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Abstract Ionic liquids (ILs) are new-generation, non-volatile
solvents which are designable, and their structure may be spe-
cifically adjusted to the current application needs. Therefore, it
is possible to create and apply ILs which efficiently and selec-
tively extract various analytes from different matrices. It has
already been examined that ILs may be applied as receiving
phases in passive sampling for the long-termwater monitoring
of PAHs and pharmaceuticals in water. In this paper, the con-
cept of passive sampling with ILs (PASSIL applied as receiv-
ing phases) was continued and developed using phosphoni-
um-, imidazolium-, and morpholinium-cation-based ILs. The
target group of analytes was pharmaceuticals which represent
one of the most common categories of water contaminants.
Fourteen-day-long extractions using various ILs were per-
formed in stirred conditions at a constant temperature
(20 °C). The best extraction efficiency was achieved for
trihexyl(tetradecyl)phosphonium dicyanamide ([P666-
14][N(CN)2]). For this preliminary calibration, the sampling
rates were calculated for each sulfonamide. Once again, selec-
tivity was observed in passive sampling using [P666-
14][N(CN)2]. Therefore, PASSIL is seen as a very promising
method for pharmaceutical monitoring in water.
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Introduction

The monitoring of pharmaceuticals is one of the fastest
developing issues in current analytical chemistry in the
field of environmental research. Pharmaceuticals are con-
sidered to be emerging pollutants due to their increasing
consumption (considering expenditure and the volume or
quantity of medicines consumed) [1], low removal effi-
ciency in wastewater treatment plants [2], and negative
impact on the life of water organisms [3]. For these rea-
sons, data among various water contaminants should also
be gathered for the monitoring of pharmaceuticals, ac-
cording to the EU [4].

Sulfonamides (SAs) are one of the most widely used
antibiotics [5, 6]. They are the second most commonly
applied veterinary medicines in the European Union.
These compounds are not completely metabolized; there-
fore, unmetabolized SAs and their metabolites are re-
leased into the environment [7]. Several studies confirmed
that sulfonamides enter the environment by wastewater
effluents [8] and can stream along with the surface or
groundwater or remain in the soil [9]. Sulfonamides, like
other pharmaceuticals, are monitored in water environ-
ments using various methods, like grab sampling
[10–13], solid-phase extraction [14], the radioimmunoas-
say technique [15], micro-solid-phase extraction [16], or
passive sampling (e.g., the polar organic chemical integra-
tive sampler—POCIS technique) [17–19].

Passive sampling allows time-weighted average concentra-
tions (TWACs) to be received, which are independent from
random changes of environmental conditions [20–24].
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Therefore, it is suitable for the long-term monitoring of con-
tamination levels. Passive sampling techniques differ accord-
ing to the receiving phase type. The most popular passive
samplers contain divinylbenzene–N-vinylpyrrolidone copoly-
mer (DVB–NVP) in pharmaceutical-POCIS, and modified
silica (C18) in pesticide-POCIS and Chemcatcher [25–28].

Recently, we found that ionic liquids (ILs) may be ap-
plied as the liquid receiving phase in the passive sampling
of PAHs [29] and selected pharmaceuticals [30]. ILs con-
tain large, bulky, organic cations and significantly smaller
organic or inorganic anions. Due to their unique structure,
these salts are liquid in room temperature. Ionic liquids
are also characterized by chemical and thermal stability
and very good solvent properties, which are useful for
passive sampling. The innovative technique of passive
sampling was called passive sampling with ionic liquids
(PASSIL). In the current study, passive sampling was per-
formed for eight sulfonamides using phosphonium-,
imidazolium-, and morpholinium-cation-based ionic liq-
uids. The aim of this study was to find the proper ionic

liquid which may be applied as the receiving phase for the
passive sampling of these common water pollutants. It is
expected that the PASSIL technique will allow for the
dynamic and efficient extraction of pharmaceuticals from
an aqueous medium.

Materials and methods

Chemicals

ILs were obtained from the University of Bremen
(Germany) and Sigma-Aldrich (Germany) at a purity of
≥95%. The ionic liquids applied were (Fig. 1) trihexyl
(tetradecyl)phosphonium dicyanamide ([P666-14][N(CN)2
]), trihexyl(tetradecyl)phosphonium tri(pentafluoroethyl)
trifluorophosphate ([P666-14][(C2F5)3PF3]), trihexyl
(tetradecyl)phosphonium dioctylphosphate [P666-14]
[(C8H17)2PO2], trihexyl(tetradecyl)phosphonium bis
( t r i f luoromethylsulfonyl) imide [P666-14][TFN],

Fig. 1 Ionic liquids applied
during this study

Fig. 2 Sulfonamides applied as
target analytes during PASSIL
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4-(etoxy)-4-methylmorpholinium bis(trifluoromethy
l s u l f o n y l ) i m i d e ( [ M o r 1 3 O H ] [ T F N ] ) ,
4- (hydroxypropyl ) -4-methy lmorpho l in ium bis ( -
trifluoromethylsulfonyl)imide ([Mor11O2][TFN]), and
1-butyl-3-methylimidazolium dicyanamide ([BMIm][N(CN)2]).

Standards of SAs (Fig. 2), sulfathiazole (STZ), sulfa-
methiazole (SMT), sulfachloropyridazine (SCP), sulfa-
methoxazole (SMX), sulfadimethoxine (SDX), sulfadia-
zine (SDZ), sulfapyridine (SPD), and sulfamerazine
(SMZ), were also purchased from Sigma-Aldrich
(Germany). HPLC solvents, n-octanol, and ammonium
acetate were obtained from POCH (Poland).

Methods

Laboratory calibration using ultrapure water

Passive sampling experiments were conducted analogously to
previous studies [30]. The passive dosimeter was made of
plexiglass and contained twopolyethersulfone (PES)membranes
with their inner sides covered with the receiving phase—ionic
liquid (separately for each of the seven tested ILs) of a total mass

equal to 200mg.Nylon (Phenomenex) andTeflon (Merck)mem-
branes were also tested. The donor phase was 100 mL of water
solution with an initial sulfonamide concentration of 2 μg mL−1.
Theexperimentalsetupwaskeptawayfromlight radiationandata
constant temperature (20 °C). Each extraction lasted 14 days and
the samples (1 mL) of the donor solution were collected every
2 days. The solution was stirred using a magnetic stirrer
(1000 rpm), which was not renewed. After the experiment, the
receiving phase was dissolved using 50 mL of acetonitrile. All
the obtained samples (both from the donor and receiving phases)
were analyzed by HPLC with a diode-array detector (DAD,
Schimadzu, 272 nm). The analysis was performed using a
Gemini 5-μmC18 column (Phenomenex). The injection volume
was 10μL. The flow rate was 1.5mLmin−1. Acetonitrile (ACN)
was used as the organic component of the mobile phase, and the
aqueous component was an acetate buffer (5 mmol L−1

CH3COONH4, pH = 4) with 5% of ACN. The mobile phase
gradient was applied. The recovery of the receiving phase, the
extraction efficiency, and the sampling rate (for [P666-14][N
(CN)2]) were calculated for each analyte according to the equa-
tionspresented in [30].Moreover,micrographsusingaHITACHI
S-3400N scanning electron microscope (SEM) were taken to

Fig. 3 Recovery (%) of ionic
liquids applied as receiving
phases in PASSIL

Fig. 4 Relation between the
efficiency of the passive sampling
extraction of sulfonamides with
[P666-14][N(CN)2] as the
receiving phase, and the
membrane types (PES, nylon, or
PTFE)
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study the morphological appearance of the membranes covered
with an ionic liquid [P666-14][N(CN)2].

Laboratory calibration using environmental water samples

Two types of environmental water samples were collected: sur-
face water and secondary effluent. The first one was collected
fromtheOliwskiStream,andthesecondonewasobtainedfroma
wastewater treatment plant BWschód^ in Gdańsk. All collected
sampleswerestoredat4°Candkeptoutof light radiation.Before
the extraction, water and effluent samples were filtrated using a
glass filtration set (Sartorius, Germany) with glass fiber filters.

Four extractions of pharmaceuticals from the surface water
were conducted, two in 1 L of rawwater and another two in 1 L
of water spiked with eight SAs to obtain an initial concentration

of 2 μg L−1. Simultaneously, another four extractions of sulfon-
amides from sewagewater were performed, likewise in raw and
spiked (2 μg per 100 mL) water of total volume 100 mL each.
Passive dosimeterswere prepared just like during the calibration
in ultrapure water. Each experiment lasted 7 days and samples
(0.5mL)werecollectedevery24h.HPLCanalysiswasconduct-
ed analogously to previous PASSIL experiments.

Determining logKOW and logDOW values

Theoctanol–water coefficient (KOW)canbedefinedas the ratioof
the compound concentration between an organic solvent (usually
n-octanol) saturatedwithwater and an aqueous phase (e.g., water
saturatedwith n-octanol) [31]. The coefficient is usually used in a
logarithmic form (logKOW). However, this value does not vary in

Fig. 5 SEMmicrographs of PTFEmembranes uncovered (a) and covered (b) with an ionic liquid, nylonmembranes uncovered (c) and covered (d) with
an ionic liquid, and PES membranes uncovered (e) and covered (f) with an ionic liquid [P666-14][N(CN)2]

Fig. 6 The concentration of
sulfonamides in a water solution
during passive sampling with
PESmembranes and [P666-14][N
(CN)2] applied as a receiving
phase (experiment conducted in
triplicate)
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thecontextofvariousformsofionizationoftheanalyte.Therefore,
tosolvethis issue, theKOWmaybeadditionallymultipliedbythe fn
factor (fraction of neutral molecule). The received value is DOW

(pH-adjusted octanol–water distribution coefficient), also applied
inthelogarithmicform(logDOW).DOWmaybedefinedastheratio
of the concentrations of both the ionized and unionized species of
the compound in the organic and aqueous phases at a specific pH
value. During this study, the logDOW values were determined
experimentally for all tested antibiotics. Solutions of each sulfon-
amidewerepreparedseparatelyataconcentrationof100μgmL−1

in methanol. The obtained solutions were diluted with ultrapure
water (pH 5.6) previously saturated with octanol to obtain a con-
centration of 5μgmL−1. Equal volumes of the prepared solutions
andoctanol saturatedwithwaterwereshakenandallowed tosettle
at room temperature in order to separate two clear layers. Then,
0.5mL of thewater layer of each sample was taken and analyzed
by HPLC/DAD (272 nm). On the basis of this experiment, the
logKOWand logDOW values were calculated [32].

Results and discussion

Stability of ILs inside the PASSIL dosimeter

The basic parameter of an applied ionic liquid is its physical
stability inside the homemade dosimeter expressed by the IL

recovery (%) calculated from the difference between ionic liq-
uid masses before and after the passive sampling. The highest
recovery (more than 90%) of ionic liquids was achieved by
phosphonium-cation-based ILs and PES membranes (Fig. 3).
The recoveries were 98.9% for [P666-14][TFN], 98.5% for
[P666-14][(C2F5)3PF3], and 92.4% for [P666-14][N(CN)2].
The typeof cation seems to haveabigger impacton the stability
of the tested ILs, which was found after a comparison of the
results for bis(trifluoromethylsulfonyl)imide (TFN)-based ILs.

Amongall theexamined ionic liquids, trihexyl(tetradecyl)phos-
phonium dicyanamide [P666-14][N(CN)2] was characterized as
having the third best recovery, although it allowed for the best
efficiency of the extraction of sulfonamides. Also, [P666-14][N
(CN)2] contains no fluorine atoms; therefore, it is less toxic for
living organisms than the other two ionic liquids, which contain
fluorinated anions [33]. Thereby, during further experiments,
[P666-14][N(CN)2]was applied.

Nylon, PTFE, and PES membrane application

The next step was to examine the influence of membrane types
for the extraction of SAs using the previously selected ionic liq-
uid. Itwas confirmed that thebestmembranes arenylon andPES
(Fig. 4). The application of polytetrafluoroethylene (PTFE)
membranes results inavery lowconcentrationor lackofanalytes
in the receiving phase.

The applicability of nylon and PESmembranes for PASSIL
was confirmed also by the SEM micrographs (Fig. 5).
However, the coating with an ionic liquid was the best for
the polyethersulfone (PES) membrane—almost all of the
pores were filled with the acceptor phase (Fig. 5). For nylon,
the membrane coating was visibly smaller. For PTFE, almost
no coating was observed. The hydrophobicity of PES mem-
branes is relatively small compared to that of the other tested
types, but the covering with hydrophobic ILs was satisfying.

Control experiments (membranes without a receiving phase)
were performed. PESmembranes donot significantly adsorb the
analytes on their surface (≤12%),while othermembranes partic-
ipate in theextractionofanalytes.Finally, themembraneselected

Fig. 7 Sulfonamide extraction efficiencies obtained from PASSIL
experiments carried out using ultrapure water

Table 1 The ionization degrees,
logKOW, and logDOW of
sulfonamides (initial pH 5.64)

Parameter pKa2 pKa3 α2 [%] α3 [%] LogKOW (exp) LogDOW pH 5.6 (exp)

SDZ 1.8 6.5 100.0 12.1 −0.34 −0.39
STZ 2.1 7.1 100.0 3.4 −0.16 −0.17
SPD 2.4 8.2 99.9 0.3 0.04 0.04

SMZ 1.8 6.8 100.0 6.5 0.19 0.16

SMT 1.8 5.5 100.0 58.0 0.01 −0.34
SCP 2.2 5.5 100.0 58.0 0.36 0.00

SMX 1.8 5.7 100.0 46.6 −0.19 −0.44
SDX 2.5 5.9 99.9 35.5 0.59 0.42
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for PASSIL experiments was PES. The same membrane type is
also used in the POCIS technique [34].

Figure 6 shows the change in the concentration of target
SAs in a water phase in 14-day controlled experiments. The
most significant analyte concentration drop takes place be-
tween the first and second sample collections, similarly to
the results from previous investigations for different pharma-
ceutical types [30]. The drop in concentration (difference be-
tween the compound concentration in the donor solution be-
fore and after passive sampling) for SMZ and SPD was neg-
ligible, while for STZ it was close to 50%. For the rest of the
analytes, the drop was more significant (75 to 95%).

PASSIL calibration

The sampling rates (see Electronic Supplementary Material
(ESM) Table S1) (Rs defined as the volume of water purified
from the analyte per unit of time [L day−1]) could be calculat-
ed only for analytes whose concentration decrease was greater
than 50% (analogously to previous research [30]). The values
of sampling rates varied between 0.61 and 0.92 L day−1.
These numbers are minimum four times higher than analo-
gous results obtained from POCIS experiments [35–37].
This means that the change of the receiving phase from solid
to liquid can make passive sampling more efficient. It is very
important that the membranes’ pores and surface are covered
by the IL, which can directly interact with the analytes. In the
POCIS technique, the analytes need to firstly pass through the
membrane pores. In the PASSIL technique, the role of the
membrane is just to support the liquid receiving phase.

PASSIL selectivity

The selectivity of PASSIL performed using [P666-14][N
(CN)2] needs to be discussed. The factors which are

responsible for the low extraction efficiency of SDZ,
SPN, and SMZ (Fig. 7) are sure to come from the side
of the analytes, and the pKa and logKOW are the most
probable factors.

Sulfonamides have three pKa values [38], but only two and
three are valid for this study. The lowest values of pKa3 of the
analytes are in the range from 5.5 (for SMT and SCP) to 5.9
(for SDX) (Table 1). For these SAs, more than 35.5% of par-
ticles are charged negatively (calculated using equations in
[39]), and the extraction efficiency is higher than 60%. Also,
for sulfathiazole (pKa3 7.1), the efficiency is higher than 50%,
although its neutral form dominates in the donor solution.

For other analytes, whose pKa3 is higher than the pH value
of the donor solution, the negatively charged form is present in
less than 13% (for SPD, it is less than 1%) (Fig. 8) and their
passive sampling efficiencies are lower than 20%. Thereby, it
was assumed that the negative form of the analyte was favored
during passive sampling.

In 2011, Li et al. [25] examined the influence of different
pH values of the donor solution on the sampling rates for
POCIS of estrogens, anti-depressants, β-blockers, and other
pharmaceuticals. For acidic pharmaceuticals, the sampling
rates decreased along with an increase in the donor solution
pH from 3 to 9. The opposite situation was observed for basic
analytes. In both cases, the sampling rates were higher when
the neutral form of the target compound prevailed. For
naproxen, the highest Rs value (pKa 4.20 [40]) was calculated
at pH 3, while for nadolol (pKa 9.69 [41]), at pH 9. Therefore,
it appears that the dependencies during POCIS and PASSIL
passive sampling are different, which was assumed.

The sampling rate values are also influenced by the hydro-
phobicity of the analytes. Lipophilicity is usually measured by
the octanol–water (partition) coefficient (KOW) (BMethods^
section). However, how it was already mentioned, for ioniz-
able compounds at a pH at which they are partially ionized,

Fig. 8 Ionization states of
sulfapyridine

Fig. 9 Sulfonamide extraction
efficiencies obtained from
PASSIL experiments conducted
using real environmental water
samples
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the concentration in both phases is related to the distribution
coefficient (D). Therefore, for sulfonamides, both coefficients
(presented as logKOW and logDOW) were determined experi-
mentally and calculated according to [32]. Generally, the more
hydrophobic SAs are extracted more efficiently; however, no
direct proportional dependencies between PASSIL efficiency
and logKOW or logDOW values of SAs were noticed.

PASSIL from environmental matrices

The PASSIL technique has been also used for extraction of
sulfonamides from environmental matrices (BMethods^ sec-
tion). The recovery (%) of SAs from water samples collected
from Oliwski Stream (Gdansk, Poland) and secondary efflu-
ent (Gdansk, Poland) is presented in Fig. 9.

First of all, the change of donor solution from ultrapure
water to environmental matrix did not affect the efficiency
of PASSIL in the case of STZ, SMT, and SDX. For the rest
of the analytes (SDZ, SPD, and SMZ), increased salinity (con-
ductivity of 0.3–0.5 mS cm) and alkalinity (pH 7–8), as was in
the case of the use of both environmental matrices, caused a
significant decrease of extraction efficiency. The most saline
donor solution (water from Oliwski Stream) caused the most
decrease.

Moreover, applying different SA concentrations (2 and
0.002 μg L−1) also has not influenced the PASSIL efficiency
(Fig. 9). Obtained results are compatible with those obtained
from POCIS. Togola and Budzinski [42] and DiCarro [43]
investigated the initial analyte concentration impact on the
Rs of pharmaceuticals. Both teams have not observed any
direct dependencies between the concentration of the com-
pound and its extraction efficiency [44]. Therefore, it is stated
that PASSIL passive sampler laboratory calibrations, likewise
POCIS, may be performed at higher analyte concentrations
(μg L−1) than are present in the water environment—pharma-
ceutical concentrations in river water are usually lower than
500 ng L−1.

Additionally, the sampling rates (Rs) for effluent samples
were calculated, however only for sulfonamides characterized
by a significant (>50%) concentration drop of the donor solu-
tion: 0.8 L day−1 for STZ and SMT, 0.59 L day−1 for SCP, and
0.45 L day−1 for SDX. All presented values are higher than
those obtained from POCIS calibration experiments held in
different environmental conditions [44].

Conclusions

PASSIL is a novel technique which may be applied for the
passive sampling of pharmaceuticals from water. Among the
t e s t e d i m i d a z o l i u m - , m o r p h o l i n i u m - , a n d
phosphonium-cation-based ionic liquids, [P666-14][N(CN)2]
is characterized by the best acceptor properties. The extraction

efficiencies of SAs obtained using PASSIL, both using ultra-
pure and environmental water, were higher than those re-
ceived using POCIS (conducted with similar test conditions).
As it was already suspected after previous experiments,
PASSIL is a selective method of long-term water monitoring.
The PASSIL selectivity is most probably based on the ioniza-
tion degree of the analytes (in this case sulfonamides). The
best efficiencies were obtained for more acidic SAs, whose
negatively charged form prevails in the donor water solution
(pH 5.5 ± 0.1). The PASSIL applicability, mechanism, and
variability will be the subject of further research.
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