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Capitalizing on recent advances in resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) and the distinctive paradigm
of rapid mood normalization following ketamine treatment, the current study investigated intrinsic brain networks in major depressive
disorder (MDD) during a depressive episode and following treatment with ketamine. Medication-free patients with MDD and healthy
control subjects (HC) completed baseline rs-fcMRI. MDD patients received a single infusion of ketamine and underwent repeated rs-fcMRI
at 24 h posttreatment. Global brain connectivity with global signal regression (GBCr) values were computed as the average of correlations
of each voxel with all other gray matter voxels in the brain. MDD group showed reduced GBCr in the prefrontal cortex (PFC) but
increased GBCr in the posterior cingulate, precuneus, lingual gyrus, and cerebellum. Ketamine significantly increased GBCr in the PFC and
reduced GBCr in the cerebellum. At baseline, 2174 voxels of altered GBCr were identified, but only 310 voxels significantly differed
relative to controls following treatment (corrected a < 0.05). Responders to ketamine showed increased GBCr in the lateral PFC, caudate,
and insula. Follow-up seed-based analyses illustrated a pattern of dysconnectivity between the PFC/subcortex and the rest of the brain in
MDD, which appeared to normalize postketamine. The extent of the functional dysconnectivity identified in MDD and the swift and robust
normalization following treatment suggest that GBCr may serve as a treatment response biomarker for the development of rapid acting
antidepressants. The data also identified unique prefrontal and striatal circuitry as a putative marker of successful treatment and a target for

antidepressants’ development.

INTRODUCTION

Resting-state functional connectivity magnetic resonance
imaging (rs-fcMRI) is a powerful tool for interrogating
in vivo large-scale brain networks in health and disease
(Anticevic et al, 2012). Major depressive disorder (MDD), a
debilitating mental illness with high rates of treatment non-
response, shows widespread dysconnectivity as measured by
rs-fcMRI (Kaiser et al, 2015). Early studies have primarily
used seed-based methods to identify altered networks in
MDD (Kaiser et al, 2015). Such approaches are limited by the
need for a priori selection of a seed area, and novel analyses
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have been developed to conduct fully data-driven assessment
of whole-brain connectivity without the need for seed
selection (Bullmore and Sporns, 2009; Menon, 2011). Here
we used a recently implemented and optimized graph-based
measure, termed global brain connectivity with global signal
regression (GBCr), to quantify functional dysconnectivity
measured via resting-state blood-oxygen-level-dependent
(BOLD) fMRI in MDD patients (Cole et al, 2011). We
examined GBCr at baseline during a depressive episode and
24 h following administration of a novel putative rapidly
acting antidepressant, ketamine.

Ketamine, an N-methyl-D-aspartate receptor (NMDAR)
antagonist, exerts rapid antidepressant effects with a
response rate of 50-60% in treatment-resistant MDD
patients. The peak response rates have been reported within
24h after administration of a single subanesthetic dose
(typically 0.5mg/kg) (Murrough et al, 2013; Zarate et al,
2006). This rapid mood effect, even in chronic and severely
depressed patients, offers a unique pharmacoimaging para-
digm to investigate the neural correlates of antidepressant
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response as well as to determine state vs trait brain
abnormalities in MDD. This pharmacological paradigm also
allows the investigation of the neurobiological mechanisms
hypothesized to underlie depression and antidepressants’
effect. Preclinical models of depression and chronic stress
show prefrontal synaptic dysconnectivity and homeostasis as
the underlying mechanism of depression and rapid acting
antidepressants, respectively (Abdallah et al, 2015). These
studies demonstrate reduced brain neurotrophins, dendritic
arborization, spine density, and synaptic strength following
chronic stress, which rapidly normalize within 24h of
ketamine treatment (Duman and Aghajanian, 2012). Con-
sistent with this model, central (eg reduced hippocampal
volume) and peripheral abnormalities (eg, reduced brain-
derived neurotrophic factor (BDNF)) have been demon-
strated in depression and other stress-related psychiatric
disorders (MacQueen and Frodl, 2011; Sen et al, 2008). In
addition, synaptic strength enhancement following ketamine
treatment was recently reported in humans and was related
to increased BDNF and treatment response in depressed
patients (Duncan et al, 2013). It remains unknown, however,
if the rapid enhancement of synaptic structure and function
observed in animal models following ketamine can be
demonstrated in humans at the level of functional con-
nectivity in patients with depression.

Studies in depression have reported functional connectiv-
ity abnormalities within the prefrontal cortex (PFC) and
other cortical and subcortical regions. However, owing to the
significant heterogeneity of approaches and findings, the
essential network alterations in MDD have yet to be
determined (Kaiser et al, 2015). In an effort to implement
a simple, robust biomarker of intrinsic brain networks and to
circumvent some of the seed-based analysis limitations, here
we used GBCr to quantify brain dysconnectivity in MDD
and to relate these abnormalities to rapid mood normal-
ization following treatment in a fully data-driven manner.
Accumulating evidence indicates that GBCr is a valid
biomarker of large-scale intrinsic brain networks. GBCr
correlates with normal brain functions (eg, cognition) (Cole
et al, 2012) and with regional cerebral blood flow (rCBF)
(Liang et al, 2013). Moreover, GBCr has been successfully
used to identify alterations across major networks in clinical
conditions. Reduced PFC GBCr was reported in bipolar,
chronic schizophrenia, and obsessive-compulsive disorders;
all of which harbor a strong component of chronic stress and
were previously related to glutamate synaptic homeostasis
(Anticevic et al, 2013; Anticevic et al, 2015a; Anticevic et al,
2014; Cole et al, 2011). Additionally, ketamine has been
repeatedly shown to increase PFC GBCr during ketamine
infusion in healthy volunteers (Anticevic et al, 2015a;
Driesen et al, 2013a; Driesen et al, 2013b).

Based on the above data, we hypothesize that patients with
MDD in a current depressive episode will show GBCr
alterations relative to HC, in particular, reduced PFC GBCr.
We hypothesize that the rapid mood normalization following
ketamine treatment would parallel a phenomenon of
functional connectivity normalization and that the increases
in PFC GBCr would be associated with the ketamine
antidepressant response.
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MATERIALS AND METHODS
Subjects

The current study enrolled male and female individuals aged
21-65 years with MDD and healthy control volunteers (HC).
Enrollment and treatment procedures have been previously
reported (Murrough et al, 2015). Study criteria included
negative urine drug screen, no unstable medical illness, and
no MR contraindication. MDD patients had to have failures
of two adequate antidepressant trials as determined by a
standardized questionnaire, be antidepressants/antipsycho-
tics-free for at least 1 week prior to imaging (as needed
benzodiazepines were allowed but withheld the day of each
scan), and meet criteria of current major depressive episode
with MDD diagnosis as determined by a structured clinical
interview. Patients were in a current depressive episode as
determined by the SCID-IV and at least moderate severity
with score of >32 on the Inventory of Depressive
Symptomatology—Clinician Rated. Current alcohol or sub-
stance abuse disorder and lifetime history of bipolar or
psychotic disorder were exclusionary. HC were free of
lifetime psychiatric illness.

Study Procedures

Following medical and psychiatric assessment, eligible
participants completed baseline structural MRI and
rs-fcMRI scans (see Supplementary Figure S1). Within a
week of baseline scans, ketamine 0.5 mg/kg infusion over
40 min was administered intravenously to MDD participants
as previously described (Murrough et al, 2015). Briefly,
patients were admitted to a clinical research unit; an
indwelling catheter was placed in the antecubital vein of
the non-dominant arm, and pulse, blood pressure, digital
pulse oximetry, and ECG monitoring were instituted. An
anesthesiologist administered ketamine hydrochloride via an
infusion pump and patients were discharged home following
a 4h recovery period. MDD patients underwent a repeated
rs-fcMRI scan 24h after ketamine infusion. Depression
severity, at baseline and 24 h after ketamine, was determined
by independent raters blinded to the treatment using the
clinician-administered Montgomery-Asberg Depression
Rating Scale (MADRS). Patients were divided into respon-
ders and non-responders to treatment. As widely accepted,
depression response was defined as >50% reduction in
MADRS scores (Trivedi et al, 2006).

Neuroimaging Data Acquisition

Philips Achieva 3.0 T X-series MRI using an eight-channel
birdcage head coil for radio frequency transmission and
reception was used. High-resolution T1-weighted images
were collected using a three-dimensional turbo field echo
sequence (3D_TFE; repetition time=7.5ms; echo time
=3.5ms; voxel dimensions=1x1x1mm?’ field of
view = 224 x 224 mm’; flip angle: 8°) and 172 sagittal slices.
Participants were instructed to rest with their eyes open
during the resting-state scan. Resting-state functional
data based on the BOLD signal was acquired using a
T2*-weighted gradient echo-planar imaging sequence
(repetition time=2000ms; echo time=26.6ms; voxel
dimensions =2.2x22x3.25mm?% field of view=210x
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GBCr alterations in MDD at baseline and following ketamine treatment. Clusters mark brain regions with significant GBCr reduction (blue) or

increase (red—yellow) in MDD compared with HC prior to ketamine treatment (a) and 24 h after intravenous infusion of ketamine (b) (whole-brain voxel-
wise independent t-test with corrected a < 0.05). The prefrontal cortex region is labeled with a black line. HC, healthy controls; GBCr, global brain connectivity
with global signal regression; MDD, major depressive disorder. A full color version of this figure is available at the Neuropsychopharmacology journal online.

210 mm? flip angle =90° 120 frames) and 38 contiguous
and ascending near-axial slices parallel to the intercommis-
sural (AC-PC). Following the resting-state acquisition, task-
based fMRI and diffusion tensor imaging scans were
acquired during the same session. Only the resting-state
data were examined in the current report.

GBCr Values

Details of GBCr methods were previously described
(Anticevic et al, 2013; Anticevic et al, 2015a; Anticevic
et al, 2014; Anticevic et al, 2015b; Cole et al, 2011; Cole et al,
2012; Driesen et al, 2013a; Driesen et al, 2013b) (see
Supplementary Information). GBCr value for each voxel is
the average of the correlation between the BOLD time series
of a voxel and all other gray matter voxels in the brain. In
graph theory terms, Global Brain Connectivity (also known
as Functional Connectivity Strength; Liang et al, 2013) is
considered a measure of nodal strength of a voxel in the
whole brain network—determining brain hubs and examin-
ing the coherence between a local region and the rest of the
brain (Cole et al, 2010).

Statistical Analyses

For additional details, see Supplementary Information.
Briefly, demographic differences between the study groups
were examined using t-test and chi-square. Paired t-test
examined the effect of treatment on depression severity and
on GBCr. Independent t-tests were conducted to compare
voxel-wise GBCr and seed-based maps between groups. Type
I error correction was based on peak and cluster extent. All
tests are two-tailed with significance set at p <0.05.

RESULTS
Clinical Characteristics

Eighteen MDD and 25 HC participants successfully com-
pleted all the study procedures. Age, gender, race, and
education did not differ between groups (see Supplementary
Table S1). MDD patients on average had a chronic and
treatment-refractory course of illness (Supplementary Table
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S1). Following ketamine treatment, 10 (56%) MDD patients
achieved response. Paired t-test showed a significant effect of
treatment on depression severity; delta MADRS =14.2 + 1.9,
t=7.6, df=17, p=0.000001 (Supplementary Figure S2).

GBCr Values Preketamine and Postketamine

Prior to treatment, whole-brain comparison revealed wide-
spread dysconnectivity in MDD (Figure la; Supplementary
Figure S3). Altered GBCr voxels were spread over 12 clusters
(Table 1). Seven clusters, all of which in the PFC, showed
significant reduction in GBCr in MDD compared with HC
(Table 1).

Following treatment, GBCr abnormalities of increased or
reduced GBCr in MDD were divided over three small
clusters (Figure 1b; Supplementary Figure S3; Table 1).
Examining the changes in GBCr over the treatment period, a
paired t-test revealed significant increases in the right lateral
PFC and reductions in the left cerebellum (Supplementary
Figure S4; Table 1).

GBCr and Treatment Response

Delta GBCr (postketamine — preketamine) was compared
using t-test between responders and non-responders. Re-
sponders showed higher delta GBCr values in the right lateral
PFC and the left anterior insula (Supplementary Figure S5).
To further assess the robustness of the findings, the results
were confirmed by a non-parametric test with 5000
permutations that showed similar clusters (data not shown).

Preketamine showed no GBCr differences between future
responders and non-responders. However, postketamine
comparison revealed five clusters of significantly higher
GBCr in responders compared with non-responders. These
clusters were found in the left and right caudate, left and
right lateral PFC (IPFC), and left middle temporal (Figure 2).
To illustrate, at the individual level, the spread of GBCr
changes in these clusters, we plotted the average delta GBCr
(posttreatment — pretreatment) for each of the five clusters in
relation to percentage of improvement in MADRS scores
(Figure 2).
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Table | GBCr Alteration in MDD at Baseline and 24 h Following Ketamine Treatment

Region Side Coordinates Cluster size HC GBCr MDD GBCr Effect size
(peak) (mm?®) (mean + SEM) (mean + SEM) (Cohen’s d)

Preketamine MDD <HC

Superior medial frontal R 4,24, 52 320 0.39+007 —0.14+0.11 —1.38

Lateral PFC R 42,44, 12 266 061 +0.06 0.17+0.07 - 147

Lateral PFC L —30,42, 32 226 045 +0.08 —0.08+0.12 - 124

Superior medial frontal L —6, 34,26 202 0.39 +0.07 —=0.15+0.14 =121

Lateral PFC R 50, 26, 30 180 0.58+0.06 0.10£0.07 - 156

Superior medial frontal R 24, 0, 60 174 0.54+0.05 0.09 +0.08 — 155

Lateral PFC R 40, 28, —4 144 0.38+0.05 —0.02+008 - 149
Preketamine MDD >HC

Cerebellum L —30,—80, —24 1746 -025+007 036 +0.09 1.70

Cerebellum R 8 —78 —16 350 -021+0.10 037+0.09 1.37

Precuneus LR -2,-70,—6 292 0.18+0.07 0.70+0.07 1.67

Posterior cingulate LR 0, —32, 26 226 -0.17+0.10 038 +0.09 |21

Lingual L -2,-90, - 16 222 0.08+0.08 063009 1.37
Postketamine MDD < HC

Lateral orbitofrontal R 12, 16, =22 176 —001 £007 -051+£0.09 - 137
Postketamine MDD > HC

Cerebellum L —28,-78,—22 292 -038+0.10 0.30+0.11 1.42

Cerebellum L —10, —86, —22 152 —040+0.09 021 +0.13 1.26
Postketamine MDD > preketamine MDD Preketamine Postketamine

Lateral PFC R —32,50,20 430 —004+0.10 0.39+0.09 I.13
Postketamine MDD < preketamine MDD

Cerebellum L 16, —64, —26 280 0.38£0.07 -001£0.10 - 114

Cerebellum L 22,-70,—22 200 0.86+0.06 047+0.08 - 138

Abbreviations: HC, healthy control; L, left; MDD, major depressive disorder; PFC, prefrontal cortex; R, right.

Exploration of GBCr Distributions Preketamine and
Postketamine

To explore the spread of GBCr abnormalities in MDD at
baseline and following treatment, we extracted the absolute
z-values of all brain voxels showing GBCr alterations
preketamine or postketamine (Figure 3a). Preketamine
MDD vs HC comparison showed GBCr abnormalities in a
total of 2174 voxels (ie, reduced or increased GBCr in MDD
with corrected ¢ <0.05). In the postketamine MDD vs HC
comparison, 310 voxels differed between groups, of which
123 voxels overlapped with baseline comparison (Figure 3a).

To further delineate the distribution of GBCr alteration in
the PFC, we plotted the average GBCr of each PFC voxel
across all subjects in each study group. As shown in
Figure 3b, comparison of PFC GBCr distributions of
preketamine MDD vs HC showed a left shift of large effect
size reduction in PFC GBCr values in the MDD group,

Cohen’s d=0.95, CI=(0.91, 0.99). The PFC GBCr distribu-
tions postketamine in responders vs HC largely overlapped
with remaining smaller effect size left shift, Cohen’s d =0.46,
CI=1(0.43, 0.50) (Figure 3c). However, similar to preketa-
mine, we noticed postketamine a large effect size of left shift
PFC GBCr distribution in non-responders compared with
HC, Cohen’s d=0.92, CI=(0.87, 0.97) (Figure 3d).

Exploratory Seed-Based Analyses

To provide preliminary data illustrating the circuitry under-
lying GBCr alterations, we conducted two follow-up seed-
based analyses. The first analysis used data-independent
a priori seeds in the affective (subgenual anterior cingulate
cortex (sgACC)), cognitive control (dorsolateral PFC
(DLPFEQ)), and default mode networks (posterior cingulate/
precuneus (PCC)). In this analysis, the MDD group showed
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Individual variation in delta GBCr. This figure depict the spread at the subject level of both the percentage of improvement of depressive

symptoms and the average GBCr changes in each of the five clusters identified in the responders vs non-responders analysis. The gray area is the 95%
confidence band of the best-fit line. Clusters' locations are shown in right lower panel. GBCr, global brain connectivity with global signal regression; IPFC, lateral

prefrontal cortex; MADRS, Montgomery—Asberg Depression Rating Scale.

an increase in connectivity within the PFC, in contrast
with a reduction in connectivity between the PFC and the
rest of the brain (Figure 4a-c). Ketamine significantly
reduced the connectivity within the PFC and enhanced
connectivity between the PFC and other brain regions
(Figure 4d-f).

The second analysis used data-dependent seeds of the four
clusters in the IPFC and caudate (Figure 2), which showed
increased GBCr in responders. Compared with non-respon-
ders, postketamine seed-based analysis revealed increased
IPFC and caudate connectivity with several brain regions
outside the PFC/subcortex. However, responders showed
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lower connectivity within the PFC and subcortical regions
(Supplementary Figure S6).

DISCUSSION

We found reduced GBCr within the PFC in patients with
MDD compared with healthy subjects and this largely
normalized 24 h following ketamine. Responders to ketamine
treatment evidenced more robust increases in PFC, caudate,
and insula GBCr compared with non-responders, implicating
enhancement of GBCr in the antidepressant mechanism of
action of ketamine. High GBCr values in preketamine MDD



Ketamine and GBCr in depression
CG Abdallah et al

N 300 b 3000
P B Pre-Ketamine vs HC (2174 voxels) Cohen’sd =095 st
g 250 | B Post-Ketamine vs HC (310 voxels) || 2500 | dfmm—
>
S 200 | «» 2000
Q [
@ S
9O 150 £ 1s00
s 5
2 100 f * 1000
<
O 50¢ 500
£
0 o
25 3 35 4 06 -04 -D2 0 02 04 06 08 1
Absolute Z Values Pre-Ketamine GBCr
c d
3000 3000
Cohen’sd =046 Cohen’sd=0.92
2500 | Af— 2500 | Af— Il PFC of Non-Responders
» 2000 b K]
:
> 1500 | =
o) o
% 1000 | E.3
500
0
06 -04 -02 0 0.2 0.4 0.6 0.8 1 06 -04 -02 0 0.2 0.4 0.6 0.8 1
Post-Ketamine GBCr Post-Ketamine GBCr

Figure 3 Distributions of GBCr at baseline and following ketamine treatment. (a) Distributions of absolute z-values of voxels showing significant reduction
or increase of GBCr in MDD compared with HC prior to ketamine treatment (red) or 24 h after intravenous infusion of ketamine (blue). Although both
distributions largely overlapped, the numbers of altered GBCr were numerically higher preketamine in each bin of the absolute z-values up to z~ 3.5. Of the
310 significant voxels postketamine, 123 were altered at baseline and 187 differed between groups only at the 24 h time point. (b) Distributions of GBCr in
the anatomically defined PFC (delineated in Figure I) in MDD and HC prior to ketamine treatment. The histograms depict comparable normal distributions in
both groups with large effect size left shift in MDD reflecting overall reduction in PFC GBCr. (c and d) Distributions of PFC GBCr in HC and MDD responders
(c) or MDD non-responders (d) 24 h after infusion of ketamine. The histograms reveal large overlap between the PFC GBCr distributions of HC and MDD
responders (c). However, MDD non-responders continued to show large effect size left shift, suggesting a lack of normalization of PFC GBCr in this subgroup.
GBCr, global brain connectivity with global signal regression; HC, healthy controls; MDD, major depressive disorder; PFC, prefrontal cortex. A full color version
of this figure is available at the Neuropsychopharmacology journal online.

Pre-Ketamine vs. Healthy

Pre- vs. Post-Ketamine

Figure 4 Seed-based connectivity alteration in the affective (AN), cognitive Control (CCN), and default mode networks (DMN). (a—c): Clusters mark brain
regions with significant connectivity reduction (blue) or increase (red—yellow) in MDD compared with HC at baseline. (d—f) Clusters mark brain regions with
significant connectivity reduction (blue) or increase (red—yellow) in following ketamine treatment. The prefrontal cortex region is labeled with a black line. The
seeds’ locations are marked with green circles. The empty black circles locate the dorsal nexus area. DLPFC, dorsolateral prefrontal cortex; HC, healthy
controls; MDD, major depressive disorder; PCC, posterior cingulate and precuneus area; sgACC, subgenual anterior cingulate cortex. A full color version of
this figure is available at the Neuropsychopharmacology journal online.
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compared with HC were found in the posterior cingulate,
precuneus, and occipital cortices; all of which normalized
following treatment. Large clusters of high GBCr were also
found in the cerebellum, which only partially normalized
following treatment. Although baseline GBCr was not related
to treatment response, postketamine GBCr distinguished
brain regions, which showed increased GBCr in responders
compared with non-responders (Figure 2). Of note, given the
very short half-life of ketamine and its active metabolite
norketamine (both <2h), our functional imaging results at
24 h are not confounded by the presence of ketamine.

A working model of depression and chronic stress
proposes prefrontal glutamate synaptic dysconnectivity as a
key underlying neural correlate of depression. In this model,
antidepressants exert their effects—at least in part—by
restoring synaptic homeostasis in the PFC and other brain
regions critical to emotion regulation (Abdallah et al, 2015).
In the current study, the rapid normalization of functional
connectivity following successful treatment with ketamine
suggests at least two possibilities. The first interpretation is
that the observed GBCr abnormalities are state dependent
and are likely to normalize with successful treatment
regardless of the specific treatment modality, be it a rapidly
acting drug, traditional antidepressant, psychotherapy, or
placebo. The second possibility is that GBCr abnormalities
are at least partially trait-dependent and related to the
etiology of depression; however, the unique mechanisms of
ketamine normalized these large-scale abnormalities. These
possibilities are not necessarily mutually exclusive, consider-
ing the widespread abnormalities and the differential
normalization in connectivity across different brain regions.
In addition, neurobiological mechanisms of mental disorders
such as MDD are likely complex and involve interacting
circuitry and molecular alterations (Drevets et al, 2008;
Mayberg, 2003). However, concurring with the mathemati-
cian George Box that ‘all models are wrong but some are
useful’, we believe that these working hypotheses provide
insight into valuable mechanistic questions to be further
explored in future studies.

(1) Is GBCr normalization unique to ketamine treatment?
A definitive answer could be obtained in future studies
including placebo and traditional antidepressant arms to
compare with ketamine (see Supplementary Information).
Prior evidence suggests that traditional antidepressants may
reverse some intrinsic network abnormalities identified using
seed-based analyses or other approaches (Wang et al, 2015).
However, the swift and robust connectivity networks’
normalization revealed in this study were not previously
observed.

(2) What is the relationship between GBCr abnormalities
and synaptic dysconnectivity? Although speculative in
nature, our working hypothesis is that GBCr—under certain
circumstances—may reflect overall synaptic strength in a
brain region. Considering the tight coupling between
synaptic strength, glutamate cycling, and neuroenergetics
(Abdallah et al, 2014; Hyder et al, 2013), it is important to
highlight that GBCr has been found to positively correlate
with rCBF (Liang et al, 2013). Similarly, other GBC-type
measures were positively associated with rCBF and cerebral
metabolic rate of glucose (Liang et al, 2014; Tomasi et al,
2013). In this context, the observed PFC reduction in GBCr
could be an indirect measure of chronic stress-induced
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synaptic dysconnectivity. Consistent with this hypothesis is
the rapid normalization, in the current study, of GBCr
following ketamine, which is known to rapidly restore
synaptic homeostasis in animal models (Li et al, 2011).
Moreover, the GBCr changes were associated with treatment
response, which parallel prior evidence showing that the
normalization of synaptic connectivity is necessary for
successful  antidepressant treatments (Duman and
Aghajanian, 2012; Gorman and Docherty, 2010).

Prefrontal GBCr reduction has been observed in several
chronic psychiatric disorders (ie, bipolar, obsessive-compul-
sive, and schizophrenia), all of which are influenced by
chronic stress (Anticevic et al, 2013; Anticevic et al, 2014;
Cole et al, 2011). Acute stress has been found to increase
synaptic strength (Yuen et al, 2009; Yuen et al, 2011). In
contrast, chronic stress is believed to precipitate glutamater-
gic dysregulation, leading to increased extracellular gluta-
mate, and excitotoxicity, with subsequent synaptic
dysconnectivity and reduced synaptic strength (Bessa et al,
2009; Kang et al, 2012; Yuen et al, 2012). Intriguingly, early-
course schizophrenia patients were found to have increased
PFC GBCr (Anticevic et al, 2015a; Anticevic et al, 2015b).
However, following a long course of illness, chronic
schizophrenia patients showed significant reduction in PFC
GBCr (Anticevic et al, 2015a; Cole et al, 2011). These
observations suggest the possibility of increased overall
glutamate synaptic strength early in the course of the
disorder, comparable to NMDA antagonists’ effect—which
temporally increase glutamate activities as well as GBCr in
healthy volunteers (Anticevic et al, 2015a; Driesen et al,
2013a; Driesen et al, 2013b; Rowland et al, 2005; Stone et al,
2012). However, the chronic glutamate activation—owing to
NMDA hypofunction and/or psychopathology-related
stress—precipitates PFC synaptic dysconnectivity and GBCr
reduction (Krystal and Anticevic, 2015). Together these data
support a relationship between GBCr and underlying
synaptic strength; however, the circumstances under which
this relationship is maintained and the nature of this
relationship (causal vs correlational) remain to be ascer-
tained in future studies.

(3) To what extent are the observed GBCr abnormalities
specific to MDD, rather than reflecting a nonspecific effect
of chronic stress? As described above, it is plausible that
GBCr abnormalities are at least partially related to the
detrimental effects of chronic stress on synaptic homeostasis.
However, this proposed phenomenon is unlikely to
explain all the observed GBCr abnormalities in MDD. The
interaction between the effects of chronic stress and the
unique psychopathology of disorders is likely to lead to
differential intrinsic network dysconnectivity, resulting in
disease-specific regional abnormalities. For example,
although the GBCr alterations were reported in the frontal
region of various stress-related psychiatric disorders, there
appear to be limited overlap between the locations of
abnormal clusters (Anticevic et al, 2013; Anticevic et al,
2015a; Anticevic et al, 2014; Cole et al, 2011). In addition,
some regional GBCr abnormalities may be disease specific,
eg, putamen in obsessive-compulsive disorder (OCD)
(Anticevic et al, 2014). Similar to the current findings in
MDD, the increase in cerebellar GBCr was found in OCD
(Anticevic et al, 2014). However, the posterior cingulate and
precuneus clusters—which may reflect alterations in default



mode subnetworks—appear to be specific to MDD. It
remains to be demonstrated in future study the distribution
of GBCr abnormalities in other stress-related disorders, eg,
posttraumatic stress disorder (PTSD).

(4) What are the long-term effects of ketamine on GBCr?
It is important to highlight that the observed GBCr changes
were demonstrated at a single time point and that they
occurred following a single infusion of ketamine. Thus it is
not known for how long the GBCr changes would last and
whether repeated ketamine would have comparable effects.
To the extent the observed GBCr changes are related to
depression relief and to the ketamine-induced synaptogen-
esis, we speculate that GBCr changes could last for about
10 days; that is the approximate length of antidepressant
response in humans (Bobo et al, 2016) and of the
synaptogenic effects in rodents (Duman, 2014). Frequent
daily administration of ketamine could lead to repeated
glutamate surge, increased extracellular glutamate, excito-
toxity, and synaptic dysconnectivity comparable to chronic
stress models of depression (Abdallah et al, 2015), consistent
with clinical data showing impaired cognition and depressive
symptomatology in ketamine abusers (Fan et al, 2016;
Morgan et al, 2012). However, much more human research
in necessary to determine the long-term safety and efficacy of
ketamine, which is not currently FDA approved for
depression treatment.

(5) What circuits are putatively involved in successful
antidepressant treatment? Supporting previous reports, we
found increased sgACC and DLFPC connectivity (which
normalized following treatment) with the dorsomedial PFC,
an area termed the dorsal nexus and previously implicated in
the pathophysiology and treatment of MDD (Scheidegger
et al, 2012; Sheline et al, 2010). Integrating the GBCr and
seed-based results, we hypothesize that during depression the
brain connectivity balance is altered in favor of short
distance connectivity within the PFC/subcortex, combined
with long distance disconnect with the rest of the brain.
Ketamine normalizes this PFC/subcortex dysconnectivity, by
enhancing long distance connectivity and restoring the
central role of the PFC in global functions. Consistent with
this model, the current study identified specific regions in the
IPFC and caudate as neural correlates to successful
treatment, in which these brain regions showed more central
and balanced connectivity in responders. These frontal and
striatal regions have a critical role in higher cognitive control,
in particular, in exploration and goal-directed behavior
(Koechlin et al, 2000; Wang and Voss, 2014). Thus it is
plausible that the enhanced engagement of these frontos-
triatal regions underlies the behavioral shift from depression,
withdrawal, and rumination to exploratory and externally
focused behavior following recovery.

Limitations

This study has several limitations. Given the comorbidity of
anxiety disorders in the study sample, it is conceivable that
anxiety pathology contributed to the GBCr alterations. Also,
given the short medication-free period, we cannot rule out
the presence of residual effects from prior antidepressant
use on GBCr. Although age did not differ statistically
between groups (p =0.88), numerically the MDD group was
4 years older than the HC group. The short rs-fcMRI scan
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acquisition is a limitation. Although short resting-state
acquisition has previously been shown sufficient (Van Dijk
et al, 2010), considering recent findings and advances in
addressing motion artifacts, future studies would benefit
from longer acquisition time (eg, 3 x5 min sessions) (Birn
et al, 2013). Another limitation is the relatively small sample
size in the response analysis; thus this finding should be
considered preliminary. GBC without global signal regres-
sion (GBCnr) failed to detect abnormalities in MDD (see
Supplementary Information). It is plausible that GBCr-
enhanced sensitivity provided increased power to detect
differences in the current cohort. It remains to be determined
in future larger studies the utility of GBCnr as a biomarker in
ketamine-MDD research. Finally, we speculated about the
potential mechanisms of GBCr abnormalities and normal-
ization; however, the current report did not per se investigate
the underlying mechanisms. Considering the current find-
ings, future studies are encouraged to employ a multimodal
approach investigating the structural (eg, diffusion weighted
imaging), chemical (eg, synaptic density using SV2A tracer
or glutamate cycling using 13C spectroscopy), and functional
(eg, task-based fMRI) correlates of GBCr alterations.

The findings of the current report support the use of the
GBCr approach to successfully identify intrinsic network
dysconnectivity in MDD patients, and provides preliminary
evidence regarding the utility of GBCr as a biomarker of
target validation for drug development.
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