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Salivary mucins promote the coexistence of
competing oral bacterial species
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Mucus forms a major ecological niche for microbiota in various locations throughout the human body
such as the gastrointestinal tract, respiratory tract and oral cavity. The primary structural
components of mucus are mucin glycoproteins, which crosslink to form a complex polymer network
that surrounds microbes. Although the mucin matrix could create constraints that impact inhabiting
microbes, little is understood about how this key environmental factor affects interspecies
interactions. In this study, we develop an experimental model using gel-forming human salivary
mucins to understand the influence of mucin on the viability of two competing species of oral
bacteria. We use this dual-species model to show that mucins promote the coexistence of the two
competing bacteria and that mucins shift cells from the mixed-species biofilm into the planktonic
form. Taken together, these findings indicate that the mucus environment could influence bacterial
viability by promoting a less competitive mode of growth.
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Mucus lines wet epithelia throughout the human body
and is a major ecological niche for microbiota in the
respiratory tract, gastrointestinal tract and oral cavity
among other locations (Tabak, 1995; Worlitzsch et al.,
2002; Derrien et al., 2010). The mucus layer is a three-
dimensional hydrogel primarily composed of densely
glycosylated polymers called mucins (Tabak et al.,
1982; Bansil and Turner, 2006). In the gel, mucin
chains crosslink to form a network that surrounds
microbes and, consequently, could create geometric
and diffusive constraints for biotic and abiotic envir-
onmental factors. Little is known, however, about how
these constraints influence microbial interactions, such
as cell-cell communication and competition, among
the vast number of organisms that live in mucus.
In this study, we build upon our previous work
showing that MUC5B mucins affect intraspecies
interactions by promoting dispersal of bacteria and
fungi (Caldara et al., 2012; Kavanaugh et al., 2014;
Frenkel and Ribbeck, 2015). Here we develop an
experimental model to probe the influence of gel-
forming human salivary mucins on dual-species
bacterial competition to understand how this matrix
affects the viability of competing bacteria.

The dual-species model is composed of Strepto-
coccus sanguinis JFP36 and S. mutans UA159,

which compete in the oral cavity through the
production of hydrogen peroxide and antimicrobial
peptides called mutacins, respectively (Kreth et al.,
2005, 2008; Ge et al., 2008; Senty Turner et al.,
2009). In this model, the two species were inoculated
sequentially to more closely mimic the natural
environment of the oral cavity where surfaces are
generally coated by microbes before other species
attempt to colonize. When S. mutans was the
primary colonizer, and MUC5B mucins were not
present in the growth medium, viability of the
secondary colonizer (S. sanguinis) rapidly declined,
suggesting that S. mutans outcompetes S. sanguinis
(Figure 1A (I, II)). In contrast, when MUC5B was
present in the growth medium, the total number of
viable S. sanguinis cells increased by 18- and 88-fold
after 4 and 5 h of co-culture, respectively, compared
with the control without mucin (Figure 1A (II)). The
same protective effect by MUC5B was observed
when S. sanguinis was the primary colonizer. In
this case, the addition of MUC5B to medium
enhanced survival of both S. sanguinis and
S. mutans (Figure 1B (I, II)). After 4 and 5 h of
co-culture in the presence of MUC5B, the number of
viable S. sanguinis cells increased by 9- and 94-fold,
respectively, relative to the control (Figure 1B (I)).
S. mutans CFU increased by 2-, 3-, and 7-fold at
4, 5 and 6 h, respectively (Figure 1B (II)). Of note
is that, although MUC5B significantly enhanced
S. sanguinis viability, there was an overall reduction
in S. sanguinis CFU due to self-killing, which could
be caused by increasing hydrogen peroxide concen-
trations. The same reduction in viability was
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observed when S. sanguinis was grown in mono-
culture, indicating that the killing was not due to S.
mutans (Supplementary Figure 1). Methylcellulose,
a gel-forming polymer that is commonly used to
mimic the viscosity of mucus, did not have the same
protective effect on S. mutans or S. sanguinis in
both of these experimental models; the enhanced
survival is likely not due to the addition of a polymer,
which could increase viscosity or cause osmotic
stress (Supplementary Figure 2) (Ivic et al., 2002;
Smith et al., 2009). Together, these results show that
MUC5B significantly enhances bacterial diversity by
increasing survival of at least one bacterial popula-
tion compared with the control without MUC5B
(Figures 1C and D).

To better understand how MUC5B influences
bacterial viability, we studied several aspects of
S. mutans and S. sanguinis growth in the presence of

MUC5B. First, we determined that the observed
protective effect of MUC5B was not due to increased
bacterial growth; MUC5B slightly reduces or has no
effect on S. mutans and S. sanguinis growth rates
(Figures 2A and B). In addition, S. mutans and
S. sanguinis did not grow in PBS containing mucin,
indicating that MUC5B is not used as a nutrient
source under the conditions studied (Figures 2A
and B). Another way MUC5B could increase bacter-
ial survival is by altering the cells’ mode of growth,
which can influence interspecies competition and
cell properties such as gene regulation and cell-cell
communication (O’Toole and Kolter, 1998; Pratt and
Kolter, 1998; Prigent-Combaret et al., 1999; Kearns
et al., 2005; Oliveira et al., 2015; Schluter et al.,
2015). Our data show that MUC5B efficiently
reduces S. mutans and S. sanguinis biofilm forma-
tion in single-species cultures at 6 h and 9 h:
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Figure 1 MUC5B promotes S. mutans and S. sanguinis coexistence, which leads to increased bacterial diversity. S. mutans and
S. sanguinis viability in a dual-species experimental model containing control medium (half-strength BHI with 1% sucrose; SMedium)
and control medium containing 0.4% MUC5B mucin. Viability was studied when S. mutans was the primary colonizer (A (I)) and
S. sanguinis was the secondary colonizer (A (II)) and the reverse scenario where S. sanguinis was the primary colonizer (B (I)) and
S. mutans was the secondary colonizer (B (II)). (C, D) the ratios of viable S. mutans and S. sanguinis when S. mutans was the primary
colonizer (c) and when S. sanguinis was the primary colonizer (D) as an indication of species diversity. *, statistically significant increase
relative to the control with half-strength BHI containing 1% sucrose determined by Student’s t-test (Po0.05). Experiments were performed
in triplicate and error bars represent s.d. of CFU between replicates.
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S. mutans biofilm formation was reduced by 17- and
12-fold, and S. sanguinis biofilm formation
decreased 16- and 8-fold compared with the control
without mucin (Figures 2C (I, II) and D (I, II)).
Strikingly, the total S. mutans and S. sanguinis cell
populations were unchanged at all time points in the
presence of MUC5B (except for a slight decrease at
6 h, but the number of cells in the biofilm at this time
still account for only 13% of total cells) (Figures 2C
(I, II) and D (I, II)). This result implies that, in the
presence of MUC5B, the vast majority of cells shifted
into the planktonic state. Because the single cell
bacterial form can be less competitive than the
surface-attached state, this movement of cells away
from the biofilm could be a mechanism to reduce
interspecies competition. After 4 h of co-culture in
the dual-species model, we found that MUC5B also
reduced biofilm formation of the primary colonizer
in the mixed biofilm by 19-fold for S. mutans and
3-fold for S. sanguinis relative to the control without
polymer (Figures 2E and F). As shown in Figures 1A (I)
and B (I), the total cell population in each of
these cases was unaffected (S. mutans) or increased
(S. sanguinis) by MUC5B, indicating a decrease in
the relative proportion of biofilm cells. In the case of
the secondary colonizer, there was also an overall
reduction in the proportion of biofilm cells for both
S. mutans and S. sanguinis; the total number of
viable cells increased in the presence of MUC5B
(Figures 1A (II) and B (II)), yet there was only a slight
increase or no change in biofilm formation in the
presence of MUC5B relative to the control without
polymer (Figures 2E and F). Taken together, these
results indicate that MUC5B could enhance bacterial
coexistence and, ultimately, bacterial diversity, by
shifting competing species away from the biofilm
and into the less competitive planktonic state.

In this work, we use a dual-species bacterial model
containing human MUC5B salivary mucin to under-
stand how this prevalent environmental factor
influences bacterial viability. Our results show that:
(1) MUC5B promotes S. mutans and S. sanguinis
coexistence, and (2) MUC5B shifts cells from the
biofilm into the planktonic state (Figures 2G and H).
By promoting the single-cell (planktonic) state,
MUC5B could alter cell-cell interactions, toxin
production, or other mechanisms of competition.
Although this model is not as complex as the oral

cavity microbiome, these findings are among the first
to indicate that mucus and its primary structural
component, mucins, could influence bacterial survi-
val in a multispecies environment. Further studies
are needed, however, to understand if the observed
increase in bacterial survival and reduction in
surface colonization in the presence of mucin are
due to an indirect influence of mucin, such as altered
transport of secreted factors, or a direct impact on
bacterial physiology, which could change gene
regulation.
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