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Excitation-contraction (EC) coupling in skeletal muscle
requires a physical interaction between the voltage-gated
calcium channel dihydropyridine receptor (DHPR) and the
ryanodine receptor Ca2� release channel. Although the exact
molecular mechanism that initiates skeletal EC coupling
is unresolved, it is clear that both the �1 and � subunits of DHPR
are essential for this process. Here, we employed a series of tech-
niques, including size-exclusion chromatography-multi-angle
light scattering, differential scanning fluorimetry, and isother-
mal calorimetry, to characterize various biophysical properties
of the skeletal DHPR � subunit �1a. Removal of the intrinsically
disordered N and C termini and the hook region of �1a pre-
vented oligomerization, allowing for its structural determina-
tion by X-ray crystallography. The structure had a topology sim-
ilar to that of previously determined � isoforms, which consist of
SH3 and guanylate kinase domains. However, transition melting
temperatures derived from the differential scanning fluorimetry
experiments indicated a significant difference in stability of
�2–3 °C between the �1a and �2a constructs, and the addition of
the DHPR �1s I-II loop (�-interaction domain) peptide stabi-
lized both � isoforms by �6–8 °C. Similar to other � isoforms,
�1a bound with nanomolar affinity to the �-interaction domain,
but binding affinities were influenced by amino acid substitu-
tions in the adjacent SH3 domain. These results suggest that
intramolecular interactions between the SH3 and guanylate
kinase domains play a role in the stability of �1a while also pro-
viding a conduit for allosteric signaling events.

Dihydropyridine receptors (DHPRs)3 are multi-subunit volt-
age-gated calcium channels that play an essential role in a vari-

ety of biological processes including muscle contraction, insu-
lin secretion, and synaptic transmission. The DHPR is made up
of a major, pore-forming, �1 subunit with associated �2, �, and
� subunits and, in skeletal muscle, � and � subunits (see Fig.
1a). Key elements of the DHPR involve the voltage sensor and
the Ca2� ion pore, which are located in the � subunit (�1s),
whereas other subunits are essential for correct �1S Ca2� sig-
naling, channel gating, and surface expression (1). DHPR �1s is
the largest of the DHPR subunits consisting of four transmem-
brane repeats that are connected by a series of loops. These
loops are linked to the cytoplasmic � subunit, which in the case
of skeletal muscle interacts with ryanodine receptor and initi-
ates skeletal EC coupling (2). The structure of the skeletal �1
subunit was initially solved to an overall resolution of 4.2 Å (3)
and more recently to 3.6 Å (4) using cryo-electron microscopy.
However, the �1a component of these structures was resolved
by docking the structure of the �2a isoform (PDB code 4DEY)
caused by the unavailability of the �1a structure. It would there-
fore be useful if the structure of the �1a were to be determined.
Similar to other DHPR � subunits, �1a is made up of a core
Src-3 (SH3)-guanylate kinase (GK) module, with the SH3
domain split by a hook region of unknown function (see Fig. 1b)
(5–7). The SH3 and GK domains are conserved in the � sub-
units, but the hook and N- and C-terminal regions show greater
sequence diversity. It is known that the � subunit is anchored to
�1 through a high affinity (�5–50 nM) interaction (8) through
its GK domain via the I-II loop of �1 (�-interaction domain
(AID)). Other lower affinity �1/� interactions confer isoform-
specific functions on �1 (8).

A number of studies have investigated the isoform-specific
properties of the various � subunit domains. A dynamic
exchange study of � subunits in situ revealed that the �1a
formed a stable complex, whereas the other isoforms interacted
in a dynamic fashion with their �1 subunits (9). It is also under-
stood that a unique element of �1a lies in its C-terminal domain
where a subset of residues is critical in the communication
between the DHPR and ryanodine receptor (10). The impor-
tance of the �1a C-terminal domain has been subsequently con-
firmed in a number of studies in both mouse (11) and zebrafish
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myotubes (12); the latter study also identified the �1a SH3
domain as a distinctive determinant for voltage sensing in skel-
etal muscle. From these works, there is a growing body of evi-
dence that the �1a isoform could possess diverse functional
traits compared with the other three isoforms (�2a, �3, and �4),
and the structural make-up of �1a may be a determining factor
driving these novel functions.

Structural determination of full-length � subunits has not
been not possible for two main reasons. First, � subunits have a
tendency to aggregate at high concentrations (13), and second,
the disordered C- and N-terminal domains and the hook region
most likely impact upon their ability to crystallize. Therefore to
overcome both of these obstacles and aid in the crystallization
of � subunit proteins, it has been necessary to remove the dis-
ordered regions including the N- and C-terminal domains and
in some cases the hook region. The core structures of three
different � subunit isoforms (�2a, �3, and �4) have been solved
(some with AID) with all three isoforms displaying very similar
structures that resemble a family of membrane-associated gua-
nylate kinase (MAGUK) proteins (5–7, 14).

In this study we have determined the structure of the DHPR
�1a core by X-ray crystallography. We also demonstrate key
differences in the biophysical properties of �1a compared with
the �2a isoforms by examining their stability and affinity with
AID. Although there is high sequence homology between these
two isoforms, subtle amino acid differences may be responsible
for many of these biophysical differences. The capacity of the
SH3 domain and the GK domains to interact with each other is
an inherent feature of all � subunits, and the degree and mode
of this interaction may play a role in conferring binding to var-
ious partner molecules.

Results

Oligomeric state of �1a subunit constructs

The � subunit protein constructs used in this study are
shown in Fig. 1b and were purified to homogeneity as described

under “Experimental procedures.” All tags were cleaved prior
to experiments being performed, and the minor variation in pH
for the different experiment types did not in any way impact
upon the conclusions reached.

As part of the initial characterization of protein constructs,
the solution molecular masses of �1a constructs were deter-
mined using size-exclusion chromatography-multi-angle light
scattering (SEC-MALS) and are summarized in Table 1. This
included the full-length protein (�1a), a core construct in which
the unstructured termini are absent (�1a-core), and a construct
that consisted only of structured folded domains (SH3 and GK)
linked by a residual hook (�1a-SH3/GK). �1a eluted as two peaks;
the first as a large (megadalton), soluble aggregate eluting at 8
ml, whereas the smaller peak was consistent with the monomer
size of �58 kDa (Fig. 2a). The �1a�core construct eluted as mul-
tiple peaks, with a range of molecular masses including a large
soluble aggregate (Fig. 2b). The non-integer values observed for
each oligomeric state may be indicative of a protein in slow
exchange between multiple states in solution and could explain
why, despite multiple attempts, the �1a�core did not crystallize.
The smaller �1a-SH3/GK construct eluted as a single, predomi-
nantly monodispersed peak with an experimental mass close to
its predicted value peak of �37 kDa (Fig. 2c). To determine
whether the excised hook region was responsible for the oligo-
merization of �1a, the hook region (�1a-hook) was expressed and
examined by several techniques including SEC-MALS, circular
dichroism, and NMR. The SEC-MALS profile (Fig. 2d) shows
that the isolated hook region is monomeric, whereas the CD
profile and NMR spectral dispersion indicate that the hook is
disordered in solution (supplemental Fig. S1). To examine
whether the hook region could induce oligomerization by inter-
acting with �1a-SH3/GK, a titration experiment involving these
two fragments was performed. Given that no labeled �1a-hook
peaks shifted upon addition of �1a-SH3/GK (data not shown), it is
reasonable to conclude that here is no evidence of any self-
interaction between these two components in full-length �1a.

Structure of the �1a subunit (�1a-SH3/GK)

Because of the monomeric nature of �1a-SH3/GK, this con-
struct was selected for crystallographic analysis. Despite trial-
ling numerous crystal screening conditions, �1a-SH3/GK could
only be crystallized in the presence of the I-II loop (AID) pep-
tide: a clear point of distinction from the �2a and �3 isoforms
where structures have been solved with and without AID. We
solved the structure of �1a-SH3/GK to a resolution of 1.83 Å by
PHASER (15), using the structure of the rat �2a homolog in
complex with an � subunit peptide (PDB code 1T0J). The
�1a-SH3/GK structure bears a marked similarity with the struc-
tures of other isoforms (Fig. 3a) (5–7) displaying backbone root
mean square deviations of 0.64, 0.74, and 0.89 Å with � isoforms
2a (PDB code 1T0H), 3 (PDB code 1VYT), and 4 (PDB code
1VYU) (over 265, 269, and 268 C-� atoms, respectively). Briefly,
the structure is made up of well-conserved SH3 and GK
domains sharing some of the features observed for the MAGUK
family of proteins (Fig. 3a). The SH3 domain consists of five
antiparallel �-strands with the truncated hook region separat-
ing the fourth and fifth �-strands. The SH3 domain and its
RT-loop are sandwiched between an N-terminal helix (�1) and

Figure 1. Schematic representation of the DHPR subunits. a, diagram out-
lining the skeletal DHPR subunits. b, the domain architecture of �1a illustrat-
ing a split SH3 domain (gray), which contains a polyproline binding site (diag-
onal stripes). The GK domain is shown in pink. The N and C termini (orange and
cyan) and the hook region (purple) are intrinsically disordered. Modified �1a
constructs (�1a-core, �1a-SH3/GK, and �1a-hook) are illustrated.

Structural study of DHPR �1a subunit in skeletal EC coupling

8402 J. Biol. Chem. (2017) 292(20) 8401–8411

http://www.jbc.org/cgi/content/full/M116.763896/DC1


another helix that lies C-terminal to �4 (�2) through a network
of hydrophobic interactions. The structure of all isoforms thus
far examined show that the canonical SH3 polyproline-binding
site is occluded by the RT-loop and the �2 helix, and this is also
true for �1a (Fig. 3a). The GK domain consists of a five-stranded
parallel �-sheet surrounded by six �-helices and forms an intra-
molecular interaction with the SH3 domain through a series of
hydrogen bond and van der Waals contacts. The I-II loop AID
peptide binds the GK domain in a hydrophobic groove that is
situated on the opposite side of the SH3 domain. Similar to the
other � isoforms, upon binding the DHPR I-II loop (AID)
adopts an �-helical conformation that predominantly contacts

the �3, �6, and �9 helices of �1a by means of several hydropho-
bic contacts and to a lesser extent hydrogen bond and ionic
interactions as displayed in Fig. 3b.

Thermal stability of �1a-SH3/GK versus �2a-SH3/GK constructs

The thermal stability of a protein is often a good indicator of
its crystallization potential and is typically used to screen for
crystallization conditions (16). Because it was possible to crys-
tallize �2a-SH3/GK but not �1a-SH3/GK in the absence of AID, the
temperature stability of both core constructs were examined
using DSF. For all constructs (Fig. 4a), the transition melting
curves showed only one inflection point (Fig. 4b), suggesting

Table 1
The oligomeric state of �1a constructs
The oligomeric state of �1a constructs in solution was calculated by dividing the observed weight-averaged molecular mass with that of the theoretical monomer. Molecular
masses greater than 1 MDa eluted close to the void volume of the gel-filtration column and furthermore cannot be accurately determined by MALS; thus they have been
designated as “aggregated” protein. Errors in the calculation of observed molecular mass are given. The average protein concentration (�M) corresponding to each peak at
the detector is given.

Molecular mass (kDa)
�Protein�

@ refractometer �MProtein Observed Theoretical monomer Oligomeric state

�1a �1000 Aggregate
57.1 � 1.1 57 1.00 0.27

�1a-core �1000 Aggregate
104 � 1 2.42 0.35
67 � 0.8 1.56 0.89
38 � 0.1 43 0.88 0.86
29 � 0.1 Contaminant

�1a-SH3/GK 35.2 � 0.2 37.2 0.95 9.7
�1a-hook 11.0 9.6 1.14
BSAa 200 � 1.6 2.99 0.38

132.8 � 0.5 1.98 1.2
67.1 � 0.1 67 1.00 6.8

a BSA was not monomeric.

Figure 2. The solution molecular mass(es) of �1a constructs. Full-length �1a (a), �1a-core (b), �1a-SH3/GK (c), and �1a-hook (d) constructs were analyzed by
SEC-MALS. Proteins (0.1 mg) were applied to an analytical Superdex 200 size exclusion column. They were eluted in 20 mM Tris-HCl at pH 8.0 and 150 mM

potassium chloride at room temperature. Samples were reduced with 1 mM dithiothreitol prior to application. The elution profile was monitored by the change
in refractive index (continuous blue line). The molecular masses (kDa; secondary axis) corresponding to peaks are shown as discrete points. Bovine serum
albumin (non-monomeric) was analyzed as a standard.
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that either the SH3 and GK domains unfolded independently at
similar temperatures or, more likely, because of their ability to
interact, a synergic unfolding event had taken place. The Tm
values of all �SH3/GK constructs are summarized in Fig. 4c.
�1a-SH3/GK was found to be �3 °C less stable than �2a-SH3/GK,
whereas the addition of AID increased the Tm of �2a-SH3/GK by
�6.5 °C and �1a-SH3/GK by �8 °C, respectively, indicating the
extent that AID stabilizes these constructs. These results
may explain the difficulties surrounding the crystallization
�1a-SH3/GK and why the addition of AID facilitates this process.
As part of our preliminary studies, DSF studies were also per-
formed with the full hook region (�1a-core). This experiment
revealed a �3° reduction in Tm compared with truncated core
(�1a-SH3/GK). The addition of AID did stabilize �1a-core to simi-
lar level as seen for �1a-SH3/GK, but neither the stand-alone pro-
tein nor its AID complex could be crystallized despite using a
variety of screening conditions.

To determine which regions of the � subunits are responsible
for their differences in stability, we have analyzed the sequences
of all four � isoforms. Fig. 5a shows that the �1a isoform most
resembles �2a, with a sequence identity of 60%. This value
increased to 78% upon removal of the N- and C-terminal
domains and hook region (Fig. 5b). Further deletion of the GK
domain only resulted in a modest 2% increase in homology (Fig.
5c), whereas a 13% increase was observed by deletion of the SH3
domain (Fig. 5d), indicating that the SH3 domain is primarily
responsible for the sequence diversity between core region of
�1a and �2a. Based on this analysis, it is evident that the SH3
domain displays a level of sequence diversity among the � iso-
forms that warrants further investigation; therefore two �-chi-
meras were constructed and subjected to thermal denaturation.
Substitution of the �1a SH3 domain onto a �2a background
(�1a-SH3/�2aGK) resulted in a reduced Tm compared with the
�2a-SH3/GK (Fig. 4, b and c). A reduction in Tm was also evident
upon substitution of the �1a SH3 RT-loop onto a �2a back-
ground (�2a-SH3(�1aRT)/GK), indicating that unique sequence
elements in the SH3 domain of �1a increase the temperature

instability for the �1a-SH3/GK. This suggests that from a thermal
stability viewpoint, the SH3 domain of the two isoforms �1a and
�2a are not interchangeable.

Affinity measurements of �SH3/GK constructs and the DHPR
AID peptide

Previous binding values between � subunits and AID pep-
tides have been measured to range between 5 and 50 nM (8);
however, the affinity between �1a and its corresponding AID
peptide has not been measured. The affinities of various
�SH3/GK constructs for the DHPR AID peptide were measured
using isothermal calorimetry (ITC) and showed stoichiometric
binding of 1:1 (Fig. 6 and Table 2). The affinity of �1a-SH3/GK for
skeletal AID was measured to be 4.9 � 2.1 nM, whereas a value
of 17.1 � 3.3 nM was observed for �2a-SH3/GK. Substitution of
the �1a RT-loop onto �2a (�2a-SH3(�1aRT)/GK) had a negligible
effect on binding (16.5 � 4.2 nM), but replacing the entire SH3
domain (�1a-SH3/�2aGK) increased the affinity (7.0 � 2.8 nM) to
values comparable with that observed for �1a.

Discussion

In contrast to other DHPR � subunit isoforms, �1a is
expressed only in skeletal muscle and is an exclusive partner of
DHPR �1s. �1a is also essential in the functional assembly of
skeletal muscle triads and is required to form DHPR tetrads
(17). Given the unique functional features of �1a, it has been
important to characterize its structural and biophysical prop-
erties. Isolated, full-length �1a exists primarily in large, multi-
meric assemblies. Removal of the instrinsically disordered N-
and C-terminal regions shifted its oligomerization profile,
resulting in a series of multi-sized aggregates, whereas further
excision of the hook region gave rise to a well-behaved mono-
meric species. This indicates that the hook region is intimately
involved in the oligomerization process. CD, SEC-MALS, and
NMR confirmed that the hook region is monomeric and intrin-
sically disordered but, based on NMR titration experiments, is
unlikely to promote oligomerization by interacting with the �1a

Figure 3. X-ray crystal structure of DHPR �1a-SH3/GK complexed with AID peptide. a, cartoon representation of the DHPR �1a-SH3/GK complexed with AID.
The split architecture of the SH3 domain is shown in gray with its labeled RT-loop highlighted. The RT-loop is sandwiched between the �1 (pink) and �2 helices
(green), which are involved in the occlusion of the polyproline binding site. The GK domain is displayed in orange, and the DHPR I-II AID peptide binding ligand
is in blue. The yellow shading denotes the putative polyproline binding site. b, close-up of the interaction between the AID peptide (blue) and �1a-SH3/GK (gray)
highlighting contributing residues facilitating AID binding.
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core SH3 and GK domains. Although the exact role of the hook
region in oligomerization of �1a remains undefined, a possible
role may be to enable domain swapping between the SH3 and
GK domains, a hypothesis first proposed for another MAGUK
protein, PSD-95 (18). The functional role of the hook region

from various � isoforms has been examined previously and
identified as an important element in regulating DHPR channel
inactivation (19). In the case of �1a, removal of the hook region
has been reported to reduce intracellular calcium release (12).
What is unknown and of future interest is whether the hook

Figure 4. Thermal denaturation measurements of �SH3/GK constructs in the absence and presence of AID peptide. a, amino acid composition of �SH3/GK
constructs (black and red numbers denote �1a and �2a, respectively). b, temperature denaturation curves for selected �SH3/GK constructs with and without AID.
c, summary of transition melting temperatures for the constructs �1a-SH3/GK, �2a-SH3/GK, �2a-SH3(�1aRT)GK, and �1aSH3/�2aGK. Each data set represents two inde-
pendent sets of quadruplicate measurements. Paired Student’s t test analyses for � AID were performed relative to �1a-SH3/GK. *, p � 0.05; **, p � 0.01; ***, p �
0.001.

Figure 5. DHPR-� isoforms have high sequence identity and structural similarity. The primary sequences of the mouse protein cores, which matched the
primary sequence of solved crystal structures (�1a, A2A454558 – 454; �2, Q8CC2668 – 485; �3, P5428516 –375; and �4, Q8R0S448 –398), were aligned pairwise using
ClustalO. The boundaries of the core were defined by Simple Molecular Architecture Research Tool (SMART) and encompassed the VGCC domain through to
the guanylate kinase domain. a, �; b, �SH3/GK; c, � SH3 domain; d, � GK domain. The sequence identity is shown as a percentage beside the arrows linking each
isoform.
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Table 2
Collated ITC data for �-SH3/GK constructs titrated with AID

n KD

t test p value
(to �1a-SH3/GK) N �H �S �G

nM kCal/mol Cal/mol�K kJ/mol
�1a-SH3/GK 3 4.9 � 2.1 NAa 0.96 	27.1 	52.6 	45.7
�2a-SH3/GK 3 17.1 � 3.3 0.013 0.80 	29.33 	62.7 	42.6
�2a-SH3(�1aRT)/GK 3 16.5 � 4.2 0.002 0.72 	26.8 	54.2 	44.8
�1a-SH3/�2aGK 3 7.0 � 2.8 0.26 1.01 	23.6 	41.8 	46.5

a NA, not applicable.

Figure 6. ITC curves for �SH3/GK constructs titrated with AID. ITC isotherms and curves for the constructs �1a-SH3/GK (a), �2a-SH3/GK (b), �2a-SH3(�1aRT)GK (c), and
�1aSH3/�2aGK (d). Binding and thermodynamic parameters are displayed in Table 2.
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region that plays a role in the aggregation of �1a in vitro is
implicated in DHPR tetrad formation?

The crystal structure of the monomeric �1a-SH3/GK com-
plexed with the AID peptide has been solved to a resolution of
1.86 Å, making it the most highly resolved �-structure so far
determined. As shown in Fig. 7A, the structure shows a high
degree overlap with structural elements from other �-struc-
tures with the only real point of difference visible in loop
regions in GK domain between strand �7 and helix �5, as well
as the residual hook region. Although the majority of hook
region has been removed, the remaining hook residues display a
well-defined loop structure. As previously discussed, the �1a
SH3 domain exhibits the greatest sequence variation between
the � isoforms; therefore it was of interest to focus more closely
on this region. Despite a clear difference in the composition of
the �1a SH3 RT-loop between various isoforms, this region
reveals a remarkable degree of overlap with other �-structures
(Fig. 7B) with the RT-loop stabilized by a series of hydrophobic
interactions between the two �-helical segments effectively
occluding the canonical SH3 binding site. A clear point of dif-
ference in this structure, however, is the absence of a salt bridge
between an acidic RT-loop and a conserved basic residue in �2,
which is present in other � isoform structures (Fig. 7C). It is
likely that this interaction may help in stabilizing the position of
the RT-loop.

This argument is strengthened by the Tm measurements per-
formed for the various � constructs. Comparison of core
�1a-SH3/GK and �2a-SH3/GK consistently showed a marked differ-
ence in their Tm values of �3° with �2a-SH3/GK showing greater
stability. Substitution of the �1a SH3 domain or the SH3 �1a
RT-loop onto a �2a background served to lower the Tm values
with respect to �2a, suggesting that the presence of specific
amino acid residues within the �2a SH3 domain (in particular

the RT-loop) stabilized the protein. The addition of the AID
peptide resulted in a striking Tm increase for all constructs
ranging from a maximum �8° C increase in �1a-SH3/GK to a
minimum of �6.5° C in �2a-SH3/GK. This increase in Tm sug-
gests that �1a exhibits a less stable, more dynamic structure that
is markedly stabilized by the addition of AID, thereby facilitat-
ing crystallization. Even though there is an increase in the
stability of �2a-SH3/GK upon the addition of AID, its presence is
not a prerequisite for the crystallization of �2a (6).

The ITC results performed in this study indicate that the
binding affinity of the AID peptide to �1a-SH3/GK is approxi-
mately three times tighter than that of �2a-SH3/GK, a result that
is consistent with the trend observed in the thermal stability
experiments (see above). However, of particular note was the
Kd obtained for the �1a-SH3/�2aGK chimera, which was similar to
that observed for �1a-SH3/GK. This result suggests that despite
the AID-binding site being located on the GK domain, changes
in the SH3 domain influenced binding on the other side of the
molecule. Such an observation can be rationalized by consider-
ing the intramolecular interaction between the two domains as
seen in all � X-ray crystal structures. In the case where the
X-ray structures have been solved for both the apo/� and
AID/� complexes (�2 and �3 isoforms), there are subtle but
clear differences at the GK/SH3 domain interface as observed
by changes in salt-bridge and hydrogen-bond connectivities
(supplemental Fig. S2) and by overall changes in the buried
surface area between the two domains (6). Prior to the struc-
tural determination of the AID-binding site, it was assumed
that AID interacted with what was described as the �-interac-
tion domain, which spans the SH3, hook, and GK domains. This
assumption was based directly on studies where several �-in-
teraction-domain point mutations directly impacted AID bind-
ing (20), a finding that highlights the intricate interaction net-

Figure 7. Structural comparisons between �1a isoforms. A, backbone superposition of �1a with structures that have been crystallized with and without AID
peptide. The color key corresponds to � isoforms. B, overlay of � X-ray crystal structures showing the SH3 domain, the �1 and �2 helices, and the RT-loop. The
�1a structure is depicted in red. C, the X-ray crystal structure of the SH3 domain of rabbit �2a (PDB code 1t3l). The �2 helix and the RT-loop are highlighted in
magenta and green, respectively, and interact through a salt bridge involving the side chains of Glu76 and Lys124 (shown). These structural elements occlude the
polyproline binding site, which is displayed as a pale orange line. The sequence alignment of the �2 helix and the RT-loop is displayed for all �-subunit isoforms
with the arrows denoting charged residues involved in a salt bridge that is absent in the �1a RT-loop.
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work that exists throughout the molecule extending from the
AID-binding site in the GK domain though to the SH3 domain.
In this context, it is understandable that swapping the SH3

domain would influence AID binding to the GK domain as
observed for the �1a-SH3/�2aGK chimera.

The intramolecular interaction between the SH3 and GK
domains may provide a framework that enables allosteric
changes to propagate throughout the molecule. A conforma-
tional change in � could conceivably be triggered by any num-
ber of biological events including depolarization of the surface
plasma membrane. Several studies have suggested that the
interaction between the � subunit and AID are reversible (9,
21). Interestingly, based on a 3.6 Å cryo-electron microscopy
model of DHPR (CaV1.1), it was predicted that conformational
changes in the DHPR �1 S6 transmembrane helix can be trans-
lated through to the �1a subunit via AID, giving rise to the
displacement of �1a (4). Based on the findings derived from our
study, it is clear that the biophysical properties of � subunits are
highly sensitive to AID binding and may be a determining factor
that controls its conformation and binding of other partner
molecules. Furthermore, the temperature stability and AID-
binding profiles observed for �1a-SH3/GK and �2a-SH3/GK are
sufficiently different to suggest that the sequence variability
between the two isoforms represents another layer of complex-
ity that may give rise to isoform-specific binding partners.

In the past, the role of the � subunit has been limited to
enhancing localization of the � subunit to the plasma mem-
brane, as well as regulating calcium channel gating; however,
we are now discovering newly assigned functions independent
of these roles, including gene regulation (22). A number of stud-
ies have openly raised the possibility that the SH3 domain of
DHPR � subunits may engage with partner proteins possessing
a SH3 recognition motif (PXXP) (12, 23); however, the crystal
structure of all � subunits show that the traditional SH3 binding
site is occluded. The information derived from the present
study indicates that the SH3 domain in �1a exhibits a degree
of structural plasticity that under certain conditions may allow
other proteins possessing SH3 recognition motifs to engage the
�1a subunit.

Experimental procedures

Production of recombinant proteins and peptide synthesis

All proteins were expressed recombinantly in Escherichia
coli (BL21 DE3) in 2
 YT supplemented with yeast nitrogen
base without amino acids, iron chloride, and the appropriate
antibiotic. The DHPR �1s AID peptide (357QQLEEDLRGYM-
SWITQGE374) was synthesized by the Biomolecular Resource
Facility of the John Curtin School of Medical Research (Aus-
tralian National University, Canberra, Australia) using an
Applied Biosystems 430A peptide synthesizer and purified
by reverse-phase HPLC on a Jupiter 300 C4 column. Peptides
were eluted using a linear gradient from buffer A (deionized
water and 0.1% TFA) and buffer B (acetonitrile and 0.1%
TFA). Purified peptide fractions were identified by mass
spectroscopy using an AB MDS Sciex 4800 MALDI-TOF-
TOF mass analyzer.

DHPR �1a

The gene sequence encoding full-length mouse �1a subunit
(NCBI code NM_031173) was amplified by PCR. The PCR
product was cloned into pHUE (24), which encodes an N-ter-
minal polyhistidine-ubiquitin tag. Transformed bacteria were
cultured at 37 °C until A600 nm � �0.6. Protein expression
was induced by adding isopropyl �-D-thiogalactopyranoside
(IPTG) to a final concentration of 0.1 mM. The cells were cul-
tured for a further 3 h. The protein was purified by nickel-
agarose chromatography. Ubiquitin was removed by digestion
with UBP41 (produced in-house), a polyhistidine-tagged ubi-
quitin-dependent protease (24). The protein was further puri-
fied by preparative electrophoresis using a Bio-Rad model 491
prep cell. The protein was refolded by dialysis into 50 mM

sodium phosphate buffered at pH 8 and 300 mM sodium chlo-
ride. The protein was concentrated and stored at 	80 °C.

DHPR �1a-core

The �1a�core construct was also expressed with a hexahisti-
dine-ubiquitin tag. Bacteria transformed with pHUE-�1a�core
were cultured at 37 °C to an A600 nm level of �0.6. Protein
expression was induced with 0.1 mM IPTG and cultured for 3 h.
The bacteria were resuspended in 20 mM Tris-HCl buffered at
pH 8.0, 500 mM sodium chloride, and 30 mM imidazole (Buffer
O) containing 10% glycerol and EDTA-free protease inhibitor
mixture (Roche). The cells were lysed by the addition of
lysozyme (1 �g�ml), DNase I (1 �g�ml), and RNase H (1 �g�ml).
The suspension was also passed through a French press (3 

1500 p.s.i.). The cleared lysate was applied to HisTrap column
and washed with buffer O and then buffer O containing 1.5 M

sodium chloride. The protein was eluted using a gradient of up
to 500 mM imidazole in buffer O. The protein was de-ubiquiti-
nylated using UBP41 and simultaneously dialyzed into buffer O
containing 5 mM 2-mercaptoethanol. The tag, uncleaved pro-
tein, and de-ubiquitinylase were removed by passing the pro-
tein solution over HisTrap column. The flowthrough was dia-
lyzed into 20 mM Tris-HCl buffered at pH 8.0 and 50 mM

sodium chloride (buffer Q) for 2 h at 4 °C. The protein solution
was applied to anion-exchange resin and eluted with buffer Q
with a gradient of up to 1 M sodium chloride. The eluate was
applied to a size-exclusion column. Peaks containing �1a�core
were pooled, concentrated to 1 mg�ml	1, snap frozen, and
stored at 	80 °C.

DHPR �SH3/GK constructs (�1a-SH3/GK, �2a-SH3/GK, �1a-SH3/�2aGK,
and �2a-SH3(�1aRT)/GK)

Genes encoding hexahistidine-tagged � constructs were syn-
thesized and cloned into a custom vector pJ411KanR with a high
copy number origin of replication (DNA 2.0). Truncated and
chimeric protein constructs were constructed to include the
following residues: �SH3/GK (68 –192 � 252– 462), �2a-SH3/GK
(24 –144 � 202– 422), �1a-SH3/�2aGK (68 –192 � 252–272 �
225– 422), and �2a-SH3(�1aRT)/GK (24 – 66 � 108 –132 �
90 –144 � 202– 422), where bold denotes �1a and non-bold
denotes �2a numbering. Bacteria transformed with the plas-
mids were cultured at 37 °C in 2
 YT and kanamycin (50
�g�ml	1) to an A600 nm level of �0.3. They were further cul-
tured at 16 °C for 1 h. Protein expression was induced with
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IPTG (0.4 mM), and the cells were cultured overnight. The bac-
terial pellet was resuspended in 50 mM phosphate buffer at pH
7.0, 500 mM sodium chloride, and 30 mM imidazole (buffer A)
containing an EDTA-free protease inhibitor mixture (Roche),
lysozyme (1 �g�ml	1), DNase I (1 �g�ml	1), and RNase H
(�g�ml	1). The cells were lysed using a French press (3 

1500 p.s.i.). The cleared lysate was applied to a HisTrap column.
The resin was washed with buffer A and then buffer A contain-
ing 1.5 M sodium chloride. The protein was eluted using a gra-
dient of imidazole up to 500 mM. The hexahistidine tag was
cleaved with HRV 3C protease (produced in-house) and simul-
taneously dialyzed overnight in buffer A containing 5 mM

2-mercaptoethanol at 4 °C. The protein solution was applied to
nickel-nitrilotriacetic acid resin to remove the hexahistidine
tag-containing entities. The flowthrough was further purified
by size-exclusion chromatography.

�1a-hook

The DNA sequence encoding hexahistidine-tagged HOOK
was synthesized and cloned into a custom vector pJ411KanR

with a high copy number origin of replication (DNA 2.0). Bac-
teria transformed with pHis3CkanR-HOOK were cultured at
37 °C in 2
 YT and kanamycin (50 �g�ml	1). Protein expres-
sion was induced at an A600 nm level of �0.8 by the addition of
IPTG (1 mM) and cultured for a further 4 h. The bacteria were
resuspended in 20 mM Tris-HCl buffered at pH 8.0, 500 mM

NaCl, and 30 mM imidazole (buffer H) containing 6 M guani-
dine-HCl. The cells were lysed using the French press (3 

1500 p.s.i.). The cleared lysate was applied to nickel-nitrilotri-
acetic acid resin and incubated for 30 min at 4 °C. The resin was
washed with buffer H containing 6 M urea and then with buffer
H. The peptide was eluted with buffer H containing 300 mM

imidazole. The acidified (pH � 5.0) eluate was applied to pre-
parative C18 reversed-phase HPLC column. The peptide was
eluted with a gradient of acetonitrile over a background of 0.1%
trifluoroacetic acid in MilliQ water. The appropriate peaks
were lyophilized and stored at 	70 °C.

MALS of �1a constructs

Protein (0.1 �g), reduced with 1 mM DTT, was applied to a
Superdex 200 Increase analytical column attached to an in-line
refractometer and light scatterer (Wyatt). The protein was
eluted using 20 mM Tris buffer at pH 8.0 and 150 mM potassium
chloride at a flow rate of 0.5 ml�min	1 (Waters instrument).

Crystallization of �1a-SH3/GK

Initial crystallization trials were conducted at the Collabora-
tive Crystallization Centre (http://www.csiro.au/c3) using the
vapor diffusion method. Crystallization conditions were iden-
tified using the JCSG� and PACT screens (25). Protein solution
(150 nl) and screening solution (150 nl) were dispensed into the
reservoirs of Innovadyne crystallization plates. The drops
imaged by Rigaku Minstrel systems at 8 or 20 °C. Crystals were
observed to grow in conditions G7 (20% PEG 3350, 0.1 M Bis-
Tris propane, pH 7.5, 0.2 M sodium acetate) were selected for
optimization. Optimized crystals for X-ray data collection were
grown using the hanging-drop vapor diffusion methods using
VDXTM plates (Hampton Research). 2-�l drops containing

protein were mixed with equal volumes of precipitant (20%
PEG 3350, 0.1 M Bis-Tris propane buffered at pH 8.0 and 0.2 M

sodium acetate) on siliconized coverslips (Hampton Research),
which were suspended over drops containing precipitant. The
trays were equilibrated at 5 °C. Crystals appeared in 5 days and
reached maximum size (bipyramids with maximum dimension
of �200 �M) in 10 days. MiTeGen loops were used to manipu-
late crystals. For X-ray data collection, a crystal was transferred
to artificial mother liquor containing 25% PEG 3350 for 2 min
prior to transfer to flash cooling to 100 K using an Oxford Cryo-
stream. CuK� X-rays were produced by a Rigaku 007HF rotat-
ing anode generator with Varimax optics. X-ray data were col-
lected using a Mar345 desktop beamline. Diffraction data were
integrated, merged, and scaled with the HKL2000 package (26).
The structure was solved by PHASER (15), using the structure
of the rat �2a homolog in complex with an � subunit peptide
(PDB code 1T0J). Iterative cycles of model building and refine-
ment were performed in COOT (27) and REFMAC5 (28). The
X-ray data and model quality are given in Table 3.

SYPRO orange thermal denaturation assays of DHPR �SH3/GK

constructs

The proteins were either dialyzed overnight or gel-filtered
(Superdex 200 Increase) in 20 mM HEPES buffered at pH 7.5,
150 mM sodium chloride, and 1 mM DTT (buffer T). Dialyzed
proteins were centrifuged for 10 min at (20,000 
 g) to remove
aggregated species. The protein (0.1 mg�ml	1) solutions were
dispensed in a 384-well plate in quadruplicate (EpMotion).
SYPRO orange fluorescence (F) was monitored as the plate was
heated from 25–90 °C at a rate of 1°/min (Q-PCR 7900). All
constructs were analyzed in the presence or absence of 5-fold
excess AID. A sigmoid curve (below) with variables corre-

Table 3
X-ray data collection and refinement statistics for �1a-SH3/GK

X-ray data
Space group P212121
Unit cell parameters a � 46.2, b � 69.4, c � 131.1 Å;

� � � � � � 90°
Resolution range (Å)a 50–1.86 (1.93–1.86)
Total no. of observations 249,097
No. of unique reflections 36,235
I/�I 35.45 (4.95)
Rmerge (%)b 5.3 (36.4)
Rmeas (%) 5.3 (36.4)
CC1⁄2 (%) 98.8 (93.2)
Completeness 99.8 (99.1)
Multiplicity 6.9 (5.7)

Refinement statistics
Resolution range (Å) 22.8–1.86 (1.908–1.860)
No. of reflections (Rwork set) 32,572 (2447)
No. of reflections (Rfree set) 1801 (108)
Rwork (%)c 16.87 (22.8)
Rfree (%) 20.70 (29.6)
No. of atoms 3,010
áBñ of structure (Å2) 15.49
Root mean square deviation

from ideal geometry
Bond lengths (Å) 0.019
Bond angles (°) 1.897
Chiral centers (Å3) 0.121
General planes (Å) 0.010

a The numbers in parentheses refer to the highest resolution bin.
b Rmerge � �h�i�Ii 	 áIñ�/�h�iIi.
c Rfactor � �h�Fobs 	 Fcalc�/�h�Fobs�, where Fobs and Fcalc are the observed and cal-

culated structure factors, respectively. Rfree was calculated from 5% of the dif-
fraction data not used in refinement.

Structural study of DHPR �1a subunit in skeletal EC coupling

J. Biol. Chem. (2017) 292(20) 8401–8411 8409



sponding to the gradient (m) and the point of inflection (i) was
fitted using either MATLAB or Microsoft Excel. The average of
the inflection points was taken as the melting temperature (Tm)
for each construct.

F �
em(T 	 i)

1 
 em(T 	 i) (Eq. 1)

Each Tm represents the mean of two sets of quadruplicate
measurements with the error range of the Tm represented by
error bars.

ITC of DHPR �SH3/GK constructs with AID

DHPR � constructs were exchanged into 10 mM K3PO4 buff-
ered at pH 7.0 and 150 mM KCl (buffer C) either using overnight
dialysis or size-exclusion chromatography. The AID peptide
was dissolved in buffer C, and the pH was adjusted. ITC was
conducted in 10 mM potassium phosphate buffered at pH 7.0
and 150 mM potassium chloride at 25 °C using a VP-ITC
(MicroCal). The reference power was set to 17 �Cal�s	1, and
the cell contents were stirred continuously at 300 rpm. We
aimed for 50 �M AID in the titration syringe and 5 �M � con-
structs in the cell, although the true concentration of protein
varied slightly between experiments. A small volume (3 �l) was
initially injected. The next 10 and final 11 injections were of
�350 pmol to obtain an accurate enthalpy change (H).
Smaller injections of �175 pmol were used to accurately deter-
mine gradient of the transition and the point of inflection,
which correlate to the affinity (KA) and stoichiometry (N) of the
interaction, respectively. We allowed 5-min delays between
injections, which was extended to 6 min when necessary. Heat
was corrected for the heat of dilution by titrating AID peptide
into buffer using the same titration protocol. A binding iso-
therm was generated by plotting the heat change for each injec-
tion over the total delay interval against the molar ratio of AID
to the � construct. The binding isotherm was modeled for a
single site using non-linear least squares analysis (Origin 7.0
embedded in MicroCal software). All parameters, which
include the stoichiometry (N), binding constant (KA), and the
enthalpy change (H), were allowed to vary during the fitting
cycles.

The concentration of titrant (AID) and titrand (� constructs)
were determined using a conventional UV-visible range spec-
trophotometer (A280 nm � �cl), where �AID @ 280 nm � 6.99
M	1�cm	1. The corrected extinction coefficients for the � con-
structs were determined using a conventional UV-visible range
spectrophotometer and the theoretical extinction coefficient
calculated (29) by ProtParam.

Statistical significance

The KD values and melting temperatures derived from ITC
and DSF experiments, respectively, were analyzed for statistical
significance using a paired t test. The criteria for a significant t
test is considered to be a p value of �0.05 (30).
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