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A fast and accurate method for detection of IBD shared
haplotypes in genome-wide SNP data

Douglas W Bjelland1, Uday Lingala1, Piyush S Patel1, Matt Jones2 and Matthew C Keller*,1,2

Identical by descent (IBD) segments are used to understand a number of fundamental issues in genetics. IBD segments are

typically detected using long stretches of identical alleles between haplotypes in phased, whole-genome SNP data. Phase or

SNP call errors in genomic data can degrade accuracy of IBD detection and lead to false-positive/negative calls and to under/

overextension of true IBD segments. Furthermore, the number of comparisons increases quadratically with sample size, requiring

high computational efficiency. We developed a new IBD segment detection program, FISHR (Find IBD Shared Haplotypes

Rapidly), in an attempt to accurately detect IBD segments and to better estimate their endpoints using an algorithm that is fast

enough to be deployed on very large whole-genome SNP data sets. We compared the performance of FISHR to three leading IBD

segment detection programs: GERMLINE, refined IBD, and HaploScore. Using simulated and real genomic sequence data, we

show that FISHR is slightly more accurate than all programs at detecting long (43 cM) IBD segments but slightly less accurate

than refined IBD at detecting short (~1 cM) IBD segments. More centrally, FISHR outperforms all programs in determining the

true endpoints of IBD segments, which is crucial for several applications of IBD information. FISHR takes two to three times

longer than GERMLINE to run, whereas both GERMLINE and FISHR were orders of magnitude faster than refined IBD and

HaploScore. Overall, FISHR provides accurate IBD detection in unrelated individuals and is computationally efficient enough to

be utilized on large SNP data sets 460 000 individuals.
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INTRODUCTION

Identical by descent (IBD) shared haplotypes – homologous chromo-
somal segments descended from the same common ancestor – have
been used for genotype imputation,1,2 IBD mapping,3 heritability
estimation,4 phase inference,1 and inference of population structure.5,6

Under Haldane’s7 model of recombination, the length of IBD
haplotypes shared between two individuals is exponentially distributed
with mean 100/2 g centiMorgans (cM) where g is the number of
generations since the common ancestor. Although a pair of individuals
sharing a common ancestor 15 generations ago is highly unlikely to
share any IBD haplotypes from that ancestor, when they do, the
expected length of the segment is ~ 3.3 cM. Such IBD shared
haplotypes are typically inferred from long stretches of identical alleles
in phased, whole-genome single nucleotide polymorphism (SNP)
arrays, but accurate and efficient IBD detection from such data is
difficult for several reasons. First, phase and SNP call errors can split
long IBD segments into two or more shorter segments or lead to
artificial truncation of IBD segments, inflating the false-negative (miss)
rates of IBD detection. Second, the sheer number of comparisons that
must be made at each site (~ twice the squared sample size), combined
with the low base rate of true IBD segments between pairs of unrelated
individuals, means that a substantial fraction of called IBD segments
can be false positives. Finally, because of the computational complexity
of IBD detection, algorithms that sacrifice speed for accuracy can be
unusable on the large sample sizes (eg, sample size 450 000 requires
nearly 5 billion comparisons per genomic site) currently being
accumulated. Thus, successful IBD detection programs must

simultaneously meet a number of goals – computational efficiency,
low false-positive rates, low false-negative rates, and accurate detection
of IBD segment endpoints – that typically tradeoff with one another.
Many programs have been developed to discover IBD segments in

SNP data sets when expected pedigree relatedness is low.
GERMLINE,8 often considered the benchmark IBD discovery pro-
gram, is computationally efficient and therefore usable on very large
samples, but the literature has indicated that its accuracy is lower than
more recently developed programs. Because GERMLINE is fast and
can be run in a way that leads to few false-negative calls at the expense
of many false-positive calls, two newer IBD detection programs that
reportedly outperform GERMLINE in accuracy, refined IBD (rIBD)9

and HaploScore,10 use GERMLINE to detect candidate IBD segments
that are then post-processed by extending, removing, or slicing the
candidate segments in the hope of providing more accurate detection
of IBD segments. rIBD uses a probabilistic hidden Markov model to
give locations along candidate IBD segment obtained from GERM-
LINE a posterior LOD score as to whether they are truly IBD or not.
rIBD has a lower false-positive rate than GERMLINE with only a
modest increase in the false-negative rate, but it is computationally
intensive and therefore has a very long run time for large data sets.
HaploScore uses information on the switch error rate and the SNP
error rate to give a posterior probability of whether each candidate
segment from GERMLINE is truly IBD or not.
The current paper describes a new program, FISHR (Find IBD

Shared Haplotypes Rapidly), which improves upon existing IBD
detection programs. Most centrally, as we show below, existing
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programs tend to either overextend true IBD segments or split true
IBD segments into multiple smaller ones. Because such systematic
biases in IBD segment length lead to biased heritability estimates,
incorrect inferences of demographic history, and inaccurate phase/
imputation information near the ends of called segments, our main
goal was to develop an algorithm that accurately estimates endpoints
and true lengths of IBD segments while achieving a computational
efficiency similar to GERMILNE and an accuracy similar to rIBD.

MATERIALS AND METHODS

Description of the FISHR algorithm
FISHR is written in C++ and is freely available for download at https://github.
com/matthew-c-keller/FISHR.git, along with scripts to evaluate IBD detection.
FISHR utilizes GERMLINE (described in detail by Gusev et al.8), as an initial
screen to quickly detect candidate segments. By default, FISHR uses the –

h_extend method in GERMLINE, which incorporates information on phased
mismatches, to detect candidate segments between two individuals or within
individuals (runs of homozygosity). FISHR then further refines the candidate
segments as follows. First, because two long IBD calls separated by a short
distance may actually be a single contiguous IBD segment that was artificially
broken apart in GERMLINE due to phase or SNP call errors, FISHR stitches
together segments separated by a user-defined number of SNPs (-gap). Next,
FISHR finds the locations of ‘implied errors’ (IEs) – likely SNP call or phase
errors – for all called segments. To do this, FISHR finds the longest exact match
between either of the two phased haplotypes of the first person and either of the
two phased haplotypes of the second person (a total of four possible
combinations), starting at the first SNP of the called segment. An IE occurs
at the mismatching SNP after the exact haplotypic match ends. FISHR then
finds the next longest exact match between any of the four possible
combinations of phased haplotypes, starting from the SNP following the
previous IE, and extends until the next mismatching SNP is encountered. This
process continues until the end of the called segment (Supplementary
Figure S1).
IEs represent locations along a candidate segment that are potentially

inconsistent with IBD inheritance. Some IEs are expected by chance due to
SNP and phase errors even in truly IBD segments. However, too many IEs
within a particular region are a likely signal that the segment is not IBD in that
area and that the segment should be truncated (if near an endpoint of the
segment) or split into two (if in the middle of the segment). To determine such
called segment endpoints, FISHR calculates a moving average (MA) of IEs
centered at each SNP within a user-defined window (using the –window flag) of
SNPs. FISHR then starts at the center of the called IBD segment and moves
towards each endpoint until it reaches the first SNP with a MA value greater
than the user-defined maximum (-emp-ma-threshold). These points signal the
endpoints of a called segment. Supplementary Figures S1 and S2 illustrate
the process of calculating MA from a possible IBD segments and determi-
ning the endpoints using MA, respectively. As has recently been investigated,11

one source of error in IBD detection could be the erroneous merging of
separate distinct IBD segments. Therefore, in addition to trimming the segment
ends, this process can split a GERMLINE candidate segment into two or more
shorter segments, depending on the distribution of the MA values. Moreover, if
the flag –count-gap-errors is set to TRUE, as it is by default, segments that had
been stitched together from the first step can be broken up again at this stage if
enough IEs are clustered near the gap. Because segments that are too short, in
terms of either number of SNPs or cM distance, are increasingly likely to be
false positives, FISHR drops segments shorter than user-defined thresholds of
both SNP and cM length (using the –min-snp and –min-cm flags, respectively).
Finally, FISHR calculates the total proportion of SNPs that are IEs (PIE) within
each remaining segment. Too many IEs scattered across the entire length of a
segment are a signal that the whole segment is unlikely to be IBD. Thus, if the
PIE of a segment is greater than the value supplied in the –emp-pie-threshold
argument, the segment is dropped.
Because recombination patterns can differ across populations,14 it is

important that the population used to create the genetic map input by FISHR
corresponds as closely to the study sample as possible to avoid spurious false-

positive and false-negative calls. Furthermore, threshold values for PIE and MA,
as well as values for –bits, –err-hom, and –err-het, depend on the density of
SNPs and the quality of SNP calls and phasing in the data at hand. Poorly called
or poorly phased data would necessitate lower values for the –bits (eg 30) and
higher values for the –err-hom and -err-het (eg 2) arguments to allow the
GERMLINE subroutine to detect a sufficient number of potential IBD
segments. A utility program, parameter_finder, (available for download at
https://github.com/matthew-c-keller/GL.parameter.finder.git) is supplied along-
side FISHR to help users choose values for –emp-pie-threshold and –emp-ma-
threshold, which influence the tradeoff between false positives and false
negatives the most strongly. To do this, parameter_finder provides distributions
of PIE and MA from segments in the user’s data that are truly IBD (defined as
the middlemost 50% of all stretches of the genome48 cM that contained no
opposite homozygotes between pairs of individuals) and similar distributions of
PIE and MA from non-IBD segments (defined as segments between random
pairs of individuals with the same start and endpoints as the truly IBD
segments). Users can then compare the IBD and non-IBD distributions of PIE
and MA (displayed in Supplementary Figure S3) to choose PIE and MA
thresholds that produce a desired sensitivity or specificity, depending on the
users’ priorities.

Simulated sequence and SNP data
We simulated genotypic data using the sequence simulator HAPGEN2,12

which simulated haplotypes by conditioning on a reference set of popu-
lation haplotypes (here, the 1000 Genomes Project13 European ancestry
(CEU) haplotypes of chromosome 15) and created a new population by
combining haplotypes according to a fine-scaled recombination rate map (from
deCODE14). Here, we defined the effective population sizes as 11 418, the
typical value used when simulating individuals of European descent,15 and the
sample size (defined as ‘controls’ in HAPGEN2) as 13 000. For computational
efficiency, we created 13 independent data sets of 1000 individuals each and
averaged all results across these 13 replicates. The data had LD, haplotype
diversity, and allele frequency distributions that mimic those in the initial set of
haplotypes.
We used the perfectly phased, simulated sequence data with no errors

obtained from HAPGEN2 to obtain ‘true IBD segments.’ To increase
computational efficiency and ensure that rare mutations that arose on a
haplotype since the common ancestor did not cause a true IBD segment to be
missed, we pruned this sequence data to have MAF40.05, resulting in a density
of ~1 variant per 1000 base pairs. To create data that mimicked post–quality-
control SNP data on existing platforms, we then extracted SNPs pseudo-
randomly such that the MAF distribution was ~uniform and the density of
SNPs was one per 6750 base pairs (corresponding to~ 400 000 SNPs genome-
wide). To simulate SNP call errors, we randomly changed one allele to its
alternative allele at a rate of 0.2%, roughly the average error rate of what has
been found empirically for SNP calls.16–19 Finally, we unphased the SNP data
and rephrased it using SHAPEIT2.20

Positive predictive value (PPV) and sensitivity were the two main metrics
used in determining accuracy of called IBD segments (illustrated in
Supplementary Figure S4). PPV was calculated as the length of the overlap
between called and true segments, divided by the length of the called segment.
Values for each called segment were then averaged, weighted by the base pair
length. Sensitivity was calculated as the length of the overlap, divided by the
length of the true segment. Then, values for each true segment were averaged,
weighted by length in base pairs.

Real sequence data
We also compared performance of the IBD detection algorithms using the
UK10K ALSPAC sequence data on 1872 unrelated individuals.21 In this data,
we utilized four subchromosomes (5q, 9q, 14q, and 20q) and removed markers
with less than a 1% MAF, markers in violation of Hardy–Weinberg equilibrium
with p-values of less than 0.0001, and markers that contained missing data for
any individuals. We then extracted 58 024 SNPs from four subchromosomes
(5q, 9q, 14q, and 20q) that were on the Illumina 650K SNP panel and phased
this data using SHAPEIT2 for calling segments using each program. We
retained the remaining markers (MAF40.05) on these four chromosomes not
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in the SNP data (an average of one marker per 3000 base pairs) as a holdout
sample to calculate the proportion of opposite-homozygote (OH) SNPs within
called segments.
To determine the accuracy of IBD detection, we calculated the proportion of

OH in and around regions where segments were called by each program. An
OH (eg, an A–A genotype in one individual and a C–C genotype in the other)
at masked markers within and around the called segments can be used to
estimate the programs’ rates of false-positive and false-negative calls and to infer
where called segments over- or underextended true IBD segments.22 Even when
the underlying haplotypes are truly IBD, sporadic mismatching alleles along
these phased haplotypes within a called segment can occur due to SNP errors,
and a string of such mismatches can occur due to one or more phase errors.
However, phase errors cannot cause OH at true IBD locations; only the rare
event of SNP call errors changing a heterozygous SNP to the opposite
homozygous call can cause (very low levels of) sporadic false OH in the data.
Therefore, locations where the rate of OH in holdout markers is high within the
boundaries of called segments suggest regions of false-positive calls (typically
overextended segments), whereas locations where the rate of OH is low outside
the boundaries of called segments suggest regions of false-negative calls
(typically underextended calls). See Supplementary Figure S5 for more details
on how we used OHs to determine the accuracy of IBD detection.

Running the four IBD detection programs
We ran FISHR, GERMLINE, rIBD, and HaploScore on the simulated SNP data
that was phased using SHAPEIT2, varying input parameters to determine the
optimal parameters for discovering IBD segments with minimum lengths of
both 1 and 3 cM for each program (see Table 1). For each program, we then
plotted the PPV against sensitivity using the combination of parameters that led
to results closest to a sensitivity and PPV of 1. As rIBD uses a hidden markov
model for IBD detection, the program can be run multiple times with the
results combined.4 However, multiple runs appear to increase the rate of both
true and false IBD segment detection,4 so it is not clear that this strategy
substantially improves its performance. Moreover, because run time is the
primary limiting factor for using rIBD on large samples, multiple runs would
only be feasible to perform in smaller data sets. We therefore used a single run
of rIBD in these analyses.

RESULTS

Comparison of run times
Table 2 presents the run times (in seconds) of the four programs as a
function of five sample sizes (see also Supplementary Figure S6). We
calculated run times based on the optimal parameters found for each

of the programs as described above. Run times were averaged from
three separate simulated subchromosomes that were on average 16 cM
long and contained 1185 SNPs each. GERMLINE is used as a first step
with user-defined parameters for FISHR and HaploScore, and
internally for rIBD (such that run time for GERMLINE used as the
first stage in rIBD could not be reported). We used three different sets
of GERMLINE parameters specific to (and that optimized perfor-
mance of) GERMLINE, FISHR, and HaploScore.
GERMLINE was the fastest program at any sample size, with FISHR

approximately doubling to tripling its run time at all sample sizes.
Most of the increase in run time for FISHR compared to GERMLINE
was caused by using a smaller minimum cM threshold for the initial
GERMLINE segment discovery, which is necessary in order for FISHR
to stitch together any segments that GERMLINE splits apart. Both
HaploScore and rIBD had run times hundreds to thousands of times
longer than FISHR, with this ratio increasing with larger sample sizes
for rIBD. To gauge how the programs performed on a realistic, large
SNP data set, we also calculated run time on a sample of 17 093
individuals aggregated from four data sets from the NIH Genotype
and Phenotype database. Because IBD detection is typically done in
parallel for each subchromosome arm, we analyzed the longest
chromosome arm, 5q, which contained 19 772 SNPs on the Affy 6.0
SNP array. When the threshold for segment length was set to 1 cM,
GERMLINE took about 1.5 days to run, FISHR took about 6.5 days
(including 5 days, 16 h for GERMLINE initial candidate segment
discovery), whereas both rIBD and HaploScore ran for nearly two
months before the server required maintenance and the processes
were stopped. From extrapolations of the run times on simulated data
(Table 2), we predict that HaploScore would have finished running in
just over two months and rIBD would have required over a year to
finish.

Accuracy of called segments in simulated data
Figure 1a displays PPV and sensitivity where both called and true IBD
segments had minimum lengths of 3 cM, while Figure 1b had IBD
segments with a minimum length of 1 cM. For each program, we
varied thresholds to produce a spectrum of conservative to liberal
segment calling. In particular, we varied the moving average threshold
for FISHR, the minimum LOD score for rIBD, and the bits argument

Table 1 Parameters used for running FISHR, GERMLINE, rIBD, and HaploScore with values used to determine the optimal set of parameters in

brackets

Program Command

FISHR
GERMLINE step -bin_out -err_hom {0, 1, 2, 3} -err_het {0, 1, 2, 3} -reduced -bits {30, 45, 60, 75, 90} -min_m 1.5 -homoz -

Method {-w_extend -h_extend}

FISHR step -min-snp 30 –min-cm 3 -window {25, 50, 75} -gap {0, 1, 30, 60} –emp-ma-threshold {0.025, 0.045, 0.065, 0.085} –emp-pie-threshold

{0.005, 0.015, 0.025} –count-gap-errors {TRUE, FALSE} –output-type finalOutput

GERMLINE -bin_out -err_hom {0, 1, 2, 3} -err_het {0, 1, 2, 3} -bits {30, 45, 60, 90, 120, 150} -min_m 3 {-w_extend, -h_extend} -homoz

rIBD java -Xmx4000m -jar b4.r1196.jar usephase= true ibd= true burnin-its=5 overlap= {100, 157, 200} window=

{7500, 10 000, 12 500} ibdscale= {2.5, 3, 3.16, 3.5} ibdtrim= {11, 16, 21} ibdlod= {1, 2, 3, 4, 5, 6}

HaploScore
GERMLINE step -err_hom {0, 1, 2, 3} -err_het {0, 1, 2, 3} -homoz -bits {30, 45, 60, 90, 120} -min_m 1.5 {-w_extend, -h_extend}

HaploScore step –genotype_error {6e-04, 1.25e-03, 2.5e-03, 1e-02} –switch_error {5e-04, 1e-03, 1.5e-03, 1e-02}

The optimal values for detecting 3+ cM segments in the simulated data are bolded.
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for GERMLINE and HaploScore. At 3 cM minimum segment lengths,
FISHR outperformed every other program with a higher PPV for any
given sensitivity or, alternatively, a higher sensitivity for any given
PPV. At 1 cM minimum, FISHR and rIBD performed similarly and
outperformed both GERMLINE and HaploScore.

By using the same minimum length thresholds (eg, 3 cM) for both
the called and true IBD segments, the results displayed in Figure 1a
and b are highly sensitive to the accuracy of the endpoints of the called
segments, as well as to truncation and splitting errors. For example, all
sensitivity estimates of rIBD in Figure 1a are less than 0.3, below those

Table 2 Run time, in seconds, for GERMLINE, FISHR (including both GERMLINE and FISHR subroutines), HaploScore (including both

GERMLINE and HaploScore subroutines), and rIBD in simulated chromosomes that averaged 16 cM in length with 1185 SNPs, for varying

sample sizes

GERMLINE FISHR HaploScore rIBD

Sample Size Total GERMLINE FISHR Total GERMLINE HaploScore Total Total

500 1.67 2.67 1.19 3.85 1.67 530.69 368.02 187.48

1000 6.13 10.67 3.81 14.48 21.00 1468.72 1475.39 1405.56

2000 23.78 42.67 15.55 58.22 25.67 5800.98 5826.65 17 258.32

4000 92.31 167.00 58.56 225.56 104.33 23 029.38 23 133.71 397 238.55

8000 379.75 677.00 235.82 912.82 1382.67 95 231.45 95 650.45 a

aProgram ran for 1 month (~2 500 000 s) before the server went offline for routine maintenance.

Figure 1 PPV-Sensitivity plots for FISHR (o), GERMLINE ( ), rIBD ( ), and HaploScore ( ) when (a) calculated using a minimum of 3 cM for called IBD
and a minimum of 3 cM for true IBD, (b) when using a minimum of 1 cM for called IBD and a minimum of 1 cM for true IBD, (c) when calculated using a
minimum of 3 cM for called IBD and a minimum of 1.5 cM for true IBD for calculating PPV and using a minimum of 1.5 cM for called IBD and a minimum
of 3 cM for true IBD for calculating sensitivity, and (d) when using a minimum of 1 cM for called IBD and a minimum of 0.5 cM for true IBD for calculating
PPV and using a minimum of 0.5 for called IBD and a minimum of 1 cM for true IBD for calculating sensitivity. Additional measures are present for rIBD ( )
when using a minimum true IBD length of 0.5 cM for PPV and no minimum called cM length for sensitivity (c) and a minimum true IBD length of 0.25 cM for
PPV and no minimum called cM length for sensitivity (d).
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of other programs and below those reported in the manuscript
introducing rIBD.9 As demonstrated below, this is because rIBD tends
to split true IBD segments into multiple, smaller called segments;
when these called segments are shorter than the threshold (eg, 3 cM),
they appear as false negatives. Because the endpoints of segments
called by GERMLINE and especially FISHR are more accurate, the
performances of these programs are not degraded to the same extent.
An alternative definition of sensitivity that is less affected by such

truncation/split errors is to compare all true IBD segments greater
than a length threshold (3 or 1 cM) to all called segments that are at
least half that length (1.5 or 0.5 cM, respectively). Similarly, for PPV,
we compared all called segments greater than 3 or 1 cM to all true IBD
segments greater than 1.5 or 0.5 cM, respectively. Figure 1c and d show
PPV and sensitivity calculated in this way. The performance of all
programs improved but the improvement was greater for programs
that were inaccurate at endpoint estimation than for programs that
were more accurate at endpoint estimation. At 3 cM minimum called
(PPV) and true IBD (sensitivity) segment lengths, FISHR performed
slightly better than GERMLINE or rIBD, whereas at 1 cM minimum
thresholds, rIBD outperformed all programs. Because rIBD uses a
posterior probability instead of a minimum cM length threshold to call
segments, Figure c and d also show rIBD results when no minimum
length was used in calculating sensitivity and when much smaller true
IBD lengths (0.5 cM for Figure 1c and 0.25 cM for Figure 1d) were used
for calculating PPV. The sensitivity values for these instances of rIBD
were improved and show rIBD to be superior to all other programs
with respect to IBD detection accuracy. As demonstrated below, the
improved sensitivity of rIBD when there was no minimum length of
called segments occurred because rIBD often splits long, true IBD
segments into multiple, short called segments.

Accuracy of called segment endpoints in simulated data
As noted above, there is no single best way to define PPV and
sensitivity, as these values depend upon the degree to which the
accuracy of endpoints is defined to affect these metrics (compare
Figures1a and b vs Figure 1c and d). To further quantify accuracy of
endpoint estimation, we divided the length of over- or underextension
of each called segment endpoint by the length of the corresponding
true IBD segment. Figure 2 shows the distribution of these propor-
tions – the degree to which each endpoint was over- or underextended
– when called segments had minimum length of 3 cM and true IBD
segments had minimum length of 1.5 cM (results for 1 cM called and
0.5 cM true thresholds were similar; see Supplementary Figure S7). It
should be noted that using a 3 cM threshold for called and 1.5 cM for
true IBD segments resulted in more accurate and precise IBD calls for
all programs (Supplementary Figure S8 compared to Figure 2). Any
called segment that had no corresponding true IBD segment (false
positive) was given an arbitrary value of 1 and any truly IBD segment
with no corresponding called segment (false negative) was given a
value of − 1. The text to the left of each histogram shows the bias
(defined as the mean proportion), precision (defined as the standard
deviation of the proportion), and accuracy (defined as the standard
deviation from 0 rather than from the mean proportion) when the
false-positive and false-negative calls were included. As these values
measure variation between true and estimated endpoints, values
closest to zero are more desirable.23 Accuracy provides an estimate
of how accurate the called segments are compared to perfect calls with
no under- or overextension, and incorporates information on both
bias and precision (accuracy2= bias2+precision2). FISHR had the most
accurate (0.227 vs 0.250, 0.375, and 0.504) endpoints and was the
most precise (0.227) of all algorithms. FISHR also showed very little

bias (−0.011) with respect to under- or overextending calls. Haplo-
Score (bias= 0.077) tended to overextend segments, whereas GERM-
LINE (bias=− 0.044) and to a greater extent rIBD (bias=− 0.177)
tended to call segments that were shorter than the true IBD segments.
These conclusions remained unchanged when we excluded false-
positive and false-negative calls (reported on the right side of
histograms in Figure 2).

Accuracy of called segment endpoints in real data
All previous results used simulated data where the true IBD segment
endpoints were known within a small margin of error. We used the
proportion of OH (POH) markers from a holdout sample in the
UK10K data set to determine how well the programs detect IBD
segment endpoints in real data. Figure 3 shows an example of a region
where all four programs called a segment between two individuals and
the locations where OH occurred in the holdout sequence data.
Figure 3 also shows OHs at holdout markers between a pair of
randomly selected individuals who are ostensibly non-IBD at this
location. Given the highly discrepant rate of OH between the focal pair
and the random pair, we conclude that a true IBD segment existed
between the focal individuals at this region, and the endpoints of this
true IBD segment can be inferred from where the OH rates between
the focal individuals increase in the holdout sequence data. The results
depict a fairly typical example in which rIBD apparently broke up a
long true IBD segment into multiple short called segments. FISHR,
GERMLINE, and HaploScore appear to have done better in this
example at discovering one long true IBD segment, with the main
differences between programs being where the endpoints were
estimated. Multiple IBD segments that occur at the same location
for rIBD are estimated to be IBD 2+; FISHR, GERMLINE (when using
the –h_extend command as we have done here), and HaploScore are
unable to detect IBD 2 segments. IBD 2+ segments can be found using
the –haploid command in GERMLINE, but the overall accuracy (not
shown) was much lower. Supplementary Figures S9–S16 display eight
additional examples chosen at random from among two called
segments for each program.
To quantify the accuracy of the called segment endpoints for each

program in this real data set, we calculated the POH of holdout
markers in 4 quarters of each called segment from the UK10K data, as
well as two regions of the same base pair length upstream and
downstream from the called segment (Figure 4). These results
corroborate our earlier conclusions about endpoint accuracy of the
four programs in the simulated data (Figure 2). Figure 4a displays the
four quarters of the called segment and the flanking regions, whereas
the Figure 4b displays only the first through fourth quarters within the
called segments on an expanded scale. Supplementary Figure S5
illustrates how POH profiles should appear for programs that estimate
endpoints perfectly or that under-/overextend them. Of the four
programs, the POH profile of FISHR was the most similar to the
profile expected when the estimated endpoints of the called segments
are correct; FISHR had levels of POH in the two flanking regions
(‘downstream’ and ‘upstream’) very close to that between pairs of
random individuals, indicating very little underextension, and it had
~ 0 POH in quarters 1 through 4, indicating very little overextension.
rIBD was very precise at finding segments that were truly IBD (~0
POH in quarters 1 through 4), but as predicted, it tended to
underextend the IBD segments much more than any of the other
programs (low POH in the flanking regions). On the other hand,
HaploScore tended to overextend true IBD segments, as indicated by
its higher POH in the first and fourth quarters. GERMLINE tended to
both overextend called segments and underextend them.
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DISCUSSION

We developed FISHR as an alternative method to detect segments of
the genome shared IBD between pairs of individuals in a sample
measured on genome-wide SNP data. Our goal was to develop a
program that would be fast enough to be utilized with very large SNP
data sets and be more accurate than existing programs at detecting
IBD segments and their true endpoints. As demonstrated using
simulated data where true IBD status was known, FISHR performs

as well or better than the presented competitor programs in terms of
PPV and sensitivity for detecting long IBD segments, but slightly worse
than rIBD but better than GERMLINE and HaploScore at detecting
short IBD segments. Moreover, FISHR excelled at accurate estimation
of segment endpoints. This is important for several reasons. First, the
length of IBD segments is relevant to many parameters of interest in
population genetics (time to recent common ancestor, effective
population size, population bottlenecks, etc); systematic biases in

Figure 2 Distributions of the proportion of under- and overextension for each called IBD segment 43 cM for FISHR, GERMLINE, rIBD, and HaploScore.
Called segments were compared to true IBD segments with a minimum length of 1.5 cM. Called segments with no corresponding true IBD segments (the
entire segment was overextended) were given values of 1, and true IBD segments with no corresponding called segments (the entire ‘called’ segment was
underextended) were given values of −1. Bias was defined as the mean proportion, precision as the standard deviation of the proportion, and accuracy as the
standard deviation from 0 rather than from the mean proportion, with optimal values of precision and accuracy being closest to 0. Results listed to the left of
the histograms included false-positive and false-negative calls. Results to the right of histograms (denoted by *) only included the called segments which had
a corresponding true IBD segment.
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estimating these lengths, which especially occurs when true IBD
segments are broken into multiple small segments, can lead to
incorrect conclusions regarding these and other parameters. Second,
phasing and imputation1 based on IBD segments can be affected by
the accuracy of the endpoints, with under- and overextensions of IBD
segments causing regions near called IBD segment endpoints to be
incorrectly imputed or phased. Finally, in calculating genome-wide
relatedness using IBD segments,4 programs that tend to overextend
IBD calls lead to systematically inflated relatedness, and those that tend
to underextend IBD calls to deflated relatedness. This leads to under-
and overestimates of heritability, respectively, when using genome-
wide relatedness from IBD haplotypes.
FISHR is fast enough to be used on very large SNP data sets (eg,

460 000 individuals), running two to three times slower than
GERMLINE but running over a thousand times faster than rIBD
and HaploScore at large sample sizes. One practical downside of
FISHR is that it requires much more RAM than its competitors
because all candidate segments need to be sorted in order to be
(potentially) stitched together. We have developed a version of FISHR
(using the –low-ram flag) that uses a negligible amount of RAM at the
cost of failing to stitch together called segments that are erroneously
split. The accuracy of this version of FISHR is only slightly degraded
compared to the default version.
An additional limitation of FISHR vis-à-vis rIBD is that although

FISHR can estimate runs of homozygosity, using the approach we
presented here, FISHR cannot call regions that are greater than IBD
1 – that is, where more than one IBD segment exists at the same
location between individuals. For example, ~ 25% of regions between
siblings are expected to be IBD 2, meaning both haplotypes are IBD.
FISHR (as well as GERMLINE when run without the –haploid flag
and HaploScore) would call these regions as IBD 1, whereas rIBD can

call these regions as IBD 2+. Because such IBD 2+ situations are
extremely rare among unrelated individuals (occurring at a rate
proportional to the square of relatedness, or ~ 0.0001 for IBD 2 vs
0.01 for IBD 1 in typical data sets of nominally unrelated individuals),
the benefit of these additional called segments is probably negligible in
data sets of unrelated individuals. Nevertheless, FISHR’s limitation to
detecting IBD 1 must be kept in mind when working with siblings, in
which case the lack of IBD 2 calls can cause a substantial bias in
estimations of relatedness.
A limitation of the simulation approach used here was that we

inferred true IBD status from perfectly phased and highly dense
simulated SNP data. Therefore, the true endpoints of IBD segments
may have been slightly longer or shorter than we inferred. For
example, it is possible that a short IBD segment near a longer one
led to overestimation of the length of the long IBD segment. However,
this type of conflation leads to only a small amount of overextension
(~6%) in IBD segments42 cM in typical SNP data,11 and our
simulated data was six times denser than typical SNP data, almost
certainly lessening the impact such errors had on our inferred true
IBD segments. Moreover, the results from our simulated data agreed
very closely with the results obtained in real data, increasing
confidence that any limitations to our simulation do not affect the
conclusions of our manuscript.
Finally, it is evident that all programs discussed in this manuscript had

difficulty accurately detecting short (eg, 1 cM) IBD segments. One goal
for future IBD detection should be to increase the accuracy of detecting
these small segments while maintaining computational efficiency.

CONCLUSION

With increasingly large whole-genome SNP data sets being accumu-
lated, it is important to have a method for detecting IBD segments that
is both accurate and efficient. We introduced a program, FISHR, that

Figure 3 An example of called IBD segments between two individuals in
the UK10K data set, from (a) rIBD, (b) HaploScore, (c) GERMLINE, and
(d) FISHR, with (e) opposite homozygous SNPs (OH) occurring for that pair
of individuals in and surrounding the FISHR called IBD segment, and (f) OH
occurring in a random pair of individuals at the same location of the called
IBD segment. The horizontal offset seen in the rIBD segments represent
multiple detected segments, with overlapping segments showing IBD 2.

Figure 4 Results of the analysis of proportion of opposite homozygosity (OH)
in (a) four quartiles of called IBD segment and the two flanking regions and
in (b) just the four quartiles of the called IBD segments for FISHR (o),
GERMLINE ( ), rIBD ( ), HaploScore ( ), and random individuals at the
same location of called IBD ( ) where called IBD segments were a
minimum of 3 cM. FISHR’s pattern of results are closest to that expected
from perfect estimation of IBD endpoints.
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accomplishes both, and that is particularly accurate at estimating
endpoints of IBD segments. We demonstrated these properties using
simulations, and confirmed these conclusions using a novel approach
on real sequence data from the UK10K project. Due to the number of
pairwise comparisons that must be made in IBD detection, compu-
tationally intensive programs such as rIBD and HaploScore cannot be
easily run on data sets of more than ~ 10 000 individuals. FISHR is a
more accurate alternative to GERMLINE as an IBD detection program
on large data sets, with only a modest increase in run time.
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