tumours and 6 benign tumours), no

correlation between FMISO uptake and pO2 measurements was found

FAZA

Lewin et al. [229] Evaluated the implications of hypoxia in STS, using FAZA PET. Hypoxia was associated with radioresistance, higher

local recurrence showing a poor outcome
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escalation to radioresistant sub-volumes [162, 248, 259].

Boosting the dose to intra-tumoural areas of biological

resistance (dose painting) is being pursued as a strategy to

overcome radioresistance and improve outcomes [264].

This is made possible due to the advances in imaging and

radiation treatment planning. The feasibility of this strategy

has been investigated in cancers of the head and neck, lung,

and brain with Cu-ATSM [256], FMISO [251], and FAZA

[166], mostly on anthrophomorphic phantoms

[166, 249, 251], and further studies are required for

translation into clinical benefit.

Discussion and concluding remarks

Hypoxia research has a long history; however, accurate and

reproducible measurement of clinically relevant hypoxia

with high sensitivity continues to evade the scientific

community. Although radionuclide measurements of

hypoxia started in the early 1980s we are yet to have a

widely accepted method. In addition to studies with oxygen

electrodes, imaging utilising exognous probes including

FMISO-PET, FAZA-PET, HX4, and immunohistochem-

istry with pimonidazole have been the mainstay of hypoxia

assessment in clinical studies; the EU-funded METOXIA

consortium for example utilises HX4 for assessment of

hypoxia [265]. In the post-genome era, genetic methods are

also making an important entrance—with a 26-gene sig-

nature in validation for assessing hypoxia [266]. There

have been some successes in the use of hypoxia measure-

ments as part of clinical trials: a number of studies con-

firmed that hypoxia predicts locoregional failure to

radiotherapy [81, 267, 268] and chemoradiotherapy with

hypoxia-modulated cytotoxin tirapazamine [249]. Con-

versely, there have been several challenges, in particular

poor sensitivity of the methods requiring long assessment

periods (as pertains to nitroimidazole PET methods),

invasive nature (as pertains to pimonidazole immunohis-

tochemistry), an inability to relate measured output to

oxygen tension (as pertains to MRI methods despite high

spatial resolution) and wide heterogeneity within and

between the tumours of the same patients and temporally

with treatment (all methods).

Notably, despite design of newer nitroimidazoles with

substantially different physicochemical properties—high

hydrophilicity—concomitant improvements in signal-to-

noise ratio and, thus, reduction in imaging times, have not

been achieved, indicating that the ideal chemical design

has not yet been realised. There is also paucity of studies

examining heterogeneity of hypoxia using parametric

imaging to detect the influence of hypoxia sub-volumes

and whether this additional detail will have prognostic or

predictive value. With the advent of PET-MRI scanners, it

will be feasible to multiplex imaging modalities to provide

addition information such as perfusion to increase accuracy

of hypoxia measurements or provide complementary

information with higher predictive value. Whatever selec-

ted method will require assessment of precision of mea-

surement which is non-trivial with such a spatio-temporally

evanescent phenomenon as hypoxia.

Thus, it is accepted that hypoxia could have significant

prognostic and predictive value in the clinic; however, the

best method for hypoxia assessment has in our opinion not

been realised.
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