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MOAG-4 promotes the aggregation of a-synuclein by
competing with self-protective electrostatic interactions

Received for publication, October 27,2016, and in revised form, March 1,2017 Published, Papers in Press, March 23,2017, DOI 10.1074/jbcM116.764886

Yuichi Yoshimura*', Mats A. Holmberg®, Predrag Kukic', Camilla B. Andersen!, Alejandro Mata-Cabana®?,
S. Fabio Falsone**, Michele Vendruscolo®, Ellen A. A. Nollen®?, and Frans A. A. Mulder™*

From the *Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14,
8000 Aarhus C, Denmark, the SUniversity of Groningen, University Medical Centre Groningen, European Research Institute for the
Biology of Aging, 9700 AD Groningen, The Netherlands, the 'Department of Chemistry, University of Cambridge, Cambridge

CB2 1EW, United Kingdom, the Hlnterdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics,
Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark, and the **Institute of Pharmaceutical Sciences, University of

Graz, Schubertstr. 1, 8010 Graz, Austria
Edited by Paul E. Fraser

Aberrant protein aggregation underlies a variety of age-re-
lated neurodegenerative disorders, including Alzheimer’s and
Parkinson’s diseases. Little is known, however, about the molec-
ular mechanisms that modulate the aggregation process in the
cellular environment. Recently, MOAG-4/SERF has been iden-
tified as a class of evolutionarily conserved proteins that posi-
tively regulates aggregate formation. Here, by using nuclear
magnetic resonance (NMR) spectroscopy, we examine the
mechanism of action of MOAG-4 by characterizing its interac-
tion with a-synuclein (a-Syn). NMR chemical shift pertur-
bations demonstrate that a positively charged segment of
MOAG-4 forms a transiently populated a-helix that interacts
with the negatively charged C terminus of a-Syn. This process
interferes with the intramolecular interactions between the N-
and C-terminal regions of a-Syn, resulting in the protein popu-
lating less compact forms and aggregating more readily. These
results provide a compelling example of the complex competi-
tion between molecular and cellular factors that protect against
protein aggregation and those that promote it.

Insoluble filamentous aggregates, commonly referred to as
amyloid fibrils, are associated with many human neurodegen-
erative disorders, and are typically composed of disease-specific
aggregation-prone proteins, including amyloid 8 (AB)® in Alz-
heimer’s disease, and a-synuclein (a-Syn) in Parkinson’s dis-
ease (1). The presence of these aggregation-prone proteins may
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lead to failure of protein homeostasis and loss of normal bio-
logical function (2—4). Although such aggregates are key path-
ological hallmarks of neurodegenerative disorders (5), much
remains to be understood about the structural details of the
molecular mechanisms leading to aggregate formation and
those that protect against it, as the transient nature of species
populated during the aggregation process makes it difficult to
observe these in experiment.

It has been recently shown that a class of evolutionarily con-
served proteins promotes aggregate formation (6). A genetic
screen in Caenorhabditis elegans models led to the identifica-
tion of a positive regulator of protein aggregation, called “mod-
ifier of aggregation 4” (MOAG-4). Inactivation of MOAG-4
suppresses protein aggregation and associated toxicity in
C. elegans models for aggregation of polyglutamine, AS, and
a-Syn (6). It has also been shown that a human ortholog of
MOAG-4, small EDRK-rich factor (SERF) 1A, accelerates the
aggregation of a broad range of amyloidogenic proteins in vitro
(7). The ensuing biophysical analysis of the interaction between
SERF1A and a-Syn suggested that the acceleration of «-Syn
aggregation originates from a transient interaction in the initial
stage of the process (7). However, structural details of MOAG-
4/SERF proteins, and the molecular mechanism by which they
promote aggregate formation have so far remained elusive.

To address this problem, we investigate here the effects of
MOAG-4 on the aggregation of a-Syn by monitoring the kinet-
ics of this process using thioflavin T (ThT), a dye known to
exhibit enhanced fluorescence upon binding amyloid fibrils (8,
9). The aggregation assay was carried out at 37 °C under agita-
tion (10). We found that MOAG-4 accelerates aggregate forma-
tion of a-Syn, which is consistent both with in vitro studies
showing that aggregation of a-Syn is promoted by the human
ortholog SERF1A (7), as well as with cellular studies attesting
that loss of MOAG-4 suppresses aggregation and toxicity of
a-Syn (6).

We then use NMR spectroscopy to determine the structural
ensemble of MOAG-4, and provide structural evidence for the
interaction between MOAG-4 and a-Syn. Although spontane-
ous (i.e. unseeded) in vitro formation of a-Syn amyloid fibrils at
neutral pH under quiescent conditions is slow (11) and requires
at least a few weeks (12), all NMR experiments were carried out
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Figure 1. MOAG-4 accelerates a-Syn aggregation. A, the aggregation kinetics of a-Syn (12.5 um) in the presence (red) and absence (black) of an equal
molar concentration of MOAG-4 was monitored by measuring ThT fluorescence at pH 6.0 and 37 °C. The data represent nine replicates, where one
solution was divided into nine samples and the assay was run in parallel in the same plate. B, SDS-PAGE analysis of the soluble and insoluble fractions
of the sample at different incubation times. The aggregation of a-Syn (200 um) was made at pH 7.4 and 37 °C in the presence of an equal molar

concentration of MOAG-4.

at low temperature to avoid the possible formation of small
oligomeric aggregates during the measurements (13). At pH 6.0
and 10 °C, the protein did not form detectable aggregates in the
NMR tube during the NMR experiments. Our results show that
MOAG-4 affects the intra-molecular interactions within a-Syn
that bring together its N- and C-terminal regions. The presence
of MOAG-4 is thus relevant as the transient interactions
between the terminal regions of a-Syn result in rather compact
conformations that appear to be relatively resistant to aggrega-
tion (14—18). In this way, MOAG-4 effectively competes with
this self-protective mechanism, such that a-Syn takes on a less
compact form, and may thereby become poised for aggregation
and subsequent amyloid formation.

Results
MOAG-4 enhances a-Syn aggregate formation

To probe for a direct effect of MOAG-4 on a-Syn aggrega-
tion, we monitored the enhancement of ThT fluorescence in an
aggregation kinetics assay (Fig. 14). Amyloid formation of
a-Syn was monitored in the absence or presence of an equimo-
lar concentration of MOAG-4 at pH 6.0 and 37 °C. Some of
the data displayed biphasic behavior, which cannot be readily
explained by simple nucleation-dependent aggregation mech-
anisms. Although such complex behavior may be an intrinsic
and relevant property of a-Syn aggregation induced by
MOAG-4, it remains extremely challenging to extract from the
data the underlying mechanistic information (19, 20). Thus,
although we could not extract from the experimental data the
kinetic parameters of the underlying microscopic processes, we
found that, whereas a-Syn aggregation without MOAG-4 takes
several days (10), MOAG-4 accelerated the process signifi-
cantly, with a lag time of ~3 h (Fig. 14).

We then examined whether MOAG-4 is integrated into the
a-Syn fibrils (Fig. 1B). The a-Syn aggregation experiment was
performed at pH 7.4 and 37 °C in the presence of MOAG-4.
a-Syn aggregation was slower at pH 7.4 than 6.0, in agreement
with previous studies showing that a decrease in pH en-
hanced the kinetics of a-Syn amyloid fibril formation (21,
22). SDS-PAGE analysis confirmed that the insoluble frac-
tion of the sample did not contain MOAG-4 (Fig. 1B), sug-
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gesting that the modulation of the a-Syn amyloidogenesis by
MOAG-4 occurred during an early and transient interaction
with a-Syn.

MOAG-4 forms a mutable structure with a-helical propensity

The 'H-""N heteronuclear single-quantum correlation (HSQC)
spectrum of MOAG-4 (Fig. 2A4) has the typical appearance
expected for an intrinsically disordered protein, with very lim-
ited amide chemical shift dispersion. To characterize the struc-
ture in more detail, sequential assignment of backbone and ali-
phatic side chain 'H, **C, and '°N resonances was achieved
using a set of three-dimensional (3D) triple-resonance experi-
ments (see “Experimental procedures”). Upon attainment of
the resonance assignments, an ensemble of MOAG-4 struc-
tures was determined using molecular dynamics simulations
restrained with backbone NMR chemical shifts (23, 24). The
corresponding structural ensemble (Fig. 2B) displays a protein
structure with a very high degree of disorder. Despite the global
disorderliness, virtually all members of the structural ensemble
contain an a-helical segment for residues Asp*>-Asn”®. When
superposing the structures on the coordinates for these resi-
dues, the remainder of the protein appears spatially compara-
tively less well defined. However, a second, lowly-populated,
transient a-helix is present in these ensembles, comprising res-
idues Asp®-Lys** (Fig. 2C). Neither significantly populated
compact states nor local B-sheet conformations were found.
The experimental chemical shifts were well correlated with
those back-calculated from the MOAG-4 ensemble that we
determined. To validate the MOAG-4 ensemble, we further
measured NOE intensities and compared these with the val-
ues back-calculated from the ensemble of structures. The
good results of this validation attest the accuracy of the
ensemble of structures that we describe. Taken together,
MOAG-4 is a highly mutable protein containing transiently
populated elements of secondary structure, but devoid of
tertiary interactions.

As can be seen in Fig. 24, the peak intensity for the residues
between Asp*® and Asn”° is relatively low. The explanation for
this observation can now be rationalized with help of the struc-
ture: the stretch Asp*>-Asn”® forms a long helical structure, in
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Figure 2. MOAG-4 forms a malleable structure with a-helical propensity. A, 'H->N HSQC spectrum of MOAG-4 (left), and a zoomed region (right). The
amino acid sequence of MOAG-4 is shown on the top, using the following color scheme: basic (blue), acidic (red), alanine (green). B, ensemble of MOAG-4
structures. The structures are superimposed on the a-helical residues Asp**-Asn”®. C, the population of a-helical structure is calculated from the MOAG-4

ensemble.

which amide bond vectors pointing along the direction of the
axis of the a-helix experience fast transverse spin relaxation
due to slow overall tumbling motion.

Electrostatic interactions between MOAG-4 and «-Syn

To determine the binding affinity and the location of the
binding site on MOAG-4, a series of "H-">N HSQC spectra for
uniformly *C,'*N-labeled MOAG-4 were recorded with differ-
ent amounts of unlabeled a-Syn. Fig. 34 shows the chemical
shift changes observed for MOAG-4 upon the binding of a-Syn.
The fit to saturating binding curves yielded a dissociation con-
stant (K,) value of 10.8 £ 0.8 um. The backbone chemical shifts
of amide proton (*HY), nitrogen (*°N), and carbonyl (**C’)
nuclei of MOAG-4 were obtained from 3D HNCO experiments
(25, 26) at [a-Syn]/[MOAG-4] = 0 and 8. The chemical shift
perturbations of backbone >N and '*C’ nuclei (Fig. 3B) indi-
cate that binding to a-Syn induces significant changes in
MOAG-4 for a contiguous stretch of residues between Arg® and
Gly*°, corresponding to the first a-helical segment, a region
thatisrich in positively charged amino acid residues (net charge
+6). The structural propensities of MOAG-4, free and bound
to a-Syn, were calculated from the backbone 'H™, N, and **C’
chemical shifts using the program ncSPC (27). The a-helical
propensity of the N-terminal segment increases slightly upon
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binding to «-Syn, indicating a direct effect of a-Syn on the
MOAG-4 conformational ensemble (Fig. 3C).

Next, we examined the structural changes of a-Syn upon
interaction with MOAG-4 by monitoring the corresponding
chemical shift changes. Fig. 44 shows a series of BEST-TROSY
'H-""N correlation spectra (28) of uniformly '*C,'*N-labeled
a-Syn recorded with different amounts of unlabeled MOAG-4.
Spectral assignment of a-Syn was taken from BMRB entry ID
18857, and confirmed using BEST-TROSY 3D HNCO and
HN(CA)CO experiments (29, 30) before and after the titration.
Chemical shift perturbations for backbone >N and **C’ upon
binding to MOAG-4 (Fig. 4B) suggest that MOAG-4 interacts
with the C terminus of a-Syn. This result parallels the previous
finding that the interaction of a-Syn with SERF1A is localized
to the C terminus of @-Syn (7). The C-terminal region of a-Syn
(residues Glu''°-Ala'*) is acidic and negatively charged (net
charge at neutral pH of —12), constituting a favorable binding
location for positively charged proteins, such as MOAG-4
and SERF1A. Although '°N chemical shift changes are also
observed for the N-terminal region, and to a lesser extent for
the NAC (non-AB component of Alzheimer’s disease amyloid)
region, as we will show below, we found that these collateral
effects on structure are likely to result from the loss of pre-
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Amyloid fibril formation of a-synuclein induced by MOAG-4

A T T .I T T B 08:

G26 E

Hor "J¢ — | E .

‘102 626 7 \& oF

Q-OA— i o L

£ F08F , ¥ < _04F

§' 151 @ [aSUyn;/[hﬁO:Gfl]- E

= . -0.8

3 * :
g 120 “ C

oo F

5} > 1.0F

= e % g 19

° g § o05f

N

125F (_:' 0:

. £ -05F

® . 2 3

1 1 1 1 1 ] _1'05

8.8 86 84 82 8.0 7.8 0

"H chemical shift /ppm

T

T

13C’ chemical shift difference
5N chemical shift difference

MOAG-4 without aSyn
MOAG-4 with aSyn

20

40

60

80

Residue number
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existing interactions within the a-Syn ensemble. Fig. 4C shows
the structural propensity of a-Syn in the absence and presence
of MOAG-4, calculated from the backbone 'H™, '°N, and '*C’
chemical shifts using the program ncSPC (27). We found that,
consistent with previous studies (27, 31), deviations of mea-
sured chemical shifts from their random coil values are very
small throughout the sequence. We did not observe any signif-
icant differences in the structural propensities of «-Syn in the
presence and absence of MOAG-4, but the conformational
exchange of a-Syn with a less compact form upon binding to
MOAG-4 was confirmed by an increase of backbone flexibility
(see below).

«a-Syn becomes less compact upon binding to MOAG-4

To examine the conformational change of a-Syn upon bind-
ing to MOAG-4, we measured the backbone '°N transverse
relaxation rate constants (R,) of a-Syn in the presence and
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absence of MOAG-4 (Fig. 5A), and obtained the changes of the
backbone *°N R, values induced by MOAG-4 (Fig. 5C). The R,
values for the C terminus of a-Syn are larger in the presence of
MOAG-4 than those without MOAG-4, indicative of restricted
motion by addition of MOAG-4. These effects can be attributed
to direct binding of a-Syn and MOAG-4 mediated by polyva-
lent electrostatic interactions. At the same time, a reduction in
the R, rates was observed for the N-terminal region (residues
Val®>-Thr®), indicating that the N terminus of a-Syn becomes
more dynamic upon binding.

These results offer insight into the mechanism by which
MOAG-4 enhances a-Syn aggregation. It has been proposed
that, although a-Syn is highly dynamic as typical of intrinsically
disordered proteins, the ensemble of a-Syn in the native state is
more compact than that expected for a random coil polypeptide
chain due to the presence of long-range transient intra-molec-
ular interactions (14-18, 32, 33), originating from an electro-

SASBMB
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Figure 5. Intra-molecular electrostatic interactions in a-Syn are released by addition of MOAG-4 or salt. A, backbone '°N R, relaxation rates of a-Syn in
the absence (black) and presence (red) of MOAG-4. B, backbone >N R, relaxation rates of a-Syn without (black) and with (blue) 100 mm NaCl. C, changes in
backbone "N R, rates of a-Syn upon binding to MOAG-4 (AR, yionc.4)- D, changes in backbone '°N R, rates of a-Syn upon addition of 100 mm NaCl (AR, yac)-

E, correlation between AR, yioac.4 and AR, ..

static attraction between the slight positive charge in the cen-
tral region (residues Gly*'-Leu'“’) and the negatively charged
C-terminal region (34). These intra-molecular interactions and
the associated compaction of a-Syn shield the aggregation-
prone central region of the protein from forming inter-molec-
ular interactions under physiological conditions in the cell,
thereby protecting it against aggregation (35).

NaCl reduces intra-molecular interactions within a-Syn and
enhances aggregation

To test whether the action of MOAG-4 could be emulated by
screening the electrostatic interaction between the N and C
termini by salt, we measured the backbone '°N R, relaxation
rates at pH 6.0 and 10 °C in the presence and absence of 100 mm
NaCl (Fig. 5B). In full agreement with a previous report (36),
addition of NaCl reduced the backbone *°N R, relaxation rates
in the N- and C-terminal regions (Fig. 5D), indicating that the
screening of electrostatic interactions increased mobility in
both domains. A positive correlation between the changes in
the '°N R, relaxation rates at the N terminus of «-Syn by addi-
tion of NaCl and those upon interaction with MOAG-4 (Fig.
5E) indicates that the interaction of MOAG-4 with the C ter-
minus of a-Syn abrogates pre-existing intra-molecular interac-
tions, increasing the dynamics at the N terminus of a-Syn.
These changes, in turn, affect the chemical shifts for regions
outside the C terminus (Fig. 4), explaining the pervasive pattern
observed throughout the protein sequence. The study of Bai et
al. (36) shows clearly how paramagnetic relaxation enhance-
ment effects can remain restricted to two regions of the protein,
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whereas leading to chemical shift changes that are transmitted
also to regions other than those in direct contact.

Previous studies have shown that increasing the salt concen-
tration accelerates the formation of a-Syn amyloid fibrils (37,
38). To examine the effect of NaCl on the formation of a-Syn
amyloid fibrils, the aggregation kinetics of a-Syn at 100 mm
NaCl was monitored by measuring ThT fluorescence at pH 6.0
and 37 °C. Overall, and consistent with previous studies (37,
38), the introduction of salt increases a-Syn aggregation (Fig.
6), in a way similar to that observed for MOAG-4 (Fig. 14),
suggesting a fundamental link between the modulation of intra-
molecular electrostatic interactions and a-Syn aggregation.

Discussion

In vitro at neutral pH, and under quiescent conditions, spon-
taneous aggregation of a-Syn requires at least a few weeks (12).
In this study, soluble a-Syn persists without aggregate forma-
tion during NMR measurement at 10 °C (Figs. 3-5). On the
other hand, aggregation is accelerated upon agitation of the
protein solution (10, 12), where the lag time of a-Syn fibril
formation is reduced from weeks/months to hours/days (10)
(Figs. 1 and 6). Although the lag phase preceding assembly was
several days in the absence of MOAG-4 or NaCl, a-Syn readily
self-associated with a lag time of ~3 and ~16 h in the presence
of an equimolar amount of MOAG-4 and 100 mMm NaCl,
respectively.

To understand the role of MOAG-4 on a-Syn aggregation,
we note that it is well known that electrostatic effects play key
roles in the formation of amyloid fibrils (39 —42). The effects of

J. Biol. Chem. (2017) 292(20) 8269-8278 8273
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Figure 6. Salt accelerates a-Syn aggregation. Kinetics of a-Syn (12.5 um)
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(blue) of 100 mm NaCl. a-Syn aggregation was monitored by measuring ThT
fluorescence at 37 °C. The data represent nine replicates, where one solution
was divided into nine samples and the assay was run in parallel in the same
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these interactions on protein aggregation have been extensively
studied for a variety of amyloidogenic proteins, including insu-
lin (43), a-Syn (37, 38), B,-microglobulin (44), glucagon (45),
islet amyloid polypeptide (46), and the mouse prion protein
(47). The C terminus of a-Syn is rich in negatively charged
amino acid residues, and a-Syn remains soluble for an extended
period of time because of inter-molecular electrostatic repul-
sion. The shielding of charge repulsion by NaCl decreases the
free energy barrier of nucleation (39, 40), and enhances the
kinetics of a-Syn aggregation (Fig. 6). Neutralization of charge
repulsion can also be brought about by polyamine compounds
(14, 48, 49) and metal cations (50-52), and these have been
shown to enhance the kinetics of a-Syn aggregation. Further-
more, C terminally truncated recombinant a-Syn readily aggre-
gates (53). These observations indicate that the negatively
charged C terminus plays an inhibitory role in the formation of
a-Syn amyloid fibrils. More recently, it was observed that inter-
actions between the N and C termini persist in cells, despite the
high ionic strength of the cytoplasm (35). It was also suggested
that hydrophobic residues of the central amyloidogenic region
of a-Syn are shielded from interactions with cellular compo-
nents (35), although experiments with paramagnetic co-solute
molecules in vitro have revealed solvent accessibility of the
entire chain (54, 55).

Furthermore, it has been suggested that the amyloid-modi-
fying properties of MOAG-4/SERF proteins are evolutionary
conserved (6). The binding affinity of MOAG-4 to a-Syn
obtained in this study (K, = 10.8 = 0.8 um) is comparable with
the K, value for the binding of SERF1A, a human ortholog of
MOAG-4, to a-Syn (7). The inter-molecular interaction with
SERF1A is localized to the C terminus of a-Syn, and the C
terminally truncated mutant, a-Syn(1-110), showed a very
weak binding affinity to SERF1A (K, > 1 mm) (7). Furthermore,
the aggregation kinetics of a-Syn(1-110) was not affected by
SERF1A (7). Therefore, the chemical shift perturbations (Fig.
4B) and a reduction in the backbone '°N R, rates (Fig. 5C)
observed for the N-terminal region of a-Syn upon binding to
MOAG-4 is likely due to a combination of effects, as explained
below.
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Our experimental data suggest that the acceleration of a-Syn
aggregation induced by MOAG-4 is due to electrostatic inter-
actions between the two oppositely charged proteins (Fig. 7).
Although a-Syn is typified as an intrinsically disordered pro-
tein, the long-range nature of electrostatic interactions allows
transient intra-molecular contacts within a-Syn to occur (14—
18, 32—-36). As a result, the ensemble of conformations in the
native state, although disordered, remains rather compact.
Direct binding of MOAG-4 to the negatively charged C termi-
nus of a-Syn could be facilitated because positively charged
residues are distributed evenly throughout the first helical seg-
ment of MOAG-4. At the same time, the chemical shift pertur-
bations and a reduction in the backbone '°N R, rates were col-
laterally observed for the N-terminal region of a-Syn (Figs. 4B
and 5C). These results reveal that the highly positively charged
first a-helical segment of MOAG-4 binds the negatively
charged C terminus of a-Syn, effectively competing with pre-
existing intra-molecular interactions within «-Syn, thereby
reducing the compactness of the protein.

Our NMR data and aggregation assay demonstrate that
MOAG-4 directly binds to a-Syn and enhances its aggregation,
whereas the resulting insoluble fraction did not contain
MOAG-4 (Fig. 1B). The aggregation-promoting activity of
SERFIA results from early and transient interactions with
a-Syn (7), which act catalytically. Electron microscopic images
of the mature «-Syn amyloid fibrils obtained in the absence and
presence of SERF1A did not show morphological differences
(7). Although it still remains to be elucidated whether the
reduction in compactness of a-Syn is required for the forma-
tion of a-Syn amyloid fibrils (32, 33), our results now shine light
on the structures of the molecular species involved in the early
and transient interaction between MOAG-4 and a-Syn, and the
mechanism by which electrostatic interactions may prevent or
drive protein aggregation. We also note that the type of inter-
actions between MOAG-4 and a-Syn detected in the NMR mea-
surements that we reported are likely to be conserved under the
conditions used in the aggregation assays.

In closing, we observe that the competition between inter-
molecular and intra-molecular electrostatics may offer ways for
cells to cope with aggregation-prone proteins in general. By
protecting the hydrophobic regions in proteins through intra-
molecular interactions leading to the formation of compact
forms, the fraction of proteins susceptible to aggregation can be
maintained at a manageable level. In this view, proteins like
MOAG-4/SERF would be employed to reduce the self-protec-
tion provided by such a compaction, and effectively convert
disordered proteins into aggregates when concentrations reach
dangerous levels. In addition, proteins like MOAG-4/SERF can
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use this mechanism to support other physiological roles, as in
the generation of functional amyloids.

Experimental procedures
Sample preparation

Expression and purification of human a-Syn was described
previously (56). For expression of uniformly '>C,'*N-labeled
and "°N-labeled a-Syn, Escherichia coli cells were grown in M9
minimal medium supplemented with **N-labeled NH,Cl and
13C-labeled p-glucose as sole source for **N and *C, respec-
tively. Uniformly '>C,'*N-labeled and unlabeled MOAG-4 was
obtained from Giotto Biotech (Florence, Italy).

ThT fluorescence assay

Aggregation of a-Syn was performed at a concentration 12.5
mM. Lyophilized a-Syn was dissolved in 10 mm sodium phos-
phate (pH 6.0) containing 40 um ThT. A clear-bottom 96-well
plate with a final volume of 150 ul of assay solution in each well
was loaded into a Genios Pro (Tecan) fluorescence plate reader
and incubated at 37 °C (10). ThT fluorescence was measured
with excitation and emission at 448 and 485 nm, respectively. A
3-mm glass bead was added to each of the wells, and the plate
was subjected to cycles of an orbital shaking at 300 rpm for 16
min followed by quiescence for 4 min. Because amyloid fibril
formation often varies across sample replicates and low repro-
ducibility of the kinetic assays is attributed to the inherently
stochastic nature of the aggregation process (57-59), the exper-
iment was performed in nine replicates, where one solution was
divided into nine samples and the assay was run in parallel in
the same plate. Binding of MOAG-4 to ThT was negligible.

SDS-PAGE analysis

A 250-ul volume of 200 um a-Syn in 50 mm Tris-HCI, 150
mMm NaCl, and 3 mm NaN,; (pH 7.4) was mixed with 250 ul of
200 uMm MOAG-4 in the same buffer, taped to the rack of an
Eppendorf themomixer 5436, and agitated at 37 °C and 1,400
rpm. After given time points, 35-ul samples were taken and
frozen immediately at —20 °C. Each sample was then centri-
fuged at 20,000 X g, and the insoluble fraction was washed twice
and resuspended in 50 ul of 50 mm Tris-HCI, 150 mm NaCl, and
3 mm NaNj; (pH 7.4). The soluble and insoluble samples (5 ul)
were run on a 12% NuPAGE SDS-PAGE gel (Life Technologies,
Germany), followed by Coomassie staining.

NMR assignment experiments

For resonance assignment of MOAG-4, all NMR spectra
were recorded at 10 °C on a Bruker Avance III spectrometer at
'H frequency of 500 MHz. Backbone resonance assignments of
uniformly *C,'*N-labeled MOAG-4 (0.4 mm) in 10 mM sodium
phosphate (pH 6.0) containing 7%(v/v) D,O for field lock and
50 uM 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) as chem-
ical shift reference (60) were made by using 3D HNCO (25, 26),
HN(CA)CO (61), HNCACB (26), HN(CA)NNH (62), (HN)CO-
(CO)NH (63, 64), and (H)N(COCO)NH (64, 65) spectra. In the
(HN)CO(CO)NH and (H)N(COCO)NH experiments, the mix-
ing period of the MOCCA-XY16 scheme (66) was 390 ms for
3C’ magnetization transfer via *J... couplings. Furthermore,
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3D (H)CC(CO)NH and H(CC)(CO)NH spectra were recorded
for assignment of aliphatic '"H and '>C side chain resonances
and identification of the amino acid types from their chemical
shifts (67). In the (H)CC(CO)NH and H(CC)(CO)NH experi-
ments, the mixing period was 15 ms for aliphatic >C magneti-
zation transfer. Spectra were processed using nmrPipe (68) and
analyzed with Sparky (Goddard and Kneller SPARKY 3, Uni-
versity of California, San Francisco).

Structural calculation and NOESY experiments

The ensemble of MOAG-4 structures was obtained using the
replica-averaged metadynamics method (23) with chemical
shift restraints implemented with the program CamShift (24).
Back-calculations of the backbone (**Ca, *Cp, *C’, 'Ha, "HN,
and *°N) and side chain (*HpB, *Hvy, *HS, and 'He) chemical
shifts from the MOAG-4 ensemble were performed using the
programs SPARTA+ (69) and SHIFTX2 (70), respectively. The
population of a-helical structure was calculated using the DSSP
software (71). Two types of ®N-resolved 3D 'H-'H NOESY
spectra (i.e. HSQC-NOESY-HSQC (3D '°N-'°N-'H) and
NOESY-HSQC (3D 'H-'°N-'H)) were recorded to collect
NOEs for structural validation (72). These experiments were
performed at a MOAG-4 concentration of 400 uM on a Bruker
Avance III 950 MHz spectrometer at 10 °C.

Titration of MOAG-4 with a-Syn

NMR titration experiments (73) were performed at 10 °C on
a Bruker Avance III 950 MHz spectrometer equipped with a
TCI cryogenic probehead. A series of 2D 'H-*N HSQC NMR
spectra of uniformly **C,'*N-labeled MOAG-4 (100 pm) in 10
mwMm sodium phosphate (pH 6.0), containing 2% (v/v) D,O and
40 um DSS, were recorded with increasing amounts of unla-
beled a-Syn. A 3D HNCO spectrum was recorded after the
titration with a-Syn, where [a-Syn]/[MOAG-4] = 8, to obtain
the "HY, '*N and "*C’ chemical shifts. The binding curves were
obtained from chemical shift changes during the titration in a
fast-exchange manner, and fitted to the following equation,

Adobs K, + [MOAG-4] + [a-Syn] — [(K, + [MOAG-4]+[a-Syn])? — 4[MOAG-4][a-Syn]
Adra 2[MOAG-4]

(Eq. 1)

where Ad_, is the observed chemical shift change from the free
state, and Ad,,,, is the maximum chemical shift change upon
saturation. K, is the dissociation constant. Nonlinear least-
squares fitting was performed with Igor Pro software.

>N R, relaxation experiment

The transverse relaxation rate constant, R,, of a-Syn was
obtained from an '?N Hahn-echo pulse sequence (74). Two
spectra were recorded, one without the relaxation delay and the
other with the relaxation delay. The R, value was obtained by
the following equation,

1 I(1)

R,= ——In| =

2 T [I(O)

where I(7) values are resonance intensities at the relaxation
delay 7. Temperature compensation was included to minimize

(Eq.2)
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the effects of heating caused by "H decoupling during the '°N
chemical shift evolution and relaxation delay periods (75). Pro-
ton x and y purge pulses were applied prior to the recycling
delay to ensure that the amount of water magnetization present
at the beginning of each scan is always identical (76). The spec-
tra were recorded at 10 °C on a Bruker Avance III 950 MHz
spectrometer equipped with a TCI cryogenic probehead (with/
without MOAG-4; Fig. 5, A and C) or a Bruker Avance III 500
MHz spectrometer (with/without NaCl; Fig. 5, B and D).
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