
ARTICLE

Received 14 Nov 2016 | Accepted 9 Mar 2017 | Published 12 May 2017

Face classification using electronic synapses
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Conventional hardware platforms consume huge amount of energy for cognitive learning due

to the data movement between the processor and the off-chip memory. Brain-inspired device

technologies using analogue weight storage allow to complete cognitive tasks more

efficiently. Here we present an analogue non-volatile resistive memory (an electronic

synapse) with foundry friendly materials. The device shows bidirectional continuous weight

modulation behaviour. Grey-scale face classification is experimentally demonstrated using an

integrated 1024-cell array with parallel online training. The energy consumption within the

analogue synapses for each iteration is 1,000� (20� ) lower compared to an imple-

mentation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip

digital resistive random access memory). The accuracy on test sets is close to the result using

a central processing unit. These experimental results consolidate the feasibility of analogue

synaptic array and pave the way toward building an energy efficient and large-scale

neuromorphic system.
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R
ecent advances in machine learning promise to achieve
cognitive computing for a variety of intelligent tasks
ranging from real-time big data analytics1, visual

recognition2,3, to navigating the city streets for a self-driving
car4. Currently, these demonstrations2–5 use conventional central
processing units and graphics processing units with off-chip
memories to implement large-scale neural networks that are
trained offline and require kilowatts of power consumption.
Custom-designed neuromorphic hardware6 with complementary
metal oxide semiconductor (CMOS) technologies greatly reduces
the energy consumption required. Yet, current approaches6–10 are
not scalable to the large number of synaptic weights required for
solving increasingly complex problems in the coming decade11.
The main reason that current approaches are inadequate arise
from the fact that on-chip weight storage using static random
access memory is area inefficient and is thus limited in memory
capacity11, and off-chip weight storage using dynamic random
access memory incurs 4100 times larger power consumption
than on-chip memory12. Integrating non-volatile, analogue
weight storage on-chip, in close proximity to the neuron
circuits is essential for future, large-scale energy-efficient neural
networks that are trained online to respond to changing input
data instantly like the human brain. Meanwhile, pattern
recognition tasks based on analogue resistive random access
memory (RRAM) have been demonstrated either through
simulations or on a small crossbar array13,14. However, the
analogue RRAM cells still face the major challenges such as
CMOS compatibility and cross-talk issues, which blocks the
realization of large scale array integration. On the other hand,
resistive memory arrays with relative mature technology have
the problem on realizing bidirectional analogue resistance
modulation15, in which the cell conductance changes
continuously in response to the SET (high conductance
state to low conductance state transition) and the RESET
(low conductance state to high conductance state transition)
operation. This issue harms the online training function.
Innovations are urgently required to find a suitable structure to
combine the advantages.

In this paper, an optimized memory cell structure, which is
compatible with CMOS process and has bidirectional analogue
behaviour is implemented. This RRAM device16,17 is integrated in
a 1024-cell array and 960 cells are employed in a neuromorphic
network18. The network is trained online to recognize and classify
grey-scale face images from the Yale Face Database19. In the
demonstration, we propose two programming schemes suitable
for analogue resistive memory arrays: one using a write-verify
method for classification performance and one without write-

verify for simplifying the control system. These two programming
methods are used for parallel and online weight update and both
converge successfully. This network is tested with unseen face
images from the database and some constructed face images with
up to 31.25% noise. The accuracy is approximately equivalent to
the standard computing system. Apart from the high recognition
accuracy achieved, this on-chip, analogue weight storage using
RRAM consumes 1,000 times less energy than an implementation
of the same network using an Intel Xeon Phi processor with
off-chip weight storage. The outstanding performance of this
neuromorphic network mainly results from such a cell structure
for reliable analogue weight storage. This bidirectional analogue
RRAM array is capable of integrating with CMOS circuits to a
large scale and suitable for running more complex deep neural
networks20–22.

Results
RRAM-based neuromorphic network. A one-layer perceptron
neural network is adopted for this hardware system demonstra-
tion, as shown in Supplementary Fig. 1. The architecture of one
transistor and one resistive memory (1T1R) array, illustrated in
Fig. 1a, is used to realize this neural network. The cells in a row
are organized by connecting the transistor source to the source
line (SL) and connecting transistor gate to the same word line
(WL), while the cells in a column are organized by connecting the
top electrode of the resistive memory to the bit line (BL).
Figure 1a describes how the network is mapped to the 1T1R
structure, that is, the input of preneuron layer, adaptable synaptic
weight and weighted sum output of postneuron layer are in
accordance with the pulse input from BL, cell conductance and
current output through SL, respectively. Remarkable bidirectional
analogue switching behaviour of our device allows us to use
single 1T1R cell as a synapse to save area and energy, instead of
combining two 1T1R cells as a single synapse (or weight) with
differential encoding as was done in previous works13,15. The
1T1R array consists of 1024 cells with 128 rows and 8 columns
and is optimized for bidirectional analogue switching. The arrays
are constructed using fully CMOS-compatible fabrication process
(see Methods section), as shown in Fig. 1b.

This network is trained to distinguish one person’s face from
others. The operation procedure consists of two phases: training
and testing. The flow diagram of the algorithm is given in Fig. 2a.
The training phase includes two subprocedures: inference and
weight update. During the inference process, the nine training
images (belonging to three persons) are input to the network on
BL side. The activation function of the output neurons is realized
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Figure 1 | The 1T1R architecture and the 1024-cell-1T1R array. (a) Mapping of a one-layer neural network on the 1T1R array, that is, the input of preneuron

layer, adaptable synaptic weight and weighted sum output of postneuron layer maps to the pulse input from BL, cell conductance and current output

through SL, respectively. In 1T1R, ‘T’ represents transistor, ‘R’ represents RRAM. (b) The micrograph of a fabricated 1024-cell-1T1R array using fully CMOS

compatible fabrication process.
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by measuring the total currents on SL side (three lines) to obtain
the weighted sum and applying the sum to a nonlinear activation
function (tanh function) to get three output values. Each pattern
is classified according to the neuron that has the largest output
values. These nine images are chosen from the Yale Face Database
and cropped and down-sampled to 320 pixels in 20� 16 size, as
Fig. 2c shows. The image is in grey scale where each pixel value
ranges from 0 to 255 with smaller value corresponding to darker
square. A parallel read operation (Fig. 2b) is employed for
inference. The input voltage pulses are applied row by row on the
fabricated array through BLs, and the total current through the SL
is sensed and accumulated by a conductance linear weighting
process, as the equation shows:

IjðnÞ ¼
X320

i¼1

WijViðnÞ: ð1Þ

Here Vi (n) is the input signal and represents the related pixel i in
the pattern n. The pixel value leads to a matching input pulse
number during the total 255 time slices to sense the weighted sum
of currents, as illustrated in Fig. 2b. The total current is measured
externally using the source measurement unit of a semiconductor
parameter analyser, while the nonlinear activation function to the
current is implemented in the software. During the weight update
process, the programming of the RRAM is conducted after
loading the entire nine training patterns at each iteration23. The
programming process follows either one of the two learning rules
(2) or (3) below: an update scheme using write-verify and an
update scheme without write-verify.

DWij ¼ Z
X9

n¼1

DijðnÞ; ð2Þ

DWij ¼ Z � sgn
X9

n¼1

DijðnÞ: ð3Þ

Here the learning rate Z is a constant. Dij(n) is the calculated error

between the reference output when loading the nth pattern and
the corresponding target value determined by the pattern’s label,
as shown in Fig. 2a. DWij is the desired change for the weight
connecting the neuron i in input layer and the neuron j in output
layer. Equation (2) follows the delta rule24 and implements both
sign- and amplitude-based weight update, while equation (3) only
points out the switching direction (sign-based only), following the
Manhattan rule25. The hyper-parameters (b controls the
nonlinearity of activation function, Z is the learning rate and f t

is the target value) in Fig. 2a can be found in the Methods section
(test platform and the hyper-parameter values), along with the
information of the platform of this demonstration.

The testing process is also a parallel read operation that reads
all rows at the same time to identify the class of an input test
image that is different from all the training images.

Realization of bidirectional analogue RRAM array. RRAM
devices based on resistive switching phenomenon exhibit
promising potential as the electronic synapse26–29. These devices
have higher operation speed than the biological counterpart and
they also have low energy consumption29. Besides, they are
compatible with CMOS fabrication process30–32 and can be
scaled down33 remarkably to reach density as high as 1011

synapses per cm2. Although continuous conductance modulation
behaviour on a single resistive switching device and simple
neuromorphic computing on a small resistive array were reported
recently14,30, to our knowledge, large neuromorphic network
utilizing the bidirectional analogue behaviour of resistive
switching synapse for face classification task is not realized yet.
This is due to the nature of imperfection of the device11,13,15, such
as abrupt switching during SET, the variation between each cell
and the fluctuation during repeated cycles. These shortcomings
have prevented the implementation of bidirectional analogue
weight update and reliable update operations for a large array.
Generally, the physical mechanism of the resistive switching
process is attributed to the reversible modulation of the local
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Figure 2 | Flowchart of the perceptron model. (a) The training process flow chart. In this demonstration, a batch learning model is used to accelerate the

converging speed. Here ‘n’ represents the number of pattern, ranging from 1 to 9, ‘i’ implies the index of a pixel of an input pattern and can be defined from

1 to 320, ‘j’ is the number of output neuron that is 1–3. A correct classification during the inference phase means the active function value of a matching

class of the input pattern is greater than other two classes. This network converges when all training patterns are correctly recognized. (b) The schematic

of parallel read operation and how a pattern is mapped to the input. (c) The nine training images, which is a cropped and subsampled subset of the Yale

Face Database19.
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concentration of the oxygen vacancies in a nanoscale region17 of
the oxide. The generation or migration of a small number
of oxygen vacancies in this region may induce a notable change of
the conductance and thus makes the device stochastically
exhibiting abrupt conductance transition step by step. This
abrupt transition is more readily observed during the SET
process, since the generation of each oxygen vacancy during
SET process can increase the local electric field/temperature and
accelerate the generation of other vacancies, and finally resulting
in a large amount of oxygen vacancies formed in a short time,
analogous to avalanche breakdown. This positive feedback of
oxygen vacancy generation and electrical field/temperature
should be effectively suppressed to avoid abrupt switching.
Furthermore, the random distribution of oxygen vacancies
contributes to the large variations of conductance, operation
voltage and switching speed from cell to cell, which makes the
system difficult to converge during the training process.

The TiN/TaOx/HfAlyOx/TiN stacks are used as the analogue
RRAM cell. All these materials are fab-friendly to enable realizing
future high-density and large-scale array integration with CMOS
technology. To fight against the electric field-induced avalanche
breakdown during SET process, a conductive metal oxide layer is
used to enhance the inner temperature of the filament region, and
thus avoiding large local electric field34. The conductive metal
oxide layer also helps to reserve plenty of oxygen ions, which
improves the analogue behaviour during RESET process. The
robust analogue switching behaviour with good cell-to-cell
uniformity (Supplementary Note 1) benefits a lot from the
utilizing of HfAlyOx switching layer, since HfO2 is well-known as
phase-stable. And the HfOx/AlOy laminate structure is leveraged
to control the generation of oxygen vacancies in such a RRAM
cell design. The ratio between HfO2 and Al2O3 is well adjusted
during fabrication process and optimized as 3:1. This structure
design shows a better analogue performance compared with
TiN/TaOx/HfO2/TiN (Supplementary Note 2).

The 1T1R structure is used to further improve the bidirectional
analogue switching performance and uniformity. Compared to
the two-terminal RRAM cell, the three-terminal 1T1R cell
improves the controllability of continuous weights tuning at
array level since the compliance current controlled by the
transistor’s gate voltage can significantly suppress the overshoot
and feedback effects during SET process. In addition, exploiting
transistors could guarantee persistent scaling-up of array scale by
eliminating the sneak path and avoid several bottlenecks of
analogue RRAM array.

Figure 3a shows the smooth and symmetrical I–V curves of the
optimized 1T1R cell. A 40 times window is exhibited using a
quasi-DC sweep. The elimination of the abrupt conductance
transition at both SET and RESET processes enables bidirectional
continuous conductance change for weight update. Typical
analogue behaviour under identical pulse train during SET and
RESET processes is shown in Fig. 3b,c, respectively, showing that
the conductance can be modulated by applying identical voltage
pulses (conductance changes under continuous SET and RESET
pulse cycles is shown in Supplementary Fig. 8). This remarkably
simplifies the update strategy and control circuits. Similar
analogue behaviours can be observed under different pulse
conditions for a wide range of pulse amplitude and duration
(see Supplementary Note 1).

To further suppress the influence of the slight resistance
variation across cells in the array, a write-verify programming
scheme that is in accordance with equation (2) is proposed and
experimentally compared with the scheme without write-verify
that implements equation (3). The write-verify flow is shown in
Supplementary Fig. 9. During the weight update phase of each
learning iteration, identical voltage pulses are applied to the 1T1R

cell to increase (or decrease) the cell conductance, until the
conductance is larger (or smaller) or equal to the target value35,
based on equation(2). Hence the final synapse weight only slightly
deviates from the target in most of cases. In contrast, without
write-verify, only one SET (or RESET) pulse is applied on the
selected 1T1R cell to increase (or decrease) the conductance
without checking whether it reaches the target value or not.
Avoiding the write-verify step simplifies the control circuit since
it is not necessary to calculate the specific analogue value of the
error between the target weight and the current weight, but it may
slow down the convergence due to cycle-to-cycle and device-to-
device variations. Figure 3d,e specify the waveforms during the
SET process for the scheme with and without write-verify. Similar
RESET waveforms are illustrated in Supplementary Fig. 10 and
are applied in parallel row by row as well.

The switching window and conductance modulation steps
depend on the pulse width and the pulse amplitude, which leads
to a trade-off between the learning accuracy and the convergence
speed. The effects of the pulse condition on the training process
are shown in Fig. 3f,g. We can see the opposite trend that a higher
pulse amplitude requires less number of pulses but results in a
larger deviation from the target, creating a trade-off between
accuracy and speed. When the pulse amplitude is o1.5 V, the
device conductance is not able to reach the higher conductance
range (for example, 410mS). This implies another trade-off
between the conductance modulation range and the accuracy,
which is detailed in Methods section ‘Device performance during
write-verify RESET process’. The operation conditions should be
carefully optimized according to application at hand as well as
speed, energy and accuracy requirements: for example, lower
amplitude and shorter duration could be employed to increase
modulation accuracy for both training rules at the expense of
speed. Similar measurement is conducted during write-verify SET
process and the result is shown in Methods section ‘Device
performance during write-verify SET process’. The SET and
RESET operation conditions with Vwl¼ 2.3 V, Vbl¼ 2.1 V (50 ns)
and Vwl¼ 8.0 V, Vbl¼ 2.0 V (50 ns) provides a reasonable balance
between accuracy and speed and hence are used in the following
experiments.

Grey-scale face image classification. The optimized 1024-cell-
1T1R array is used to demonstrate face classification by the
neuromorphic network. All the 1T1R cells are programmed to an
initially state around 40mS. Even with slight device variations, the
system works smoothly under both operation schemes. The
network converges after 10 iterations for the write-verify opera-
tion scheme, while for the scheme without write-verify, the
network converges after 58 iterations. Figure 4a,b reveal
the progress of the training process when identifying the face of
the first person. The trace of conductance evolution in single
RRAM cell is shown in Supplementary Note 3. The final con-
ductance distribution and visual map diagram are presented in
Fig. 4c,d. Conductances are normalized as integers from 0 to 255
in the map. The detailed process for the faces of other two people
are provided in Supplementary Figs 15 and 16. Furthermore,
another two demonstrations are conducted, one starting from a
tight low conductance distribution around 4mS and another
proceeding from a wide conductance distribution state. Both
succeed to converge (see Supplementary Note 4). The initial
distribution state hardly affects the convergence of the training.

Two sets of patterns are used in the test process. One set
contains 24 images (Supplementary Fig. 19) in the Yale Face
Database for these three persons (not shown during training).
The other set consists of 9,000 patterns constructed by
introducing noise to the training images. Noise patterns are

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15199

4 NATURE COMMUNICATIONS | 8:15199 | DOI: 10.1038/ncomms15199 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


generated by randomly choosing some pixels and assigning them
a random value. One thousand different patterns are generated
from each training image, in which different numbers of noise
pixels (1–100) are introduced. Three noise patterns are presented
in Fig. 5a. For the test patterns without noise, 2 out of the
24 patterns are misclassified using the write-verify scheme;
whereas 3 patterns are misclassified using the scheme without
write-verify, as Fig. 5c shows. This is close to the 22/24 accuracy
with the standard computing system. The real-time changes of

the misclassification rate under the two schemes during training
are given as well (Supplementary Note 5). Figure 5b shows the
recognition rate on the 9,000 augmented noisy test patterns. It is
shown that scheme with write-verify presents a much lower
misclassification rate for the entire set of testing patterns. This
trend indicates that more noise pixels lead to a lower recognition
rate. The average recognition rate on the total 9,000 augmented
noisy test patterns is 88.08% and 85.04% for the write-verify and
without write-verify methods, respectively, slightly decreasing
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compared with the 91.48% recognition rate by standard method.
Total latency and energy consumption comparisons during the
training process are presented in Fig. 5c. These data are acquired
from experimental measurements. As the input is encoded by the
pulse number, which has the maximum value of 255, the
contribution to latency and energy consumption of inference
phase is quite large. During weight update phase, the total latency

and energy is actually 422.4 ms and 61.16 nJ for the write-verify
scheme from the beginning to the end, whereas the correspond-
ing speed and energy using the scheme without write-verify is
34.8 ms and 197.98 nJ, respectively. Considering that the scheme
with write-verify needs more programming pulses at each epoch,
the write-verify scheme requires relatively longer latency during
weight update phase. However, it performs better when taking
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energy consumption into consideration, and this is mainly due to
the lower number of iterations required. Besides, the total latency
and energy during the entire training process can benefit a lot
from the decrease of the number of iterations because the major
latency and energy consumed by inference task could be
suppressed. Therefore, although the scheme without write-verify
simplifies the update operation, the scheme with write-verify has
superior performance of recognition accuracy, total latency and
energy consumption using the same pulse amplitude and width.

Analogue RRAM array enables lower energy consumption. The
energy consumption of the same network executed on conven-
tional computing platforms are estimated and compared with
the hardware used in this experiment. The average energy con-
sumption leveraging Intel Xeon Phi processor36 with a
hypothetical off-chip storage is 1,000� larger than this work,
given that the average energy consumption is around 30 nJ
(33 and 25 nJ for scheme with write-verify and without write-
verify, respectively) at every epoch for the same classification task.
Energy consumed due to off-chip non-volatile storage access
dominates in the case of off-chip non-volatile memory, as the
write energy of a 2 KB page size is 38.04 mJ per page using NAND
flash37. For this network, the weight matrix is roughly 2 KB for
16-bit weights. If a hypothetical hardware with Intel Xeon Phi
processor where digital RRAM is integrated on-chip is assumed,
the energy consumption is roughly 703 nJ per epoch, which is
20� larger than reported in this paper using on-chip RRAM
analogue weight storage. The bidirectional analogue RRAM array
realizes remarkable energy consumption saving and reaches a
comparative accuracy during this experimental demonstration. It
is important to note that these energy values only include the
energy consumption for synaptic operations (reading synapses
and updating synapses) and not the computation within the
neurons (see Supplementary Note 6 for details).

Discussion
In summary, a neuromorphic network is developed using a
bidirectional analogue 1024-cell-1T1R RRAM array. The opti-
mized RRAM metal oxide stack (TiN/TaOx/HfAlyOx/TiN)
exhibits gradual and continuous weight change. Based on this
device technology, an integrated neuromorphic network hard-
ware system is built and trained online for grey-scale face
classification. Both with and without write-verify operation
schemes are studied for the neuromorphic network and they
achieve a relatively high recognition rate after converging, that is,
22/24 and 21/24, respectively. There is trade-off between these
two schemes. The scheme with write-verify shows a much better
approach providing 4.61� faster converging speed, 1.05�
higher recognition accuracy and 4.41� lower energy consump-
tion, whereas the scheme without write-verify simplifies the
operation to a great degree. This integrated neuromorphic
network hardware system has remarkable energy consumption
benefit compared to other hardware platforms. The resistive
switching memory cell can be scaled down to 10 nm (ref. 33),
which provides around 1011 synapses per cm2. With further
monolithic integration with neuron circuits, more complex deep
neural networks and human-brain-like cognitive computing
could be realized on a small chip. Meanwhile, it has to be
noticed that the related accuracy, speed and power are all
important for the actual application38. To achieve a comparable
classification accuracy on larger network as the state of art and
realize the superiority on power and speed simultaneously, there
are many technical issues to be solved. Both experimental and
simulation efforts should be paid on the device optimization,

algorithm modification, operation strategy improvement and
system architecture design39.

Methods
RRAM stack and fabrication process. The metal-oxide-semiconductor field-
effect-transistor circuits are fabricated in a standard CMOS foundry. The tech-
nology node is 1.2 mm. The CMOS circuitry works as the WL decoder and cell
selector. The RRAM devices are formed on the drain of the transistors by using the
following processes (Supplementary Fig. 2). The HfO2/Al2O3 multilayer structure is
deposited on the TiN bottom electrode with atomic layer deposition method by
repeating HfO2 and Al2O3 cycles at 200 �C periodically. For each period, three
cycles of HfO2 and one cycles of Al2O3 are deposited. The thickness of one atomic
layer deposition cycle of both HfO2 and Al2O3 is around 1 Å. The final thickness of
the HfAlyOx layer is about 8 nm. Then a 60 nm TaOx capping layer that acts as an
in-built current compliance layer and oxygen reservoir is deposited by physical
vapour deposition method. The top electrode TiN/Al are deposited by reactive
sputtering and electron beam evaporation, respectively. Finally, the top Al pad is
patterned by dry etching with Cl2/BCl3 plasma.

Write-verify programming method. Two programming schemes, one with write-
verify while the other without, are proved at array level. The scheme with write-
verify is described in Supplementary Fig. 9. Target conductance values are send to
the Tester (Supplementary Fig. 3) in each learning iteration and multiple electrical
pulses are applied to the 1T1R cell to increase (decrease) the conductance, until the
conductance is larger (smaller) or equal to the target values. Finally, the cell
conductance slightly deviates from the target in most of the cases.

Device performance during write-verify RESET process. Pulse amplitude and
pulse width highly effect the cell performance according to Supplementary Figs 4
and 6. Meanwhile, we can conclude from Fig. 3f,g of the main text that there is a
tradeoff between tuning speed and tuning accuracy. Further, Supplementary Fig. 11
implies that the conductance modulation range must be considered when deter-
mining the pulse condition.

During the experiment of Fig. 3f,g and Supplementary Fig. 11, a sequence of
identical RESET pulses with write-verify are applied to examine how varied pulse
amplitudes affect weight adjustment. The raw data are statistically averaged over 32
random chosen cells under 3 repeated procedures to get rid of device variances.
The procedure starts with precisely initializing cell conductance at 40 mS (25 kO).
Then a specified pulse train is applied to tune cell conductance to a certain target
value. The refined conductance value and total pulse number when write-verify
passes are recorded. The programming pulse width is 50 ns, and the gate voltage
Vwl is 8 V. The BL is grounded and the pulse number limitation is set to 500.
Several trials are conducted during each test, tuning the 32 cells’ conductance to
33.3 mS (30 kO), 28.6 mS (35 kO), 25 mS (40 kO), 22.2 mS (45 kO), 20mS (50 kO),
18.2 mS (55 kO), 13.3 mS (75 kO) and 10 mS (100 kO).

Device performance during write-verify SET process. Similar measurement is
conducted during write-verify SET process to see how pulse amplitude affect
conductance modulation precision, modulation pass rate and modulation speed.

During the test, a sequence of identical SET pulses with write-verify are applied
to examine how pulse amplitudes affect weight adjustment. The raw data are
statistically averaged over 32 random chosen cells under 3 repeated procedures to
get rid of device variances. The procedure starts with precisely initializing cell
conductance at 4 mS (250 kO). Then a specified pulse train is applied on BL to tune
cell conductance to a certain target value. The refined conductance value and total
pulse number when write-verify pass are recorded. The programming pulse width
is 50 ns, and the gate voltage Vwl is 2.8 V. The SL is grounded and the pulse number
limitation is set to 300. Several trials are conducted during each test, tuning the
32 cells’ conductance to a same target conductance target set as in the RESET test,
that is, 33.3 mS (30 kO), 28.6 mS (35 kO), 25mS (40 kO), 22.2 mS (45 kO), 20mS
(50 kO), 18.2 mS (55 kO), 13.3 mS (75 kO) and 10mS (100 kO). The results are shown
in Supplementary Fig. 12. We can conclude that there is a tradeoff between tuning
speed, conductance modulation range and tuning accuracy when determining the
SET pulse conditions.

The perceptron network. A one-layer perceptron is adopted for this hardware
system demonstration, and the schematic diagram is shown in Supplementary
Fig. 1. The perceptron model is used to classify each pattern to three categories.
This schematic illustrates how to map the network to the proposed 1T1R structure,
that is, the input of preneuron layer, adaptable synaptic weight and the weighted
sum output of postneuron layer are in accordance with the pulse input from BL,
1T1R cell conductance and current output through SL separately. The nonlinear
function ‘tanh’ is regarded as the activation function here.

Unseen test images from the Yale Face Database. We have obtained full per-
missions to use the images from Yale Face Database and are compliant with Yale’s
policy of reuse/use of these images (http://vision.ucsd.edu/content/yale-face-
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database). The total 9 training images are presented in Fig. 2c, the other 24 cropped
and down-sampled face images from the Yale Face Database are used to evaluate
the perceptron’s generation ability, as shown in Supplementary Fig. 19.

Test platform and the hyper-parameter values. As is mentioned in the main
text, the weights are implemented using the 1,024-cell-1T1R array, and the
nonlinear activation function tanh with respected to the SL current is implemented
by the software. The control instructions are sent to the external equipment to
generate practical programming pulses side by side. All these in union work
automatically. The diagram of this platform is shown in Supplementary Fig. 3.

A fitted behaviour RRAM model is extracted from experiment data and used for
the simulation to decide the hyper-parameters in Fig. 2a. Eventually b is defined as
1.5 A� 1, and Z equals to 1. Apart from these, the target value of the activation
function f t is 0.3 for the right class and 0 for other wrong classes during training
process.

Data availability. The data that support the findings of this study are available
from the authors upon reasonable request; see Author contributions section for
specific data sets.
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