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Bacterial community segmentation facilitates the
prediction of ecosystem function along the coast of
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Bacterial community structure can be combined with observations of ecophysiological data to build
predictive models of microbial ecosystem function. These models are useful for understanding how
function might change in response to a changing environment. Here we use five spring—summer
seasons of bacterial community structure and flow cytometry data from a productive coastal site
along the western Antarctic Peninsula to construct models of bacterial production (BP), an
ecosystem function that heterotrophic bacteria provide. Through a novel application of emergent
self-organizing maps we identified eight recurrent modes in the structure of the bacterial community.
A model that combined bacterial abundance, mode and the fraction of cells belonging to the high
nucleic acid population (fHNA; R?=0.730, P<0.001) best described BP. Abrupt transitions between
modes during the 2013-2014 spring—-summer season corresponded to rapid shifts in fHNA. We
conclude that parameterizing community structure data via segmentation can yield useful insights
into microbial ecosystem function and ecosystem processes.
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Introduction

Ecosystem functions are physicochemical processes
carried out by specific functional groups of organ-
isms. Changes to a specific ecosystem function
(perhaps caused by a change in the abundance of a
functional group) can drive change to the overall
biological or chemical characteristics of an ecosys-
tem, thus predicting ecosystem function is a useful
way to evaluate ecosystem processes. Incorporation
of dissolved organic matter (DOM) into new bio-
mass through bacterial production (BP) is a critical
ecosystem function of heterotrophic marine bacteria
(here meaning heterotrophic members of the
domains Bacteria and Archaea). Relatively higher
rates of BP indicate that the bacterial community is
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assimilating a larger amount of DOM. This repacking
of DOM into microbial biomass facilitates the
microbial loop, wherein organic matter is recycled
to the higher trophic levels via bacterivory (Azam
and Graf, 1983).

The western Antarctic Peninsula (WAP) is one
of the most rapidly warming regions on the
planet (Steig et al., 2009). Changing oceanographic
conditions along the WAP have produced highly
variable sea ice conditions (Stammerjohn et al.,
2008), leading to shifts in primary produc-
tion and phytoplankton community composition
(Montes-Hugo et al., 2009). Because of this varia-
bility and long-term climatic forcing, the WAP is
an ideal natural laboratory in which to observe
changes to BP and other microbial ecosystem
functions.

High rates of BP accompany intense seasonal
phytoplankton blooms along the coastal marine
environment of the WAP (Bowman et al.,, 2016;
Kim and Ducklow, 2016). Whereas the ratio of BP to
PP is low in the WAP relative to the global ocean
(Bowman et al., 2016), the uptake of *H-leucine in
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productive coastal  waters can exceed
100 pmoll~"h~* (Kim and Ducklow, 2016), values
typical for eutrophic temperate marine systems
(Cottrell and Kirchman, 2003). BP is highly variable
across the WAP coastal marine environment and
between years, and can be strongly or weakly
correlated to primary production (PP; Ducklow
et al., 2012). Though recent work has shown a strong
time-lagged correlation between chlorophyll a con-
centration and BP within a single season (Luria et al.,
2016), in general the variability of this relationship
makes it difficult to predict BP 'from the bottom—up'
using PP or chlorophyll concentration as a proxy for
labile DOM supply.

Although BP has been extensively studied along
the WAP, there have been relatively few studies of
bacterial community structure or composition. The
lack of historical data on bacterial community
structure partially reflects past methodological lim-
itations. The first publication to use high-throughput
sequencing of the 16S rRNA gene to characterize
microbial community structure in the region
emerged only in 2012 (Ghiglione and Murray,
2012) with data generated as part of the International
Census of Marine Microbes (Amaral-Zettler et al.,
2010). This was followed by a three-domain study of
microbial community structure in onshore and off-
shore areas of the WAP that compared a single
winter sample against a series of samples taken in
the austral summer (Luria et al., 2014). An analysis
of succession across the spring—summer season was
not undertaken until 2013 (Luria et al., 2016). These
studies identified distinct winter and summer bac-
terial and archaeal populations (Ghiglione and
Murray, 2012), and a pronounced difference between
summer surface water and water below the photic
zone, with the structure of the microbial community
observed at depth more similar to the winter
microbial community (Luria ef al., 2014; Bowman
and Ducklow, 2015). Because the winter and deep
samples share the common feature of reduced light
and reduced primary production, a reasonable
hypothesis is that the heterotrophic bacterial com-
munity responds to 'bottom—up' controls, namely the
availability of labile organic carbon from phyto-
plankton (Ducklow et al., 2011; Bowman et al., 2016;
Kim and Ducklow, 2016).

Bacteriophage and grazing also exert a 'top—down'
control on bacterial community structure (Jirgens
and Matz, 2002; Suttle, 2007). Although top—down
structuring of bacterial communities has not been
reported for coastal Antarctica, heterotrophic micro-
bial eukaryotes are common (Moorthi et al., 2009;
Garzio et al., 2013; Luria et al., 2014), and marine
viruses are hypothesized to have increased signifi-
cance at higher latitudes (Brum et al., 2015). Because
mixotrophic cryptophytes and other putative bacter-
ivores may be increasing in abundance along the
WAP (Moline et al., 2004), the importance of top—
down controls on bacterial community structure and
function may be changing as well.
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The rapid rate of change in the marine environ-
ment—epitomized by the WAP—requires new meth-
ods to track changes in microbial community
structure across time and space, and to link commu-
nity structure with microbial ecosystem functions.
Here we used five spring—summer seasons of 16S
rRNA gene amplicon data from Arthur Harbor, a
highly productive site on Anvers Island along the
WAP, to identify patterns in the annual appearance
of different marine bacterial assemblages. Through a
novel application of emergent self-organizing maps
(ESOMs; Kohonen, 2001), we reduced the dimen-
sionality of the complex community structure data to
a single 'mode' for each sample to which we
attributed specific taxonomic and functional proper-
ties. Using mode in combination with flow cytome-
try data, indicative of bacterial abundance and
physiological state, we were able to accurately
predict both BP and cell-specific BP (per-cell BP),
essential ecosystem functions of the heterotrophic
bacterial community and individual bacterial cells,
respectively. We were further able to use the flow
cytometry data to identify distinct physiological
transitions in the bacterial community that we
interpret as shifts between bottom—up and top—down
control states.

Materials and methods

16S rRNA gene sequence analysis

Samples were collected for the 2009—2010, 2010-2011,
2011-2012 and 2012-2013 spring—summer seasons
from 10m depth at Arthur Harbor Station B, loca-
ted ~1 km from Palmer Station on Anvers Island, as
described in the supplementary methods. Samples
for the 2013-2014 spring—summer season were
collected from the Palmer Station seawater intake
(6m depth) as described in the supplementary
methods and Luria et al. (2016). In brief, DNA was
extracted from 0.2pm filters (with 3.0pm pre-
filtration) with the DNeasy Plant Mini Kit (Qiagen,
Valencia, CA, USA) and the hypervariable V6 region
of the 16S rRNA gene was sequenced on an Illumina
Hi-Seq 1000. Quality-controlled 16S rRNA gene
amplicon libraries were subsampled to 18 876 reads,
the size of the smallest library, and community and
metabolic structure was determined with the paprica
v0.3.1 metabolic inference pipeline (Bowman and
Ducklow, 2015). Paprica uses the pplacer (Matsen
et al., 2010) phylogenetic placement software to
place 16S rRNA gene reads on a reference tree
created from 16S rRNA genes from all completed
bacterial genomes. Here we use the term closest
completed genome (CCG) to denote placement of a
read to a terminal node on the paprica v0.3.1
reference tree, and closest estimated genome (CEG)
to indicate placement to an internal node on the tree.
CCGs are described by the complete taxonomic name
of the strain corresponding to the terminal node
while CEGs are described by the consensus
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taxonomy for all downstream nodes. We normalized
the abundance of all CCGs and CEGs and their
inferred enzymes and metabolic pathways according
to their estimated 16S rRNA gene copy number. We
took the mean of the relative abundances to average
sample replicates.

The Kohonen package (Wehrens and Buydens,
2007) in R (R Core Team, 2014) was used to construct
an ESOM based on the abundance of CCGs and
CEGs. The ESOM represents sample similarity with
topography; samples that are part of the same
topographic feature are more similar. Our map space
consisted of 5 x 5 circular nodes in a hexagonal, non-
toroidal configuration. Each node is associated with
a vector of sample properties called a codebook
vector; here the sample properties were relative
abundance. Clusters of nodes were identified using
k-means clustering, with a reasonable value for k
chosen through the evaluation of a scree plot of
within-clusters sum of squares and the SIMPROF test
in the R clustsig package (Whitaker and Christman,
2014). Hereafter, we refer to these clusters as 'modes’
in community structure. To identify which CCG and
CEG contributed the most to variance between
ESOM nodes, likely to also be the top contributors
to variance between modes, we applied a principal
components analysis to the codebook vectors.
Although the distance between nodes in a space
defined by the first two principal components is not
directly analogous to node topography in the ESOM,
these interpretations of similarity are complimen-
tary. An identical procedure was used to segment
samples into functional modes according to the
relative abundance of predicted metabolic pathways
associated with all CCGs and CEGs. An exception
was in the calculation of relative abundance; for each
metabolic pathway relative abundance was calcu-
lated as a fraction of the most abundant pathway
present in each sample.

A MIMARKS-compliant table of all 16S TRNA gene
amplicon samples is provided as Supplementary
Table S1. All 16S rRNA gene sequence data are
available from the NCBI SRA at SRP091049 (2013—
2014) and SUB2014638 (all other samples). The
ESOMs and code for our analysis can be found at
https://github.com/bowmanjeffs/palmer timeseries.

Community succession and persistence

To determine whether some modes have a tendency
to follow other modes (succession), and whether
certain modes have a tendency to persist (persis-
tence), we evaluated the frequency of transitions
between modes. A simulation was used to assess the
significance of the observed frequencies. In simula-
tion the modes corresponding to the 16S rRNA gene
samples were repeatedly randomized and the transi-
tions tallied. Transitions in the randomized data set
occurring more or less often than observed in the
original data set were noted. Transitions in the 95th
percentile after 100 iterations (that is that occurred
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more often in the original data than the random data
in at least 95 iterations) were deemed statistically
significant.

Identification of HNA and LNA bacteria

Flow cytometry samples were collected and pro-
cessed as described in Luria ef al. (2016). To identify
clusters of high (HNA) and low nucleic acid (LNA)
bacteria for samples stained with SYBR Green I
(Invitrogen, Carlsbad, CA, USA), all flow cytometry
events from the 2013-2014 austral spring—summer
season with a fluorescence intensity > 3500 relative
fluorescence unit at 533/30 nm after excitation with a
488 nm laser were concatenated, and a training set of
50000 events was selected at random. The training
set was used to build an ESOM in a manner similar
to that described for the community structure data,
except that the map space consisted of 76 x 76 nodes.
All available parameters were used to construct the
map (forward scatter, sidescatter, FL1; 533/30 nm,
FL2; 585/40nm, FL3; >670nm, FL4; 675/25nm)
after log transformation of signal height. K-means
clustering was again used to identify clusters of
nodes. The resulting model was used to classify the
complete data set (2010-2014) into the identified
clusters. The fraction of cells belonging to the HNA
population was calculated by dividing the number of
HNA cells by the total number of cells, excluding
presumed non-cellular material. Raw Flow Cytometry
Standard-format files are available on the Palmer
LTER DataZoo (Palmer LTER Science Team).

Flow cytometry and BP data were not always taken
on the same day as samples for 16S rRNA analysis.
To allow a comparison of flow cytometry, BP and
16S rRNA gene data, the flow cytometry and BP data
were extended by linear interpolation with the R
package zoo (Zeileis and Grothendieck, 2005). For
each season interpolation was limited to the period
during which data were collected (no extrapolation
was made before or after the sample period). For the
2013-2014 season, the abundance and fraction of
cells belonging to the high nucleic acid population
(fHNA) anomalies were calculated by dividing the
difference between each time point (x) and the
seasonal mean (X) by the seasonal mean.

anomaly = X (1)

The flow cytometry and community structure data
were used to estimate the absolute abundance of CEG
or CCG of interest by multiplying relative abundance
by total bacterial abundance. Because our commu-
nity structure data do not include members of
the domain Archaea, this calculation does not repre-
sent the true absolute abundance. Nonetheless it
provides an useful estimate, particularly during the
summer months when archaeal abundance is expec-
ted to be low (Church et al., 2003; Ghiglione and
Murray, 2012).
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Linear models of BP

BP data for all seasons were obtained from the
Palmer LTER DataZoo (Palmer LTER Science Team)
BP was determined by the uptake of *H-leucine; the
data and methods are described in previous work
(Ducklow et al., 2012; Kim and Ducklow, 2016; Luria
et al., 2016). Stepwise linear regression was used to
evaluate which combination of parameters best
described the observed rate of BP. The available
parameters were mode, functional mode, fHNA and
bacterial abundance. Linear models were con-
structed using the Im command in R (R Core Team,
2014), and nested models were compared by analysis
of variance and relative likelihood based on Akaike’s
information criterion according to Equation 2:

AICpin—AIC;
relative likelihood = e( 2 )

(2)

A relative likelihood below 0.05 (that is a model
<0.05 times as likely to minimize the information
loss as the best scoring model) was considered
statistically significant. Because many of the para-
meters used in the model were correlated, which can
lower the predictive power of linear models,
variance-inflation factors were calculated with the
vif command implemented in the R package car (Fox
and Weisberg, 2011).

Results

Bacterial abundance and fHNA

We identified four clusters of flow cytometry events
based on inspection of the within-clusters sum of
squares scree plot (Supplementary Figure Sia).
Three of the clusters were largely defined by their
fluorescent signal at 533 nm (Supplementary Figure
S1b—d) and interpreted as an HNA population, a
middle nucleic acid population and a LNA popula-
tion. A fourth population that varied widely in
fluorescence at 533nm was assumed to be non-
cellular. Bacterial abundance (defined as all SYBR
Green I-stained events above our intensity threshold)
and fHNA varied widely across all time points. For
the 2013-2014 season bacterial abundance ranged
from 1.1 x10° to 1.7 x 10° bacteria ml~" (Figure 1a,
mean =7.7 x 10° bacteria ml~"', s.d.=4.0x10° bac-
teria ml~"), whereas fHNA ranged from 0.04 to 0.75
(Figure 1b, mean=0.36, s.d.=0.16). For the 2013—
2014 season the difference in abundance and fHNA
anomalies was consistently negative prior to 23
December 2013 and largely positive after that date
(Figure 1c). During the 2013-2014 season the
absolute abundance of Candidatus Pelagibacter
ubique HTCC1062, the most abundant CCG asso-
ciated with the Candidatus Pelagibacter genus,
increased during the spring bloom from 7.2 x10*
bacteria ml~* on 26 October 2013 to 3.35x10°
bacteria ml~* on 18 March 2014 (Figure 1a).
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Figure 1 Bacterial abundance, the fraction of high nucleic acid
bacteria (fHNA) and difference in anomalies (A anomaly) for
these measures for the 2013-2014 spring/summer season. (a) Bac-
terial abundance, including the estimated absolute abundance
of Candidatus Pelagibacter ubique HTCC1062, Dokdonia sp.
MED134 and Rhodobacteraceae. (b) The fraction of cells belong-
ing to the high nucleic acid population (fHNA). (c) The differ-
ence between the fHNA and bacterial abundance anomalies
(A anomaly), with the black lines giving the measurement
time points.

Mode and functional mode

Based on inspection of the within-cluster sum
of squares plot, we identified eight modes based
on the relative abundance of CCGs and CEGs
(Supplementary Figure S2a) and eight modes based
on inferred metabolic pathways (not shown).
Although SIMPROF analysis of both ESOMs identi-
fied 11 significant hierarchical clusters, we selected
the lower number for k-means clustering to be
conservative, and to increase the number of samples
contained within each cluster. In the principal
components analysis of node codebook vectors,
the nodes were largely segregated by mode in a
space defined by PC1 and PC2 (Supplementary
Figure S2b). The top seven eigenvectors (that is,
CCG or CEG) by magnitude in PC1 and PC2 together
accounted for 71.4% of PC1 and 69.3% of PC2.
Further eigenvectors contributed comparatively little
to PC1 or PC2. By order of magnitude in PC1 and PC2
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the top eigenvectors corresponded to Candidatus
P. ubique HTCC1062, Dokdonia MED134, Rhodo-
bacteraceae, Candidatus Thioglobus singularis PS1,
Owenweeksia hongkongensis DSM 17368, Plankto-
marina temperata RCA23 and Leisingera methylo-
halidivorans DSM 14336. It is important to note that
these associations are to the matching CCG available
in GenBank at the time the paprica v0.3.1 database
was constructed (6 June 2016), or to the CEGs in the
paprica v0.3.1 database, and should not be taken as a
definitive classification at the strain level.

The relative abundances of the taxa associated
with the top eigenvectors in the principal compo-
nents analysis (Supplementary Figure S2b) largely
defined the modes in community structure
(Figure 2). Candidatus P. ubique HTCC1062 was
most abundant in mode 6 and also abundant in mode
8 (Figure 2d). D. Dokdonia MED134 was most
abundant in mode 7, and was often abundant in
modes 3 and 5 (Figure 2e). Rhodobacteracea, the
only CEG among the major contributors to variance,
was most abundant in mode 5 but was also abun-
dant in modes 2 and 3 (Figure 2f). Candidatus

T. singularis PS1 was most abundant in mode 1, and
was also abundant in modes 4, 7 and 8 (Figure 2g).
O. hongkongensis DSM 17368 was largely restricted
to mode 2 (Figure 2h). P. temperata RCA23 was most
abundant in mode 4 and was also abundant in modes
4 and 6 (Figure 2i). L. methylohalidivorans was most
abundant in mode 5 (not shown).

When classified by mode, samples showed distinct
trends in estimated genomic character including mean
genome length and 16S rRNA gene copy number
(Figure 3). Mode 7 samples (n=7) had the largest
mean genome size (mean=2.92 x 10°, s.d. =2.22 x 10°)
and greatest mean number of 16S rRNA gene copies
(mean=2.47, s.d.=0.43). Mode 8 samples (n=18) had
the smallest mean genome size (mean=2.19x10°,
s.d.=1.28x10°) and lowest mean 16S rRNA gene
copy number (mean =1.56, s.d.=0.12).

Model predictions of BP

Of the 75 16S V6 rRNA gene datasets available to
define the modes in community structure and
function, 43 were taken during the time period

a Unit assignment to mode b Location of objects c Distance from objects
to codebook vectors
8 0.01
7
0.008
6
5 0.006
4 0.004
3
2 0.002
1
andidatus Pelagibacter odobacteraceae
d Candidatus Pelagibact: e f Rhodobact
ubique HTCC1062
0.4
05 0.25
0.3 0.2
0.4
0.15
0.2
0.3 0.1
0.1
02 0.05
g Candidatus Thioglobus h Owenweeksia hongkongensis | Planktomarina temperata RCA23
singularis PS1 DSM 17368
0.14
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0.15 0.12
0.2 0.1
0.15 01 0.08
0.06
0.1 0.05
0.04
0.05 0.02

Figure 2 Properties of the emergent self-organizing map (ESOM) nodes for community structure. (a) Nodes colored and numbered
according to mode membership (colors correspond to the modes in Figures 6 and 7). Note that owing to the toroidal configuration of the
map not all modes are contiguous. (b) Location of objects (samples) within the map. Samples located close to a node center have a relative
abundance similar to that which defines the codebook vector for that node. Samples located further from the center have a relative
abundance that is less similar. (¢) Mean distance between sample relative abundances and the node codebook vector. Higher mean
distance indicates that the samples contained in the node are less well defined by that node. (d—-i) Relative abundance of the indicated
closest completed genome (CCG) or closest estimated genome (CEG) in the node code vector. For all panels the thick black lines define the
cluster (mode) boundaries. A full color version of this figure is available at the ISME journal online.
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Figure 3 Predicted genomic characteristics for modes. (a) Mean 16S TRNA gene copy number for all samples assigned to each mode.
(b) Mean genome length for all samples assigned to each mode. (c) 16S rRNA gene copy number as a function of genome length (R*=0.73,
P< <1x107°), points are shaded according to GC content. (d) Presence or absence of metabolic pathways and degradative metabolic

pathways for select CEGs and CCGs.

covered by the seasonal interpolation of BP and flow
cytometry data (Figure 4). Overall, mode accounted
for 46.3% of the variance in BP and 70.9% of
the variance in cell-specific BP (Table 1, Figures 5a
and b). Functional mode was not correlated with BP,
but accounted for 53.5% of the variance in cell-
specific BP. The categorical predictors of mode and
functional mode were themselves highly correlated
according to the y*-test (y*=85.27, P=0.0010). The
stepwise addition of other predictors to the mode
models for BP and cell-specific BP generally
improved both models, with bacterial abundance,
mode and fHNA defining the best scoring model for
both (accounting for 73.0% of the variance in BP
and 76.4% of the variance in cell-specific BP),
however, for cell-specific BP this was not a sig-
nificant improvement in model fit over abundance

and mode alone (Table 1). Substituting functional
mode for mode accounted for a slightly lesser degree
of variance in BP models (62.5% and 62.1%,
respectively).

Mode succession and persistence

Only the transition from mode 1 to mode 8 met our
criteria for a statistically significant succession
(Figure 6b). Although this transition occurred only
four times in our data set (Figure 6a), this number
was exceeded in only 1 of 100 random rearrange-
ments of the modes. Low BP characterized modes 1
and 8 (Figure 5a), and the transition between these
modes always occurred during either the onset or
collapse of the seasonal peak in BP (Figure 4). Mode
1 had a relatively high abundance of Candidatus
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T. singularis (Figure 2g), whereas mode 8 had high
proportions of Candidatus P. ubique HTCC1062
(Figure 2b). Consistent with the low BP and timing
of modes 1 and 8, both modes have low 16S rRNA
gene copy number (Figure 3a) and small, low-GC
content genomes (Figures 3b and c). Except for mode
1, all of the modes exhibited significant persistence,
with mode 8 being the most common and also the
most frequently recurring mode (Figure 6).

Discussion

In this study BP was best described by a model of
fHNA, bacterial abundance and mode. The improve-
ment in model fit resulting from the addition of
fHNA is consistent with previous studies in tempe-
rate regions (Table 1). In a temperate estuary in
Waquoit Bay, MA, USA, Mordn et al. (2011)
observed a correlation between HNA and LNA
abundance and BP (R*=0.41 and 0.49, respectively).
In a complimentary study in seasonally oligotrophic
waters off the Iberian Peninsula, Mordn et al. (2007)

BP
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O FCM data not available
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Figure 4 Concurrence of flow cytometry (FCM) and 16S rRNA
gene sample data with bacterial production (BP). Each point
indicates a single 16S rRNA gene sample, early and late season
samples typically did not have flow cytometry data available
(white points).

Table 1 Results for stepwise regression of BP and cell-specific BP

also found a significant correlation between HNA
cell abundance and BP, albeit with a modest amount
of variance explained (R*=0.16). For our coastal
setting along the WAP, and using strictly objective
criteria for fHNA, we observed a correlation between
fHNA and BP close to that observed for Waquoit Bay
(R*=0.36, Table 1). Because the chlorophyll a
concentrations and BP values during the spring
bloom were much higher for our study area than
for the oligotrophic study area of Mordn et al. (2007),
the higher correlation between BP and fHNA may
reflect proportionally greater carbon utilization by
the HNA population. Thus, although HNA abun-
dance is a poor predictor of BP in the oligotrophic
ocean where LNA cells are major contributors to BP,
it may be a better predictor of BP in high-biomass
coastal marine settings where HNA cells are the
major contributors.

HNA and LNA populations are thought to be
largely a function of taxonomy as opposed to activity
(Sherr et al., 2006; Vila-Costa et al., 2012; Mordn
et al., 2015), although this is based on a limited
number of studies largely from temperate regions. In
our study mode was highly correlated with fHNA
(R*=0.52, P=1.63 x 10~°) and some fHNA minima or
maxima corresponded to shifts in community struc-
ture (Figure 7), suggesting a link between taxonomy
and flow cytometric population. Despite this a
considerable fraction of variance in fHNA could
not be accounted for by mode. Because the addition
of fHNA to our model for BP significantly improved
the model fit (Table 1), we suggest that for the coastal
WAP, fHNA to some extent reflects community
physiology. This idea does not necessarily contradict
the findings of Vila-Costa et al. (2012), who noted
that some Gammaproteobacteria were found in both
the HNA and LNA populations. The putative links
between fHNA and community physiology may be in
part due to our ability to distinguish between HNA
and middle nucleic acid bacteria, a distinction not
taken into account by previous environmental BP
studies. Under different growth conditions (that is,
carbon limited and carbon replete) a community of a
fixed composition should express a different fluor-
escent signal. Thus, although the LNA population

Model R? BP Relative likelihood

based on AIC

Relative likelihood VIF
based on AIC

R? cell-specific BP

Functional mode 0.155 4.6x10°"
Mode 0.463*** 8.1x1077
fHNA 0.360* 2.5x1077
Mode+fHNA 0.508*** 3.6x10°°
Abundance 0.506*** 6.5x10°°
Abundance+mode 0.670*** 0.019
Abundance+mode+fHNA 0.730%** 1.0

0.535%** 1.0x107° NA
0.709*** 0.024 NA
—0.008 8.2x10°" NA
0.725%** 0.054 1.98
0.032 1.9x107 " NA
0.748%** 0.38 1.46
0.764%** 1.0 1.54, 2.58, 2.09

Abbreviations: AIC, Akaike’s information criterion; BP, bacterial production; fHNA, fraction of cells belonging to the high nucleic acid population;

VIF, variance-inflation factors. ***P<0.001, **P<0.01, *P<0.05.
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Figure 5 Visualization of models for bacterial production (BP) and cell-specific BP. (a) BP as a function of mode. (b) Cell-specific BP as a
function of mode. (c) BP as a function of the fraction of cells belonging to the high nucleic acid population (fHNA). (d) Cell-specific BP as a
function of fHNA. (e) BP as a function of bacterial abundance. (f) Cell-specific BP as a function of bacterial abundance.

might consist of bacteria with small genomes, the
HNA and middle nucleic acid populations might
consist of bacteria with comparatively larger gen-
omes in more or less active states, respectively.
Interestingly, taxonomic mode was a better pre-
dictor of BP and cell-specific BP than functional
mode (Table 1). Although metabolic structure is well
correlated with community structure for WAP
marine bacterial communities, potential function is
much better conserved across communities than
taxonomy (Bowman and Ducklow, 2015). We suggest
that the high correlation between mode and BP
observed in this study results from the more resolved
view of structure provided by taxonomy; ecologi-
cally meaningful shifts in community structure may
be more readily observed by changes in taxonomy

than by changes in functional composition (Bowman
and Ducklow, 2015). There are several possible
explanations for this, including the greater conserva-
tion of potential function over taxonomy between
communities, disparity between potential function
and gene expression patterns (expressed function)
for functionally similar but taxonomically distinct
communities, and our inability to identify key rare
enzymes and/or assign them to taxa during meta-
bolic inference.

Grazing by bacterivorous eukaryotes is thought to
preferentially impact the HNA population (Gonzalez
et al., 1990; del Giorgio et al., 1996; Jirgens and
Matz, 2002). This process, confirmed for the WAP in
limited studies (Garzio et al., 2013), impacts BP
directly by removing the fastest growing members of
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Figure 6 Mode persistence and succession. (a) The number
of occurrences of each possible transition. Gray squares without
a number indicate that the transition was not observed. Squares
are colored according to the value noted inside each square.
(b) Statistically significant transitions. The value inside each
square gives the number of times the number of transitions given
in Figure 6a was exceeded in 100 random rearrangements of the
modes. Only values below five are shown, squares are colored
according to value. A full color version of this figure is available at
the ISME journal online.

the bacterial community, and can correspond to a
permanent shift in bacterial community structure
(Figure 7). Similarly, through the 'kill the winner'
model, marine viruses should disproportionately
impact the fastest growing bacteria (Fuhrman and
Suttle, 1993). In contrast to these top—down controls
on BP, phytoplankton biomass serves as a bottom—up
control (Bowman et al.,, 2016; Kim and Ducklow,
2016). To assess time periods when one mode of
control might dominate over the other, we looked at
the difference in the seasonal anomalies of fHNA and
bacterial abundance (Aanomaly: abundance anom-
aly —fHNA anomaly) across the 2013—-2014 season
(Figure 1c). Despite the low abundance of HNA
bacteria early in the season, the fHNA anomaly is
higher than the abundance anomaly prior to 23
December 2013 (Figure 1c). After 23 December the
fHNA anomaly is generally lower than the abun-
dance anomaly, except for distinct time points where
abundance decreases without a concurrent decrease
in fHNA. We hypothesize that these negative and
positive A anomaly phases indicate periods of
bottom—up and top—down control, respectively.

For heterotrophic marine bacteria bottom—up and
top—down controls result from the availability of

The ISME Journal

DOM and predator and phage abundance, respec-
tively. Consistent with the dominance of mode 8
by Candidatus Pelagibacter and Candidatus
T. singularis PS1 (Figure 2), early in the season
carbon is limiting and there may be insufficient
grazers present to impose top—down control on HNA
bacteria. At this time most phage are expected to be
in a lysogenic phase (Brum et al., 2015). Following
the onset of the spring phytoplankton bloom the
availability of labile DOM becomes less important
as a structuring mechanism, whereas grazing or
viral events preferentially reduce fHNA. After each
putative mortality event we anticipate a brief release
from grazing pressure resulting from rapid prey
evolution (Yoshida et al., 2007; Hiltunen and
Becks, 2014) or phage or predator mortality, and a
brief return to bottom—up control.

Several ecologically important points are implicit
in this hypothesis. First, to achieve a positive A
anomaly during the phytoplankton bloom the LNA
population, which may be composed primarily of the
small-genomed, low 16S rRNA gene copy number
taxa associated with modes 1 and 8, must be
increasing in abundance. This idea is consistent
with the correlation-based network analysis of Luria
et al. (2014) who found a strong association between
SAR11 and a diatom operational taxonomic unit in
summer samples from the coastal WAP, and
Delmont et al. (2014) who observed a high abun-
dance of Candidatus Pelagibacter (the predominant
genus of the SAR11 clade) in association with a
bloom of Phaeocystis in the Ross Sea. Although
Candidatus Pelagibacter is often thought of as an
oligotrophic specialist owing to its high relative
abundance in the oligotrophic ocean, it is more
accurately considered as a planktonic specialist that
nonetheless prefers bloom conditions. Its dominance
during non-bloom periods arises from its ability to
persist under relatively low concentrations of bulk
DOC, and potentially its lack of appeal to eukaryotic
grazers and viruses owing to its small size and slow
growth rate. Its absolute abundance decreases during
bloom conditions as a result of the faster growth rate
of motile, copiotrophic bacteria. Because those
bacteria occupy a different ecological niche how-
ever, there is no competitive exclusion.

The ecological compatibility between Candidatus
Pelagibacter and the phytoplankton bloom can be
seen in the estimated absolute abundance of Candi-
datus P. ubique HTCC1062 during the 2013-2014
spring—summer season. The abundance of this CCG
peaked on 6 January 2014 at 3.72 x 10° bacteria ml~*
at a time when the concentration of chlorophyll
a was rapidly increasing and shortly after the A
anomaly had transitioned to a positive phase
(Figure 1c). Because Candidatus P. ubique HTCC1062
(and other non-motile heterotrophic marine bac-
teria) utilizes dissolved photosynthate as substrate
for growth (Howard et al., 2006; Tripp et al., 2008;
Sun et al, 2011), we do not find this result
surprising.
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nucleic acid population (fHNA). (b) Flow-cytogram of green fluorescence (533 nm) and sidescatter for 10 January 2014. (c) Flow-cytogram
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at the ISME journal online.

Second, because several important shifts in bac-
terial community structure during the 2013-2014
spring—summer season corresponded to a strong
positive A anomaly, top—down controls may be the
major driver of bacterial community succession once
the phytoplankton bloom is established. This idea
follows concepts of community succession well
established for phytoplankton (Sommer, 1989), and

is supported by the inconsistent pattern of succes-
sion we observed between seasons (Figures 4 and 6).
Rather than a specific functional progression driven
by the availability of distinct substrates, this suggests
an opportunistic 'takeover' by those bacterial taxa
best able to fill the open niche. Although previous
in situ work on bacterial community succession has
largely focused on bottom—up controls (for example,
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Teeling et al., 2012; Luria et al., 2016), those findings
do not contradict our assertion that top—down
control can initiate community transitions. As graz-
ing (or phage propagation) decreases the most
rapidly growing members of the bacterial commu-
nity, it opens new niches defined by substrate
availability.

Our 5-year time series of bacterial community
structure during the spring—summer season is the
first multi-year study of bacterial community struc-
ture and dynamics for coastal Antarctica. Although
the currently available data are sparse, with only 75
samples collected across 5 years, this study empha-
sizes the value of repeated, long-term data collection
on microbial community structure and function. By
using ESOMs to segment the microbial community
into temporally discrete units we can more easily
compare data sets that are discontinuous in time and
space. Using the existing ESOM, future data can be
classified as they become available or new, poten-
tially more comprehensive maps can be constructed
and applied retroactively to past data to create a
consistent segmentation. In this way we can observe
changes to the timing of critical transitions in
microbial community structure, their possible
mechanisms and functional implications.
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