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Protein S-acyl transferase 4 controls nucleus position during root hair tip growth
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ABSTRACT
Protein S-acyl transferases (PATs) play critical roles in plant developmental and environmental responses
by catalyzing S-acylation of substrate proteins, most of which are involved in cellular signaling. However,
only few plant PATs have been functionally characterized. We recently demonstrated that Arabidopsis
PAT4 mediates root hair elongation by positively regulating the membrane association of ROP2 and actin
microfilament organization. Here, we show that apex-associated re-positioning of nucleus during root hair
elongation was impaired by PAT4 loss-of-function. Results presented here pose a significant question
concerning the molecular machinery mediating nuclear migration during root hair growth.
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S-acylation, or as commonly named, palmitoylation, is a revers-
ible post-translational modification regulating the subcellular
targeting, activity, and interaction profiles of substrate pro-
teins.1-3 Plenty of proteins, especially those related to cellular
signaling such as small GTPases, receptor-like cytoplasmic
kinases (RLCKs), SNAREs, are subject to palmitoylation based
on proteomic analyses in yeast, mammals, and plants.4-6 The
vast number of palmitoylated, signaling-related proteins sug-
gests the importance of protein palmitoylation on the develop-
ment and environmental responses of eukaryotes.

A class of Asp-His-His-Cys motif Cys-rich domain (DHHC-
CRD) protein S-acyl transferases (PATs) is mainly responsible
for the catalysis of protein palmitoylation.1,2,7 PATs are present
in most plant genomes as large gene families, such as 24 mem-
bers in Arabidopsis and 40 members in maize.8,9 Despite the
potential importance of PATs in plant development and envi-
ronmental responses, there are only few whose functionality
has been characterized.9-15 We recently reported that Arabi-
dopsis PAT4, a member of the protein S-acyl transferase family,
mediates root hair elongation.16 PAT4 is expressed preferen-
tially in tip-growing cells, i.e. root hairs and pollen tubes.16

Interestingly, its expression is highest in elongating root hairs,
suggesting its function during rapid cell elongation. Indeed,
functional loss of PAT4 resulted in shorter root hairs whereas
had little effect on root hair differentiation and initiation.16

We demonstrated that PAT4 targets to the plasma mem-
brane (PM) through BFA-sensitive vesicle trafficking and its
potentially enzymatic inactive mutant, although showing the
same localization pattern, could not complement the short
root hair phenotype.16 This result suggested that PAT4
mediates the PM targeting of substrate proteins to regulate
root hair elongation. Because the small GTPase ROP2 was
implicated in the regulation of root hair elongation17 and
was likely a palmitoylated protein,18 we tested the hypothe-
sis that PAT4 mediates the palmitoylation of ROP2 and

thus affects ROP signaling during root hair elongation.
Although we still have not got direct biochemical data sup-
porting the hypothesis due to technical difficulties, several
lines of evidence supported PAT4-dependent palmitoylation
of ROP2 in root hairs.16

First, the PM-association of ROP2 was significantly reduced
in pat4 root hairs, similar to that of a ROP2 mutant in which 2
palmitoylation sites were mutated, both based on fluorescence
quantification and on membrane fractionation assays.16 Sec-
ond, growing pat4 root hairs contained abnormal actin fila-
ments (AFs) that were bundled and penetrated to the very apex
rather than stayed behind the apical clear zone.16 Dynamic AF
organization in root hairs is one of the most prominent intra-
cellular activities initiated by ROP signaling17 and such the
abnormal AFs distribution resembled greatly to that caused by
the expression of a dominant negative ROP2.17 Finally, we
demonstrated that PAT4 genetically interacts with RhoGDI1/
SCN1, a ROP regulator whose functional loss resulted in
ectopic ROP2 distribution at the PM.19

Except for AFs, dynamic organization of microtubule s
(MTs) is an intracellular event involved in root hair elongation
such that disruption of MT dynamics pharmacologically or
genetically impaired the growth of root hairs.20,21 It was also
reported that ROPs mediate MT distribution through effectors
to regulate the jigsaw morphology of leaf pavement cells.22 To
test whether the distribution of MT was affected by PAT4 loss-
of-function, we introduced a Pro35S: GFP-MBD into pat4–2.
GFP-MBD is a microtubule reporter by fusing the microtubule
binding domain of the mammalian microtubule-associated
protein 4 (MAP4) gene with the green fluorescent protein
(GFP) gene.23 Confocal laser scanning microscopic (CLSM)
examination of GFP-MBD showed that root hairs from either
wild type or pat4–2 contained longitudinal and cortical MT
cables along the growth axis (Fig. 1). No discernible differences
between the 2 genotypes were observed.
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Root hair growth also accompanies with tip-associated
nucleus re-localization. In Arabidopsis, the nuclei of root hairs
locate at a fixed distance from the apex during growth while
migrate to a random position during growth arrest.24 Pharma-
cological studies have demonstrated that actin MF between the
nucleus and the apex is required for its re-localization.24

Artificially inhibiting the apex-associated nuclear migration

caused growth arrest,24 suggesting an important role of nuclear
positioning in root hair elongation. Because pat4–2 root hairs
are short and with defective AF organization,16 we wondered
whether the apex-associated nuclear positioning was also
affected. To test this hypothesis, we stained root hairs with 4',6-
diamidino-2-phenylindole (DAPI). In wild-type root hairs,
nuclei migrate toward tip during root hair elongation (Fig. 1),

Figure 1. Distribution of microtubule and nuclei in wild-type and pat4–2 root hairs. (A-B) CLSM projections of a growing root hair from Pro35S: GFP-MBD (A) or
Pro35S: GFP-MBD; pat4–2 (B). (C-D) A representative primary root of wild-type (C) or pat4–2 (D) seedlings at 4 d after germination (DAG) stained with DAPI. (E) Distance
between nucleus and the apex. (F) Relative distance the nucleus traveled (distance between the nucleus and the root hair base fractionated with root hair length). Results
shown in (E) and (F) are means § standard deviation (n D 30). Asterisks indicate significant difference (t-test, P < 0.05). Bars D 10 mm for (A-B); 100 mm for (C-D).
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as reported.24 By contrast, in pat4–2 root hairs, the nucleus
mostly stayed at the base of root hairs rather than coming out
along with root hair growth (Fig. 1). Even taken the reduced
length of pat4–2 root hairs into consideration, nuclear migra-
tion was much more reduced in pat4–2 than that in wild type
(Fig. 1).

The significance of apex-associated re-localization of
nucleus during root hair growth is not clear. A most obvious
benefit of such positioning is to achieve local transcription to
serve the needs of rapid cell elongation. Disrupting AFs abol-
ished nuclear re-localization during root hair growth24 and we
showed here that functional loss of PAT4, which associates
with reduced ROP signaling, affected nuclear migration. It will
be interesting in the future to explore the possibility whether
and how ROP-mediated AF dynamics participate in nuclear
positioning during polarized cell growth in plants.
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