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Abstract

Backround: Complete and accurate annotation of sequenced genomes is of paramount importance to their utility
and analysis. Differences in gene prediction pipelines mean that genome annotations for a species can differ considerably
in the quality and quantity of their predicted genes. Furthermore, genes that are present in genome sequences
sometimes fail to be detected by computational gene prediction methods. Erroneously unannotated genes can lead to
oversights and inaccurate assertions in biological investigations, especially for smaller-scale genome projects, which rely
heavily on computational prediction.

Results: Here we present OrthoFiller, a tool designed to address the problem of finding and adding such missing
genes to genome annotations. OrthoFiller leverages information from multiple related species to identify those
genes whose existence can be verified through comparison with known gene families, but which have not been
predicted. By simulating missing gene annotations in real sequence datasets from both plants and fungi we demonstrate
the accuracy and utility of OrthoFiller for finding missing genes and improving genome annotations. Furthermore, we
show that applying OrthoFiller to existing “complete” genome annotations can identify and correct substantial numbers
of erroneously missing genes in these two sets of species.

Conclusions: We show that significant improvements in the completeness of genome annotations can be made
by leveraging information from multiple species.
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Background
Genome sequences have become fundamental to many
aspects of biological research. They provide the basis
for our understanding of the biological properties of
organisms, and enable extrapolation and comparison of
information between species. Owing to the increasing
availability and affordability of whole-genome sequen-
cing technology [1, 2], genomic data sets are now pro-
duced at a rate at which it is infeasible to rely entirely
on careful manual curation to annotate a new genome;
rather it is taken as given that a considerable portion of
the process must be automated.
There has been substantial methodology development in

the area of automated gene prediction, with the production

of several effective algorithms for identifying genes in
de novo sequenced genomes [3]. In general, these
methods predict genes by learning species-specific
characteristics from training sets of manually curated
genes. These characteristics include the distribution of
intron and exon lengths, intron GC content, exon GC
content, codon bias, and motifs associated with the
starts and ends of exons (splice donor and acceptor
sites, poly-pyrimidine tracts and other features). These
characteristics are then used to identify novel genes in
raw nucleotide sequences. These prediction methods
vary in their performance, as demonstrated by consid-
erable disagreement in the genes and gene models that
they predict [3, 4]. For example, one study [4] compar-
ing Augustus, Fgenesh, GENSCAN and MAKER,
looked at the number of genes predicted on a sample
set of D. melanogaster assemblies with varying numbers
of scaffolds. At the extreme end, with 707 scaffolds, the
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most frugal prediction (MAKER, with 12687 predicted
genes) was almost doubled by the most generous pre-
diction (GENSCAN, with 22679 predicted genes). Thus
it is to be expected that genome annotations generated
by different research groups using different methodolo-
gies will differ considerably in the complement of genes
that they contain. This disparity is exemplified by a re-
cent study [5] that analysed 12 published plant ge-
nomes, assessing them for completeness relative to
highly conserved gene sets such as BUSCO [6] and
CEGMA [7]. The study found strong evidence for uni-
versal eukaryotic genes which appeared to be present in
the genomes but had no corresponding gene annota-
tions. This indicates that many genomes likely lack
gene annotations even for highly conserved genes.
Absent or inaccurate gene models can not only con-

tribute to oversights in biological investigations, they can
also lead to false assertions in large-scale genome and
cross-species analyses [8]. For example, incorrectly miss-
ing gene annotations can be mistakenly interpreted as
gene loss, and such interpretations can lead to mistaken
inferences about the biological or metabolic properties
of an organism. Similarly, missing gene models can lead
to errors in gene expression analyses that map and
quantify RNA-seq reads using predicted gene models.
Here, reads derived from erroneously missing genes, as
they have no reference to map to, have the potential to
map to the wrong gene leading to errors in transcript
abundance estimation.
Much of the cost and effort involved in de novo genome

annotation can be reduced by leveraging data from other
taxa. Moreover, data from disparate taxa have the poten-
tial to be used simultaneously to improve a cohort of gen-
ome annotations in a mutualistic framework. A number of
approaches have been developed to utilise data from other
species to improve or assist the process of genome anno-
tation. For example, an automated alignment-based fungal
gene prediction (ABFGP) method [9] has been developed
for fungal genomes. While this method works well on fun-
gal genomes, it cannot be applied to other taxa and thus
has limited general utility.
OrthoFiller aims to simultaneously leverage data from

multiple species to mutually improve the genome anno-
tations of all species under consideration, using the con-
cept of orthogroups. It is designed specifically to find
“missing” genes in sets of predicted genes from multiple
species. That is, to identify those genes that should be
present in a genome’s annotation, whose existence can
be verified through comparison with known gene fam-
ilies. A standalone python implementation of the algo-
rithm is available under the GPLv3 licence at https://
github.com/mpdunne/orthofiller. Example datasets and
instructions for running the algorithm are included in
the git repository.

Results
Problem definition, algorithm overview and evaluation
criteria
OrthoFiller aims to find genes that are present in a
species’ genome, but which have no predicted gene model
in the genome annotation for that species. It takes a prob-
abilistic, orthology-based approach to gene identification,
leveraging information from multiple species simultan-
eously to improve the completeness of the genome anno-
tations for all species under consideration. OrthoFiller is
not designed for ab initio gene prediction and requires
that each genome under consideration possesses a basic
level of annotation, taken to be at least 100 annotated
genes. The genomes should ideally be from a set of related
species from the same taxonomic group (genus, family,
order or class).
OrthoFiller makes use of the concept of orthogroups,

an extension of the pairwise concepts of orthologous
and paralogous genes. For a given set of species, an
orthogroup is the set of genes descended from a single
ancestral gene in the last common ancestor of those
species [10]. By definition, orthogroups may contain par-
alogous as well as orthologous genes. In the case of
OrthoFiller, orthogroups provide the basis for the gene
searching process, the aim being specifically to find un-
annotated members of existing orthogroups. As a result,
OrthoFiller is able to find genes that are paralogous as
well as orthologous to known genes.
A workflow for OrthoFiller is shown in Fig. 1. The

basic input for the algorithm is a set of genome annota-
tion files in general transfer format (GTF) and a set of
corresponding genome sequence files in FASTA format.
The output from the algorithm is a set of FASTA format
amino acid sequences for each inputted species, and a
set of GTF annotations containing the new genes.
OrthoFiller uses OrthoFinder [10] to cluster the inputted
genes into orthogroups. Advanced users may also specify
their own orthogroups, as described in the software
documentation.
Protein sequences are extracted from the genome

FASTA files using the coordinates in the GTF files and a
user-selected translation table. OrthoFiller then uses
OrthoFinder to cluster the genes from the species into
orthogroups. The protein sequences of each orthogroup
are aligned and the source nucleotide sequences for
these proteins are threaded back through the protein
multiple sequence alignment to create multiple sequence
alignments of the nucleotide sequences of each
orthogroup. Each nucleotide alignment is used to build a
hidden Markov model (HMM) that is used to search the
complete genome sequence of each species under con-
sideration. The scores of these HMMs are used to learn
the score distributions of true positive and false positive
HMM hits (see Implementation). Each hit to an HMM
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that does not overlap with an existing predicted gene is
subject to filtration using species-specific parameters that
have been learned for true and false positive hits. Each hit
that survives this filtration is considered to be a potential
genic region, or hint. The algorithm then attempts to
build gene models around these hints, using the Augustus
[11] gene finder. Gene models constructed by Augustus
are subject to two successive rounds of assessment and fil-
tration. Firstly, the predicted gene models are compared
against the hints that were used to inform them: if the
gene model and its source hint are not sufficiently similar
(see Implementation), the gene model is considered to be
unrelated to the hint, and thus to the orthogroup used to
inform its prediction. Secondly, the newly predicted genes
that satisfy the first criterion are subject to orthogroup in-
ference using the full set of existing and newly predicted
genes. Those newly predicted genes that are clustered in
an orthogroup whose HMM was used to predict them are
then accepted as bona fide genes and added to the gen-
ome annotation. Thus, genes predicted by OrthoFiller sat-
isfy stringent orthology-based criteria for their existence.
To demonstrate the utility of OrthoFiller on real data

it was applied independently to two sets of species. Set
A comprised five fungal genomes (Table 1) and Set B
comprised five plant genomes (Table 2), sourced from
the Joint Genome Institute (JGI) and the Saccharomyces
Genome Database (SGD) [12–15]. OrthoFiller was
assessed using these datasets in two ways: first via simu-
lating an incomplete genome annotation by randomly
removing entries from the genome annotation of one
species from each set, and assessing the accuracy of
OrthoFiller in recovering the removed genes; second by
application of OrthoFiller to the complete datasets and
validating the novel detected genes through analysis of
publicly available RNA-seq data.

Two measures were used to assess the quality of re-
covered genes: the protein F-score and the orthogroup
F-score, both defined in the Implementation section.
These scores were calculated for all genes identified by
OrthoFiller, by comparing the recovered gene with the
removed gene and assuming that the original removed
gene model was correct. Genes that are unique to the
test species that lack homologues in other species were
not analysed in this test, as OrthoFiller was designed to
find evolutionarily conserved genes. As there were no
publicly-available comparable methods that perform the
same task as OrthoFiller, the method was assessed in
comparison to performing the analysis without conduct-
ing the OrthoFiller evaluation and filtration steps. i.e.
using unfiltered HMM hits from the orthogroups as
hints for the de novo gene finder Augustus, and accept-
ing all identified gene models that did not overlap an
existing gene.

Evaluation of OrthoFiller on S. cerevisiae after removal of
10% of gene annotations
Figure 2 and Table 3 show the results of running Ortho-
Filler on the set of fungal species shown in Table 1 after
random removal of 10% of “discoverable” genes (genes
that were contained in an orthogroup with at least one

Fig. 1 Workflow diagram for the OrthoFiller algorithm. a Proteomes are subdivided into orthogroups using OrthoFinder. b Protein sequences in each
orthogroup are subject to multiple sequence alignment, back-translated to DNA and used to create hidden Markov models (HMMs). These HMMs are
used to search each genome in the set. c The set of hits are evaluated and filtered to remove low quality hits. d Gene models are constructed around
each retained hit using Augustus. e The new gene models are compared to the hints that were used to generate them, and filtered to remove those
which bear insufficient similarity to the hints. f The filtered genes are clustered into orthogroups and genes that are successfully placed into the
orthogroup that was used to identify them are retained. g The process may be run once, or iteratively until no further genes are found

Table 1 Species Set A, fungal species used for algorithm validation

Species name Source Strain Taxonomy ID References

Eremothecium gossypii JGIa ATCC10895 284811 [12]

Debaromyces hansenii JGI CBS767 284592 [13, 14]

Kluveromyces lactis JGI CLIB210 284590 [13]

Saccaromyces cerevisiae SGDb S288C 559292 [26]

Yarrowia lipolytica JGI CLIB122 284591 [13]
aJoint Genome Institute; bSaccaromyces Genome Database
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gene from another species) from the predicted comple-
ment of genes in S. cerevisiae (i.e. 513 nuclear encoded
gene annotations were deleted from a total set of 5129
discoverable genes). This was performed 10 times, each
time with a different disjoint subset removed. The full
details of detection of the deleted genes at different
stages in the OrthoFiller algorithm are shown in
Additional file 1: Figure S1.
After running OrthoFiller, an average of 160 genes

were predicted in the genome of S. cerevisiae that were
not present in the submitted depleted genome annota-
tion file. Of these, 98.9% overlapped with genes that
were deleted from the original annotation. 96.1% of
genes were recovered to high accuracy (protein F-
score ≥ 0.95). The mean protein F-score of the remaining
genes of lower accuracy (protein F-score < 0.95) was still
high at 0.89 (Fig. 2b). All of the genes that had lower
gene model accuracy were placed in exactly the same
orthogroup as expected when the sequences were sub-
jected to orthogroup inference. Thus, although typically
around six of the gene models differed from the original
reference gene model, this difference was not sufficient
to disrupt downstream identification of orthogroups.
To provide a comparison, in the absence of the Ortho-

Filler evaluation steps an average of 582 genes were
identified, of which only 79.2% overlapped with genes
that were deleted from the original annotation and an

average of 120 genes had not been predicted as genes in
the original S. cerevisiae genome (Fig. 2a), indicating
many of these were erroneous. In addition, on average
11 removed genes were split into multiple individual
genes upon recovery. Of the predicted genes that over-
lapped with removed genes, 89.3% were recovered with
high accuracy (protein F-score ≥ 0.95) and the mean pro-
tein F-score of those recovered to a lower accuracy was
0.57 (Fig. 2b), considerably lower than with OrthoFiller.
Of the lower-quality genes, an average of 42.1% had an
orthogroup F-score less than or equal to 0.95, compared
with 4.0% for OrthoFiller. Moreover, 39.4% of the lower-
quality genes were sufficiently mis-predicted that they
failed to be placed in an orthogroup, or were placed in
an orthogroup that shared no members with the
orthogroup that contained the original gene. Thus in the
absence of OrthoFiller filtration there was an increase in
the percentage of gene prediction errors and a reduction
in the accuracy of orthogroup inference.
Figure 2c-d show the distribution of orthogroup F-

scores versus protein F-scores obtained following appli-
cation of OrthoFiller to this test dataset. In these figures,
results from all 10 runs have been pooled together. The
majority of genes recovered with OrthoFiller had both
high protein and orthogroup F-scores (Fig. 2c): 94.4%
had both F-scores ≥ 0.95. This indicates that the majority
of predicted genes were identical (or nearly identical) to
the original removed gene and that when subjected to
orthogroup inference they were clustered in the correct
orthogroup. Imperfect protein F-scores can be explained
by discrepancies in intron/exon and start/stop codon
choices between the removed and recovered gene
models. Imperfect orthogroup F-scores were due to fluc-
tuations in orthogroup membership. Figure 2d shows
the results in the absence of OrthoFiller processing. In
this case, 85.3% were of dually high quality. However,

Table 2 Species Set B, plant species used for algorithm validation

Species name Source Version Taxonomy ID References

Arabidopsis thaliana JGI TAIR10 3702 [15]

Brassica rapa JGI v1.3 3711 [15]

Carica papaya JGI ASGPBv0.4 3649 [15]

Capsella rubella JGI v1.0 81985 [15]

Theobroma cacao JGI v1.1 3641 [15]

Fig. 2 Performance of OrthoFiller on S. cerevisiae genome with 10% of annotated genes removed. a Using OrthoFiller an average of 158 of 160 found
genes (99.0%) had genomic locations matching any of the 513 deleted genes. In the absence of OrthoFiller filtration an average of 447 of 582 (79.2%)
of the found genes matched any of the deleted genes. b Boxplot of protein F-scores for genes predicted using OrthoFiller, versus predictions made in
the absence of OrthoFiller filtration, that had a protein F-score of ≤0.95. c Density plot showing the protein and orthogroup F-scores for all recovered
genes using OrthoFiller. d Density plot showing the protein and orthogroup F-scores for all recovered genes in the absence of OrthoFiller filtration
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3.2% of predicted genes had both a low (<0.5) protein
and orthogroup F-score, indicating those predicted genes
were sufficiently incorrect to cause errors in orthogroup
inference. Thus, although OrthoFiller does not recover
all deleted genes (30.8% of removed genes), application
of OrthoFiller resulted in the recovery of high-quality
gene annotations that contain few (in this example there
are none) incorrectly predicted genes.

Evaluation of OrthoFiller on S. cerevisiae after removal of
90% of gene annotations
Figure 3 and Table 3 show the performance statistics for
OrthoFiller using a version of S. cerevisiae genome where
90% of gene annotations were removed (4615 annota-
tions). This represents an extreme case where a genome
has minimal annotation. The full details of detection of
the deleted genes at different stages in the OrthoFiller
algorithm are shown in Additional file 2: Figure S2. Again,

the experiment was run 10 times, this time with disjoint
subsets of 10% of genes left remaining. Here, application
of OrthoFiller resulted in the identification of on average
1473 genes, of which 99.9% overlapped with the removed
genes. Of the found genes, 95.2% were recovered with a
protein F-score of 0.95 or greater. Of the genes with lower
protein F-scores (Fig. 3b), only 4.7% had an orthogroup F-
score < 0.95. As before, although these gene models
differed from the original reference gene model, this
difference was not sufficient to disrupt downstream
orthogroup inference.
In the absence of OrthoFiller filtration, an average of

4270 genes were found, of which 97.5% overlapped
the removed genes. An average of 89 removed genes
were split into multiple individual genes upon recovery.
On average, 90.4% of the found genes had a protein F-
score ≥ 0.95. Of the genes with lower protein F-scores,
39.4% had an orthogroup F-score lower than 0.95, and

Table 3 Recovery of removed genes in S. cerevisiae, averaged over 10 runs

10% annotations removed 90% annotations removed

OrthoFiller de novo OrthoFiller de novo

No. genes removed 513 513 4615 4615

Total genes founda 160 (11.4) 582 (21.2) 1473 (47.5) 4270 (28.2)

Found genes which overlap removed genesa 158 (11.2) 462 (11.9) 1472 (47.4) 4163 (18.3)

Total recovered genesa 158 (11.1) 447 (9.6) 1471 (47.3) 4074 (22.4)

Number of split genesa 0 (0.3) 11 (4.5) 1 (0.7) 89 (8.49)

Mean pF-score of found genesa 0.99 (<0.01) 0.95 (0.01) 0.99 (<0.01) 0.96 (<0.01)

Mean oF-score of found genesa 0.99 (<0.01) 0.96 (0.01) 0.99 (<0.01) 0.96 (<0.01)

High-quality found genes (pF-score ≥0.95)a 152 (9.1) 412.3 (9.4) 1401.7 (44.76) 3766 (33.6)

Lower-quality found genes (pF-score <0.95) a 6.2 (3.2) 49.3 (12.2) 70.6 (5.6) 396.7 (23.1)

Mean pF-score of lower-quality genesa 0.89 (0.04) 0.57 (0.07) 0.88 (<0.01) 0.63 (0.01)

% of lower-quality genes with oF-score <0.95a 4.0 (8.1) 42.1 (9.3) 4.8 (1.4) 38.7 (1.1)
aNumbers shown are rounded mean values from 10 disjoint removed subsets of genes, with standard deviations bracketed

Fig. 3 Performance of OrthoFiller on S. cerevisiae genome with 90% of annotated genes removed. a Using OrthoFiller an average of 1472 of
1473 found genes (>99.9%) matched any of the 4615 deleted genes. In the absence of OrthoFiller filtration an average of 4163 of 4267 (97.5%) of
the found genes matched any of the deleted genes. b Boxplot of protein F-scores for genes predicted using OrthoFiller, versus predictions made in
the absence of OrthoFiller filtration, that had a protein F-score of ≤0.95. c Density plot showing the protein and orthogroup F-scores for all recovered
genes using OrthoFiller. d Density plot showing the protein and orthogroup F-scores for all recovered genes in the absence of OrthoFiller filtration
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32.3% were sufficiently mis-predicted that they failed to
be placed in any orthogroup at all, or in an orthogroup
completely different to the one that was used to find
them.
Figures 3c-d show the distribution of orthogroup F-

scores versus protein F-scores for recovery in the 90%
removal case. Figure 3c shows that most genes were re-
covered well, with 89.8% genes predicted correctly and
placed in the correct orthogroup when subject to
orthogroup inference (protein F-score ≥ 0.95, orthogroup
F-score ≥ 0.95). Interestingly, there are many genes that
are predicted correctly but are placed into a slightly dif-
ferent orthogroup to what was expected. This is due to
changes in orthogroup membership caused by the many
still-missing genes.
Thus, although the input datasets are dramatically

different the performance characteristics of OrthoFil-
ler on the 10 and 90% datasets are broadly consistent
(e.g. 30.8 and 31.9% recovery of removed genes re-
spectively, of which 94.1 and 89.8% were high-
accuracy predictions).

Evaluation of OrthoFiller on A. thaliana after removal of
10% of gene annotations
As it could be argued that fungal genomes present an eas-
ier challenge, an additional demonstration of the utility of
OrthoFiller on an alternative group of organisms was also
conducted. Here the analogous test of the method was
applied to a set of five land plant genomes (Table 2).
OrthoFiller was run five times with 10% of discoverable A.
thaliana genes removed, with a different disjoint random
subset removed each time. Table 4 and Fig. 4 show aver-
age performance statistics from these runs.
An average of 1233 genes were discovered by Ortho-

Filler, 89.7% of which overlapped removed genes. Of
these, 39.0% were recovered to very high accuracy

(protein F-score ≥ 0.95), and the mean protein score of
the lower-quality genes was 0.61. 95% of these lower-
quality genes were placed in the correct orthogroup
after orthogroup inference, indicating that the lower
protein scores were typically a product of inaccurate
gene model rather than the gene itself being incorrect,
and orthogroup inference remained reliable.
In the absence of OrthoFiller filtration, an average of

13184 genes were discovered, considerably more than the
number of genes removed, indicating that a large number of
these may be erroneous: only 37.3% of these genes over-
lapped removed genes. Of those that overlapped re-
moved genes, 24.7% represented removed genes that
were split into multiple parts, and only 13.0% were high
quality. The average protein F-score of the lower-quality
genes was 0.31, and 81.1% of these lower-quality genes
also had a low (<0.95) orthogroup F-score. Thus in the
absence of OrthoFiller filtration, large numbers of unre-
liable genes were found.
Figure 4c-d show the distribution of orthogroup F-

scores versus protein F-scores for recovery in the 10%
removal case for A. thaliana. Using OrthoFiller, 37.1% of
genes had both a high (≥0.95) protein and orthogroup F-
score. Furthermore, in the de novo case, 52.4% of recov-
ered genes scored poorly on both metrics (<0.5), com-
pared with 1.4% of genes found using OrthoFiller. Thus
using OrthoFiller reduces the proportion of found genes
which are erroneous.

Evaluation of OrthoFiller on A. thaliana after removal of
90% of gene annotations
Average performance statistics for the application of
OrthoFiller to the 90% depleted A. thaliana genome
(21683 genes removed) can be seen in Table 4 and Fig. 5.
Statistics are averaged over five runs using different dis-
joint subsets of discoverable genes left in the annotation.

Table 4 Recovery of removed genes in A. thaliana

10% annotations removed 90% annotations removed

OrthoFiller de novo OrthoFiller de novo

No. genes removed 2410 2410 21683 21683

Total genes founda 1233 37.5 13184 426.7 11480 96.2 42504 223.5

Found genes which overlap removed genesa 1107 37.5 4918 130.4 11344 89.0 35609 149.5

Total recovered genesa 1036 31.72 2269 16.4 10380 59.7 20431 33.0

Number of split genesa 67 5.4 1214 23.6 945 34.4 7451 37.7

Mean pF-score of found genesa 0.75 0.01 0.45 (<0.01) 0.70 (<0.01) 0.55 (<0.01)

Mean oF-score of found genesa 0.94 (<0.01) 0.51 (<0.01) 0.89 (<0.01) 0.64 (<0.01)

High-quality found genes (pF-score ≥0.95)a 432.0 29.3 640.8 27.4 3419.8 21.3 9079.6 99.5

Lower-quality found genes (pF-score <0.95)a 674.6 32.1 4277.2 147.8 7923.8 99.5 26529.8 201.3

Mean pF-score of lower-quality genesa 0.61 0.02 0.31 (<0.01) 0.57 (<0.01) 0.33 (<0.01)

% of lower-quality genes with oF-score < 0.95a 34.6 1.9 81.1 0.9 43.4 0.6 73.9 0.1
aNumbers shown are rounded mean values from ten disjoint removed subsets of genes, with standard deviations bracketed
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Using OrthoFiller, 11480 genes were discovered, of
which 98.8% overlapped genes that had been removed.
Of these, 30.1% had a high protein F-score, and the aver-
age protein F-score for those of lower quality remained
relatively high at 0.57. 56.5% of genes with lower pro-
tein F-scores ended up in the right orthogroup after
orthogroup inference.
In the absence of OrthoFiller filtration, many more

genes were found than removed, with an average of
42504 genes found. Of these, 83.8% overlapped re-
moved genes, however many removed genes (20%)
were split into multiple parts. Only 25% of the overlap-
ping genes were recovered to high accuracy (protein
F-score ≥ 0.95), and the average protein F-score for the
lower-quality genes was low at 0.33, indicating that a
large number of these genes bore little resemblance to
the removed gene they overlapped. In addition, 73.9%

of lower-quality genes had low-quality orthogroup in-
ference, indicating that the proteins were sufficiently
mis-predicted that they disrupted orthogroup infer-
ence. This shows that, although more genes were
recovered in the absence of OrthoFiller filtration, con-
siderably more noise and erroneous predictions are
produced.
Figure 5c-d show the distribution of orthogroup F-

scores versus protein F-scores for recovery in the 90%
removal case for A. thaliana. On average, 38.1% of genes
recovered without OrthoFiller were of dually low quality
(protein F-score, orthogroup F-score <0.5), compared with
only 3.4% of genes recovered with OrthoFiller. Thus,
similar to the fungal data set analysis, the performance
characteristics of OrthoFiller on the 10 and 90% plant
datasets are broadly consistent (e.g. 42.9 and 47.9% recov-
ery respectively, 39.0 and 30.1% high-accuracy recoveries

Fig. 4 Performance of OrthoFiller on A. thaliana genome with 10% of annotated genes removed. a Using OrthoFiller 89% of found genes overlapped
removed gene annotations, compared with 37% without filtration; b Boxplot of protein F-scores for genes predicted using OrthoFiller, versus predic-
tions made in the absence of OrthoFiller filtration, that had a protein F-score of ≤0.95. Scores were typically lower for the de novo runs. c Dens-
ity plot showing the protein and orthogroup F-scores for all recovered genes using OrthoFiller. d Density plot showing the protein and
orthogroup F-scores for all recovered genes in the absence of OrthoFiller filtration

Fig. 5 Performance of OrthoFiller on A. thaliana genome with 90% of annotated genes removed. a Using OrthoFiller 98.8% of found genes overlapped
removed gene annotations, compared with 83.7% without filtration; b Boxplot of protein F-scores for genes predicted using OrthoFiller, versus predic-
tions made in the absence of OrthoFiller filtration, that had a protein F-score of ≤0.95. c Density plot showing the protein and orthogroup F-scores for
all recovered genes using OrthoFiller. d Density plot showing the protein and orthogroup F-scores for all recovered genes in the absence of
OrthoFiller filtration
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respectively), and both contain a considerably smaller
proportion of erroneous genes than would be found with-
out filtering.

Evaluation of OrthoFiller on S. cerevisiae and A. thaliana
with different species sets
In order to test the behaviour of OrthoFiller under different
species subsets, the algorithm was run on expanded and re-
duced versions of species sets A and B. The species were se-
lected to test the sensitivity of OrthoFiller to inclusion of
additional close and distant relatives, and to test the behav-
iour of the method when different numbers of species are
provided. In each case, three additional species were chosen.
One species was an in-group to the original species set and
the other two were progressively more distantly related out-
groups to the original set. The additional species are listed
in Tables 5 and 6 as species sets A+ and B+ respectively.
For both the plant and fungal datasets, the behav-

iour of OrthoFiller was robust to the inclusion of
additional species (Figs. 6 and 7). However, in both
cases the method performed poorly when only two
species were included. It is therefore recommended
that users include at least three species in their
analysis.

Evaluation of the SGD reliability classification of recovered
genes
The genes recovered in S. cerevisiae when applying Ortho-
Filler after 10 and 90% removal were compared with reli-
ability classifications provided by the SGD. In this genome
version, the SGD classified 5103 genes as verified, 784 as
dubious, and 806 as uncharacterised. Of the 4766 verified
genes that were clustered into orthogroups and hence
discoverable by OrthoFiller, 1857 genes were recovered.
Of the dubious genes, only three were clustered into
orthogroups, and none of these were recovered by Ortho-
Filler. Of the 806 uncharacterised genes, 357 were clus-
tered into orthogroups, and 53 were recovered by
OrthoFiller. Thus dubious and uncharacterised genes are
recovered at lower rates than verified genes.

OrthoFiller detects hundreds of conserved genes not
present in the reference genome annotations
In addition to testing the ability of OrthoFiller to recover
already predicted genes, the algorithm was applied to

both of the sets of complete genomes listed in Tables 1
and 2, to assess the potential for novel genes to be dis-
covered. In total, 34 novel genes were found across the
fungal species evaluated, and 830 novel genes were
found across the plant species. The number of genes
found for each species in each set is listed in Tables 7
and 8. All newly predicted genes described in this study
are publicly available for download from the Zenodo
Research Data Repository (see Implementation).
To be detected as a novel gene OrthoFiller requires

genes to pass rigorous sequence similarity tests to genes
in other species (including empirical evaluation of
sequence similarity scores to distinguish real from spuri-
ous hits), which in itself provides evidence for the exist-
ence of predicted genes through homology. To provide
additional evidence for the existence of the novel pre-
dicted genes they were subjected to analysis using pub-
licly available RNAseq data from the Sequence Read
Archive (SRA) [16]. The datasets used for this analysis
are listed in Tables 9 and 10, and examples of RNAseq
coverage on a selection of novel genes can be found in
Fig. 8. The tables also show the percentage of the novel
genes found that had evidence for their existence in the
RNAseq data. For most genomes, most genes predicted
by OrthoFiller are highly supported by RNAseq evi-
dence, with the all the novel fungal genes exhibiting
RNAseq evidence, and on average 67.2% of novel plant
genes being supported. Given that the plant RNAseq
datasets come from single tissue samples under a single
condition it is not expected that all genes will be de-
tected in these samples. For example, similar detection
statistics were obtained for the original predicted genes
from the source datasets, shown in Tables 9 and 10. It
should also be noted that genes that are present in
RNAseq data are more likely to have been annotated
already, given that many genome annotation pipelines
rely on such data to perform their analyses [17].

Discussion
Here we present OrthoFiller, an automated method for
improving the completeness of genome annotations. It
leverages information from multiple taxa, clustering
genes into orthogroups and finding genes that are con-
served between species but that have escaped detection.
OrthoFiller is designed to be stringent, conservatively

Table 6 Species Set B+, additional plant species used for algorithm
validation

Species name Source Version Taxonomy ID References

Brassica oleraceae capitata JGI v1.0 3716 [31]

Citrus clementina JGI V1.0 85861 [32]

Populus trichocarpa JGI v3.1 3694 [33]

Table 5 Species Set A+, additional fungal species used for
algorithm validation

Species name Source Strain Taxonomy ID References

Aspergillus nidulans JGI FGSC A4 227321 [27]

Schizosaccharomyces
pombe

JGI 972 h- 4896 [28, 29]

Zygosaccharomyces rouxii JGI CBS732 559307 [30]
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identifying genes that can be confidently identified as
missing members of existing orthogroups. Specifically,
to pass the filtration criteria for detection by OrthoFil-
ler, genes must be members of orthogroups conserved
in multiple species. Thus OrthoFiller will not find genes
that lack homologues in other species. These stringent
criteria mean that not all genes that could be detected
will be detected by the algorithm, but rather that the

user should have confidence in the validity of genes
identified by the method.
OrthoFiller is intended to be run after a genome an-

notation is considered by the user to be complete or
near-complete. OrthoFiller is designed with small scale
genome sequencing projects in mind and is provided to
enable users without significant resources for compre-
hensive RNAseq-based genome annotation to leverage

Fig. 6 Analysis of OrthoFiller on different subsets of fungal species. Species subsets are indicated by bullets on the bottom panel. Behaviour of
OrthoFiller is consistent across different numbers and relatedness of species, with the exception of when only two species are used. a, e Number of
genes removed from S. cerevisiae (light + darker colour), and the proportion recovered (darker colour). b, f Proportion of genes found which overlap
removed genes (darker colour) is consistently higher for OrthoFiller than for its de novo counterpart. c, g Percentage of recovered genes of
low quality, i.e. with protein F-score <0.95, is consistently lower in OrthoFiller than the de novo version. d, h Mean protein F-score of lower-quality
genes is consistently higher for OrthoFiller than for the de novo version
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information from related species to improve their gen-
ome annotations. However, OrthoFiller is equally suited
for use in large-scale genome comparisons, reliably
filling gaps in gene sets prior to large scale comparative
genomics investigations. Application of OrthoFiller in
these cases will enable the downstream analysis of
genes that would otherwise have been classified as
absent.

The utility of OrthoFiller is demonstrated on both
fungal and plant genome datasets, both in its ability to
successfully find missing genes, and in the effectiveness
of its filters in eliminating low-quality gene predictions.
Application of this method to small groups of plant and
fungal genomes resulted in the identification of 34 and 830
genes respectively. These genes are conserved in one
or more species but were absent from the genome

Fig. 7 Analysis of OrthoFiller on different subsets of plant species. Species subsets are indicated by bullets on the bottom panel. Behaviour of
OrthoFiller is consistent across different numbers and relatedness of species, with the exception of when only two species are used. a, e Number
of genes removed from A. thaliana (light + darker colour), and the proportion recovered (darker colour). b, f Proportion of genes found which
overlap removed genes (darker colour) is consistently higher for OrthoFiller than for its de novo counterpart. c, g Percentage of recovered genes
of low quality, i.e. with protein F-score <0.95, is consistently lower in OrthoFiller than the de novo version. d, h Mean protein F-score of lower-quality
genes is consistently higher for OrthoFiller than for the de novo version
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annotation in which they were predicted. We anticipate
that application of OrthoFiller to larger datasets will
likely result in further genome annotation improve-
ment. Alternative publicly available genome versions
for the fungal species exist such as those housed at gry-
c.inra.fr [18]. Although the genome annotations differ
to the ones used in this study, 24 of the genes predicted
by OrthoFiller were also not present in these alternative
genome annotations (details available in Zenodo

Fig. 8 Five representative examples of RNAseq coverage on genes predicted using OrthoFiller. Coverage plots demonstrate RNAseq reads mapping to
locations of new genes, and phylogenetic trees demonstrate the relationship of the newly predicted gene to other genes in the orthogroup. a Species
S. cerevisiae, gene orthofiller_g14.t1, RNAseq data from SRR539284. b Species Y. lipolytica, gene orthofiller_g14.t1, RNAseq data SRR868669. c Species C.
rubella, gene orthofiller_g200.t1, RNAseq data SRR797557. d Species T. cacao, gene orthofiller_g175.t1, RNAseq data SRR321315. e Species A. thaliana,
gene orthofiller_g80.t1, RNAseq data SRR3932355

Table 7 Novel genes in fungal species

Species name Genome size
(Mbp)

No. pre-existing
genes

No. new
genes.

E. gossypii 9.10 4768 2

D. hansenii 12.15 6272 13

K. lactis 10.69 5076 8

S. cerevisiae 12.16 6572 2

Y. lipolytica 20.50 6447 9
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dataset that accompanies this manuscript, see Imple-
mentation). The quality of genes found by OrthoFiller
was assessed by artificial removal and recovery of sub-
sets of genes from a single genome, treating those ori-
ginal gene models as true, and evaluating the quality of
those genes that were recovered by comparison to the
removed genes. In the absence of the OrthoFiller filtra-
tion steps, the proportion of poor-quality genes that are
recovered is considerably higher, furthermore OrthoFiller
avoids the over-prediction of genes that can occur in
many of its de novo counterparts.
OrthoFiller is mainly designed for use on genomes

that have already undergone some basic level of an-
notation. As can be seen by comparing the 10% and
90% removal cases in the two data sets, application to
very poorly annotated genomes can result in more
genes of dubious quality, both from a sequence and
an orthogroup perspective. It is worth noting that
many of the genes with lower-quality scores, particu-
larly those with only one of the scores being low, can
be explained by alternate gene models (in the protein
F-score) and shifting of orthogroups due to altered
proteome sets (in the orthogroup F-score case). In all
cases, in the absence of OrthoFiller filtration consid-
erably higher numbers of genes were predicted that
didn’t resemble the genes that they were supposed to,
indicating that they are erroneous. The results of
OrthoFiller were robust to addition or removal of
species. However, OrthoFiller performed poorly when
only two species were used as input. It is therefore
recommended that at least three species are used as
input for OrthoFiller.

The OrthoFiller algorithm is designed to run on a
Unix system with python and a minimal number of
standard additional tools (HMMer, BedTools, Augustus,
R, OrthoFinder). The software can be downloaded from
https://github.com/mpdunne/orthofiller, where installa-
tion and implementation instructions can also be found.
The speed of the algorithm is principally dependent on
the speed of Augustus and HMMer, however processing
time can be decreased by running OrthoFiller on multiple
CPUs and thus parallelising these steps of the method.
Accurate and complete genome annotation is of

paramount importance to the effective analysis of
genomic and transcriptomic data, as well as for
phylogenetic inference from genomic data. As the
quantity of published genomes increases, care must
be taken to ensure accuracy and quality of genome
annotations are maintained. Automated methods that
leverage publicly available information from multiple
species to improve the annotation of newly sequenced
genomes will help improve the accuracy and com-
pleteness of these resources and thus the quality of
all analyses that utilise them.

Conclusions
OrthoFiller is an algorithm for improving the complete-
ness of genome annotations. It leverages data from mul-
tiple species to identify conserved genes that have
escaped detection, correct these detection errors and
thus improve the genome completeness of all species
under consideration.

Implementation
Data sources
For algorithm development and evaluation, a set of five
well-annotated fungal genomes (Table 1) and a set of five
well-annotated plant genomes (Table 2) were selected.
Evaluation of the algorithm focussed on S. cerevisiae and
A. thaliana, as the gene models in these genomes have
historically been subject to extensive improvement and re-
vision and are the most likely to be correct.

Table 8 Novel genes in plant species

Species name Genome size
(Mbp)

No. pre-existing
genes

No. new
genes.

A. thaliana 119.67 27416 116

B. rapa 315.05 40492 10

C. papaya 342.68 27751 382

C. rubella 134.83 26521 228

T. cacao 346.16 29452 94

Table 9 SRA RNA-seq data coverage for novel genes in fungal genomes

Species SRA ID Instrument/details Genes in original annotation Novel genes

Total W/ reads % Total W/ reads %

E. gossypii N/Aa N/A 4768 N/A N/A 2 N/A N/A

D. hansenii SRR1296968 Illumina HiSeq 2000, paired end 5781 6272 92.2% 13 13 100%

K. lactis SRR1200528 Illumina Genome Analyzer II, single 5075 5076 100% 8 8 100%

S. cerevisiae SRR539284 Illumina HiSeq 2000, paired end 6560 6572 99.8% 2 2 100%

Y. lipolytica SRR868669 Illumina HiSeq 2000, single 6432 6447 99.8% 9 9 100%
aNo publically available data found for this species/strain

Dunne and Kelly BMC Genomics  (2017) 18:390 Page 12 of 16

https://github.com/mpdunne/orthofiller


Algorithm overview
OrthoFiller proceeds in five stages summarised in Fig. 1
and described in detail in the following sections. In
brief, the algorithm begins by inferring a set of
orthogroups from the protein coding genes of the set of
species submitted to OrthoFiller (Fig. 1a). The protein
sequences in these orthogroups are subject to multiple
sequence alignment, converted to nucleotide sequences
and used to build HMMs. These HMMs are used to
search the genomes of each species under consideration
(Fig. 1b) and the resultant HMM hits are subject to
stringent filtering (Fig. 1c) before being used as hints
for gene model construction (Fig. 1d). The gene models
are subject to additional filtering (Fig. 1e) and only
those gene models that pass all filters are added to the
revised genome annotation. The revised genome anno-
tations are then subject to orthogroup inference (Fig. 1f )
and resultant orthogroups are analysed to confirm the
identity of the newly predicted genes. The complete
details for each step of this algorithm are described in
the sections below.

Inference of Orthogroups and construction of HMMs
Orthogroups are inferred using OrthoFinder [10]. If a
gene from the source annotation is not included in an
orthogroup with at least one other sequence, it is classed
as a singleton, and is not considered in downstream ana-
lyses. This is consistent with the problem definition of
OrthoFiller, that is to identify unannotated genes that are
conserved between species. Amino acid sequences from
the orthogroups are aligned with MAFFT [19], using the
L-INSI algorithm, and the resultant multiple sequence
alignments are back-translated using the source nucleo-
tide sequences. Aligning in this way, i.e. by amino acid se-
quence first, increases the robustness of the alignment
under synonymous mutations and thus provides higher
alignment quality [20]. The resulting nucleotide align-
ments are converted to Hidden Markov models (HMMs)
using HMMer [21], each of which is then searched against
each input genome in turn to generate a set of hits per
HMM per species.

Evaluation of HMM search results
Due to the probabilistic nature of HMM searches, there
is considerable variation in the quality of the relationship
between a hit region and the set of sequences used to
generate the source HMM. One expects a large amount
of “background noise”, that is sequence regions which
pass the thresholds of the HMM but whose relevance is
dubious. Each HMM hit has an associated bit score, an
aggregated base-by-base similarity score between the hit
and the aligned sequences used to generate it: we use
this score to assess the quality of the hit. The bit score is
strongly dependent on the hit length, thus to prevent
gene length from biasing downstream analyses the bit
score of a hit is divided by the hit length, to generate the
adjusted score for a hit h:

scoreadj hð Þ ¼ score hð Þ
length hð Þ

The adjusted score is related to the e-value. However,
the e-value calculation enforces a strict lower limit of
∼1� 10−300 , all lower scores being rounded down to
zero. Thus use of e-values would introduce irreversible
length bias and would lead to downstream errors, as
has been shown previously [10]. As bit scores do not
have a threshold value, and they have been previously
shown to be capable of facilitating accurate inference of
phylogenetic trees [22], and length-corrected bit scores
are used as the basis of the scoring scheme in Ortho-
Finder [10], they were used here.
For each species, a threshold value for hit accept-

ance or rejection based on a hit’s adjusted score is
created, by considering the distribution of hits which
overlapped known genes. Anything above this thresh-
old is considered to be genuine, and anything below
this threshold is considered to be noise. An HMM hit
is classed as good if it overlaps any gene from the
orthogroup used to create the HMM, bad if it only
overlaps genes from orthogroups other than the one
used to create the HMM, and candidate if it overlaps
no known gene at all. Here candidate hits are the po-
tential new genes of interest, and the good and bad

Table 10 SRA RNA-seq data coverage for novel genes in plant genomes

Species SRA ID Instrument/details Genes in original annotation Novel genes

Total W/ reads % Total W/ reads %

A. thaliana SRR3932355 Illumina HiSeq 2500, paired end. Wild type Columbia rep1 27416 26110 95.2 116 89 76.7

B. rapa SRR2984945 Illumina HiSeq 2000, paired end. ga-deficient dwarf
(gad1-2) + GA rep2

40492 35793 88.4 10 4 40.0

C. papaya SRR3509576 Illumina HiSeq 2500, paired end. SunUp/Sunset cultivar,
young hermaphrodite leaf

27751 24589 88.6 382 327 85.6

C. rubella SRR797557 Illumina Genome Analyzer IIx, paired end 26521 21239 80.1 228 137 60.1

T. cacao SRR3217315 Illumina HiSeq 2000, paired end. Flower/leaf sample 29452 25758 87.5 94 69 73.4
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genes are used to inform our judgement about the re-
liability of the candidate hits.
Distributions of adjusted scores for good and bad

hits to the S. cerevisiae genome from all HMMs gen-
erated by the species in Table 1 are provided as an
example in Additional file 3: Figure S3. Distributions
for good and bad hits are clearly delineated into two
distinct distributions. Note that in this case there are
relatively few candidate hits, since the genome under
inspection is already well annotated and is expected
to have few missing gene predictions. Skew-t distribu-
tions are fit separately to the good and bad score dis-
tributions using gamlss [23]. Skew distributions were
chosen because they allow flexibility in location, shape
and scale of the underlying data and are commonly
used for estimating parameters such as location and
scale, while allowing the same distribution type to be
used to fit both the good and bad hits. A separate
skew-t distribution for the good and bad hits is fit for
each species. In the event that there are insufficient
good and bad hits to fit distributions, good and bad
hits from the other species are aggregated and a
threshold value is calculated from this.
For a given adjusted score x , the distributions of the

good and bad hits are used to estimate both the absolute
probabilities of a hit being genuine or being a mistake.
We can estimate

P genuinejxð Þ ¼ P xjgenuineð ÞP genuineð Þ
P xjgenuineð ÞP genuineð Þ þ P x jmistakeð ÞP mistakeð Þ

P mistakejxð Þ ¼ P xjmistakeð ÞP mistakeð Þ
P xjgenuineð ÞP genuineð Þ þ P x jmistakeð ÞP mistakeð Þ

and then retain the hit depending on whether it has a
higher probability of being genuine than being a mistake,
based on its adjusted score. The probabilities P genuineð Þ
and PðmistakeÞ are estimated by considering the propor-
tion of good/bad hits which are good and bad respect-
ively. The probability density functions P xð jgenuineÞ and
PðxjmistakeÞ are determined using the fitted distribu-
tions as described above.

Acquisition and evaluation of putative predicted genes
Hits which survive the hit filtration step are passed to
the gene-finding program Augustus [11] as hints speci-
fied as exon parts. Only predicted genes that have a non-
zero overlap with these hints are retained. These
predicted genes are then subjected to a hint filter, which
aims to separate those genes which have genuinely
arisen from the hint from those that overlap the hint by
chance. The hint filter evaluates a hint F-score for each
predicted gene, by comparing against the hints from a
particular orthogroup which overlap it. The hint F-score
is a measure of how well the found gene corresponds to

the hints used to inform its discovery. Each predicted
gene G will have at least one hint region corresponding
to it, which is a set of non-overlapping coordinates ob-
tained from merging all hints that overlap G, and which
are all derived from the same orthogroup. For a hint re-
gion H and a predicted gene G, the hint F-score is de-
fined as:

hf H ; Gð Þ ¼ 2⋅hP H ;Gð Þ⋅hR H ;Gð Þ
hR H ;Gð Þ þ hP H ;Gð Þ

where

hP H ;Gð Þ ¼ H∩Gj j
jH j ; hR H ;Gð Þ ¼ H∩Gj j

jGj
The filter uses a threshold hint F-score value of 0.8 (i.e.

on average 80% of the length of the predicted gene is cov-
ered by the hit and vice versa), below which potential gene
models are discarded. This value was chosen based on an
analysis of hint F-scores of good and bad hits (as defined
above) versus the Augustus output corresponding to
them. Example distributions for hint F-scores for the good
and bad hits can be seen in Additional file 4: Figure S4, in
which it can be clearly seen that practically all genuine
hints pass the threshold value of 0.8.
Once gene models have been filtered, they are fed once

again into OrthoFinder, to cluster them into orthogroups.
The orthogroup of each newly predicted gene is compared
with the orthogroup(s) which were used to predict that
gene. It is possible that multiple orthogroups informed the
prediction of the same gene; similarly, there may be fluctua-
tions in orthogroup membership between the original and
new genomes. It is therefore only required that the new
orthogroup into which the gene is clustered has non-zero
overlap with at least one of the orthogroups used to predict
it, and genes which do not fulfil this criterion are discarded.

Algorithm evaluation
Recovery of removed genes
The test set of species from Table 1 was used to analyse
the effectiveness of OrthoFiller for genomes of various
levels of completion. Altered versions of the S. cerevisiae
genome annotation were constructed with 10 and 90%
of genes randomly removed, and the level of recovery of
the removed genes upon implementation of OrthoFiller
was assessed, where a gene G was considered to be
recovered if OrthoFiller predicted a gene such that G and
G’ have non-zero overlap.
The quality of the predicted genes was assessed by

considering two scores: the orthogroup F-score and the
protein F-score. The protein F-score is defined as

pFðS; S′Þ ¼ 2⋅pPðS; S′Þ⋅pRðS; S′Þ
pRðS; S′Þ þ pPðS; S′Þ
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where S is the original amino acid sequence and S′ is
the amino acid sequence of the recovered gene, and

pP S; S′
� � ¼ jS∩S′j

jSj ; pR S; S′
� � ¼ jS∩S′j

jS′j
where the sequence length is the number of amino acids
in the sequence, and the intersection length is defined to
be the sum of identical amino acids in an alignment
(MAFFT L-INSI) of the two sequences. The orthogroup
F-score is defined as

oF S; S′
� � ¼ 2⋅oPðO;O′Þ⋅oRðO;O′Þ

oRðO;O′Þ þ oPðO;O′Þ
where O is the orthogroup that the gene is placed when
no deductions have been made, O′ is the orthogroup
into which the gene is placed when OrthoFinder is run
on the OrthoFiller results, and

oP O;O′
� � ¼ jO∩O′j

jOj ; oR O;O′
� � ¼ jO∩O′j

jO′j
where cardinality of the orthogroups takes into account
only genes which were present in the input set of genome
annotations, i.e. not counting the newly discovered genes.

Evaluation of novel predicted genes
RNA-seq data was downloaded from the Sequence
Read Archive, and aligned to the genome with HISAT2
[24] using default parameters. Coverage was calculated
using BedTools coverage [25].

Availability and requirements
The software is available under the GPLv3 licence at
https://github.com/mpdunne/orthofiller. All newly pre-
dicted genes and gene models are available for download
from the Zenodo Research Data Repository doi.org/
10.5281/zenodo.546090.

Additional files

Additional file 1: Figure S1. Recovery of removed genes from S.
cerevisiae after 10% removal: Representation of removed genes at each
stage, OrthoFiller vs. de novo. A) The number of deleted genes that
obtained hits from one or more orthogroup HMMs. B) The number of
deleted genes that had hits after OrthoFiller hint filtration. C) No hint
filtration. D) The number of deleted genes for which a gene prediction
was made using Augustus that satisfied OrthoFiller filtration tests. E) The
number of deleted genes that for which a gene prediction was made
using Augustus in the absence of OrthoFiller filtration. F) The number
newly predicted genes that were retained or discarded based on the
orthogroup assignment filter step in OrthoFiller. (TIF 562 kb)

Additional file 2: Figure S2. Recovery of removed genes from S.
cerevisiae after 90% removal: Representation of removed genes at each
stage, OrthoFiller vs. de novo. A) The number of deleted genes that
obtained hits from one or more orthogroup HMMs. B) The number of
deleted genes that had hits after OrthoFiller hint filtration. C) No hint
filtration. D) The number of deleted genes for which a gene prediction

was made using Augustus that satisfied OrthoFiller filtration tests. E) The
number of deleted genes for which a gene prediction was made using
Augustus in the absence of OrthoFiller filtration. F) The number newly
predicted genes that were retained or discarded based on the
orthogroup assignment filter step in OrthoFiller. (TIF 573 kb)

Additional file 3: Figure S3. hit score distributions for good, bad and
candidate hits. Hits are to the S. cerevisiae genome, using HMMs from all
orthogroups from the five fungal species described in Table 1. A) Length
normalised bit scores of HMM hits to regions of the genome that contained
genes that were not part of the orthogroup used to generate the HMM
(bad hits). B) Length normalised bit scores of HMM hits to regions of the
genome that do contain the gene used to generate the HMM (good hits).
C) Length normalised bit scores of HMM hits to regions of the genome that
do not contain any previously annotated genes (candidate novel gene hits).
D) All distributions overlaid. (TIF 143 kb)

Additional file 4: Figure S4. Example distribution of hint F-scores for good
vs. bad hints. Here, Augustus has been allowed to predict genes that are already
present in the input genome, hence we can consider separately the good and
bad hits as hints. Hits and hints are from running OrthoFiller on the five fungal
species described in Table 1. Shown are the distributions of hint F-scores for
good (green) and bad (red) hits respectively, demonstrating that practically all
of the genuine hints have a hint F-score of 0.8 or higher. (TIF 1424 kb)

Abbreviations
GTF: General transfer format; HMM: Hidden Markov model; oF: orthogroup F-
Score; pF: protein F-score
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