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In mammals, cap-dependent translation of mRNAs is initiated 
by two distinct mechanisms: cap-binding complex (CBC; a 
heterodimer of CBP80 and 20)-dependent translation (CT) and 
eIF4E-dependent translation (ET). Both translation initiation 
mechanisms share common features in driving cap- dependent 
translation; nevertheless, they can be distinguished from each 
other based on their molecular features and biological roles. 
CT is largely associated with mRNA surveillance such as 
nonsense-mediated mRNA decay (NMD), whereas ET is 
predominantly involved in the bulk of protein synthesis. 
However, several recent studies have demonstrated that CT 
and ET have similar roles in protein synthesis and mRNA 
surveillance. In a subset of mRNAs, CT preferentially drives 
the cap-dependent translation, as ET does, and ET is 
responsible for mRNA surveillance, as CT does. In this review, 
we summarize and compare the molecular features of CT and 
ET with a focus on the emerging roles of CT in translation. 
[BMB Reports 2017; 50(4): 186-193]

INTRODUCTION

Eukaryotic transcripts synthesized by RNA polymerase II are 
sequentially and coordinately processed into mature messenger 
RNAs (mRNAs) through various nuclear events such as 
transcription, 5’-end capping, splicing, and 3’-end processing/ 
polyadenylation (1). Early in transcription, the 5’-end of the 
primary transcript is covalently modified by the addition of a 
7-methylguanosine cap, which co-transcriptionally occurs via 
nuclear capping enzyme (2, 3). The 5’-cap structure is re-
cognized by the nuclear cap-binding complex (CBC), 
composed of a heterodimer of cap-binding protein 80 (CBP80) 
and cap-binding protein 20 (CBP20) [also known as nuclear 
cap-binding protein 1 (NCBP1) and nuclear cap-binding 

protein 2 (NCBP2), respectively]. The CBC-bound pre-mRNA 
is further processed by a splicing machinery. As a consequence 
of splicing, a specialized protein complex named the exon 
junction complex (EJC), which consists of four core 
components (eIF4A3, MAGOH, Y14, and MLN51) and a 
number of auxiliary factors, is deposited approximately 20-24 
nucleotides upstream of each exon-exon junction (4, 5). In 
addition, the 3’-end of transcript is cleaved and poly-
adenylated. The 3’-poly(A) tail is recognized by nuclear 
poly(A)-binding protein 1 (PABPN1; also known as PABP2) (6). 
Mature mRNAs are exported from the nucleus to the 
cytoplasm only after the completion of proper mRNA 
processing in the nucleus, and they contain a 5’-cap bound by 
the CBC, 3’-poly(A) tail bound by PABPN1, and exon-exon 
junctions associated with EJCs. The mRNAs either being 
exported from the nucleus or completely exported via the 
nuclear pore complex serve as a template for translation in the 
cytoplasm.

In the cytoplasm, the 5’-cap directs cap-dependent translation 
via two distinct pathways: CBC-dependent translation (CT) and 
eukaryotic translation initiation factor 4E (eIF4E)-dependent 
translation (ET) (7). CT is believed to precede ET because 
CBC-bound mRNA is a precursor of eIF4E-bound mRNA (8). 
With respect to their functional roles, it is generally considered 
that CT is largely involved in mRNA quality control, whereas 
ET is in charge of the bulk of protein synthesis (7). However, 
recent studies have made it harder to define the functional 
boundary between CT and ET. Therefore, in this review, we 
describe the recent findings on CT and compare the molecular 
features of CT and ET with a focus on the emerging roles of CT 
in eukaryotic gene expression.

MOLECULAR FEATURES OF CT: SIMILARITIES AND 
DIFFERENCES BETWEEN CT AND ET

Eukaryotic translation initiation occurs through two distinct 
steps (Fig. 1); the first is the formation of the 48S preinitiation 
complex (PIC) with codon-anticodon base pairing between the 
initiator tRNA and a start codon in the P site of a 40S ribosome 
(a small subunit of ribosome), and the second is the joining of 
a 60S ribosome (a large subunit of ribosome) to the PIC to 
form an elongation-competent 80S ribosome (9, 10). To this 
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Fig. 1. Mechanistic comparison of CBC-
dependent translation (CT) and eIF4E- 
dependent translation (ET). The details 
are described in the text.

end, the 40S ribosome should be physically attached to the 
cap-binding protein bound to the 5’-cap structure for efficient 
ribosome scanning through the 5’ untranslated region (5’UTR) 
to locate the start codon in the proper context. The physical 
association is mediated by a scaffold protein, which directly 
binds to the cap-binding protein and eIF3 complex (11). 
Notably, the eIF3 complex physically associates with the 40S 
ribosome and various translation initiation factors such as (i) 
eIF1 and eIF1A, which confer the fidelity of start codon 
selection (12, 13), (ii) the ternary complex consisting of the 
eIF2 complex (composed of eIF2, eIF2, and eIF2), GTP, 
and methionine-charged initiator tRNAi (14), and (iii) eIF5, 
which stimulates the GTPase activity of eIF2 and con-
sequently leads to the conversion of GTP-bound eIF2 to 
GDP-bound eIF2 (9, 10). The resulting multi-factor complex is 
called the 43S PIC (or the scanning complex) (9).

For ET, the 40S ribosome is attached to the 5’-cap structure 

via eIF4G, which directly binds to eIF4E (9, 10) and the eIF3 
complex (15, 16). In the case of CT, a majority of mRNA-bound 
CBC recruits the 40S ribosome through physical interactions of 
a CT-specific factor, CBC-dependent translation initiation 
factor (CTIF) with CBP80 (17) and the eIF3 complex (18). 
However, an ET-specific factor, eIF4G also has an ability to 
bridge the CBC and the eIF3 complex, although there are 
some controversial reports (17-21). Intriguingly, eIF4G and 
CTIF serve as a binding platform for the eIF3 complex because 
they share an evolutionarily conserved domain called the 
middle domain of eukaryotic translation initiation factor 4G 
(MIF4G domain) with approximately 46% similarity (17, 22, 
23). However, they directly bind to different subunits of the 
eIF3 complex to recruit the 40S ribosome to mRNA (eIF3c, 
eIF3d, and eIF3e for eIF4G and eIF3g for CTIF). Initial study of 
in vitro reconstitution experiments using purified eIF3 complex 
revealed that eIF3g is dispensable in eIF3 complex formation 
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(24). However, a recent mass spectrometric analysis showed 
that eIF3g is located in close proximity to eIF3j (25), which is 
positioned at the decoding center of the 40S ribosome (26). In 
addition, a recent cryoelectron microscopic analysis of the 
mammalian 48S PIC revealed that eIF3g is relocated from the 
peripheral region of the 40S ribosome to the P site at its 
intersubunit face to promote efficient subunit joining (27). 
Therefore, eIF3g is thought to serve as a platform for the CT 
complex to easily access the start codon and consequently to 
assemble an elongation-competent 80S ribosome.

After attachment of the 40S ribosome to the cap structure, a 
scanning complex scans for the start codon in the 5’ to 3’ 
direction along the 5’UTR. Efficient ribosome scanning 
requires an ATP-dependent DEAD-box RNA helicase for 
unwinding RNA secondary or tertiary structures in the 5’UTR 
(28). Interestingly, CT and ET exhibit different factor require-
ments for unwinding the secondary or tertiary structures. For 
ET, eIF4A1 or eIF4A2, which directly interacts with eIF4G, 
facilitates efficient unwinding (29-31). In contrast, the CT 
complex engages eIF4A3 through its interaction with CTIF 
(32). Accordingly, the downregulation of eIF4A3 but not 
eIF4A1 and eIF4A2 reduces the translational efficiency of 
CBP80-bound mRNAs harboring moderate secondary structures 
and blocks CT-associated mRNA quality control (32).

It should be noted that eIF4A itself has weak helicase 
activity (33, 34) and thus requires a cofactor to efficiently 
unwind RNA secondary or tertiary structures in the 5’UTR. For 
ET, the binding of eIF4G to eIF4A1/2 converts eIF4A1/2 from a 
closed to an open conformation, promoting its helicase 
activity (31). In addition, the helicase activity of eIF4A1/2 is 
stimulated by eIF4B and eIF4H (28, 35). However, it is not yet 
known what cellular factor(s) can modulate the helicase 
activity of eIF4A3 during CT. One plausible candidate is 
MLN51, a component of the EJC, as MLN51 has been found to 
enhance the helicase activity of eIF4A3 (36, 37). As eIF4G does 
(28, 31), it is also likely that CTIF could facilitate conformational 
change of eIF4A3 to promote the helicase activity. 

After the scanning complex finally reaches the start codon, 
the 48S PIC undergoes drastic remodeling. eIF5 in association 
with the eIF3 complex stimulates the GTPase activity of eIF2 
of the eIF2 complex, converting eIF2-GTP to eIF2-GDP (14). 
Then, eIF5B (a ribosome-dependent GTPase) triggers the 
dissociation of eIF1, eIF1A, eIF2-GDP, eIF3, and eIF5 from the 
40S ribosome and facilitates the joining of the 60S ribosome 
(38-40). Subsequently, the GTPase activity of eIF5B is 
stimulated, releasing eIF5B from the ribosome. A majority of 
studies on the mechanism of this step have focused on ET, 
particularly by adopting in vitro reconstitution approaches. 
Considering that the overall initiation process of CT is similar 
to that of ET, it is possible that CT may follow a comparable 
route for 48S PIC assembly and subsequent 60S joining using 
canonical initiation factors as well as CT-specific factors such 
as CTIF and eIF4A3.

In addition to the 5’-cap structure, the poly(A) tail is critical 

for efficient cap-dependent translation (41). During ET, 
cytoplasmic poly(A)-binding protein 1 (PABPC1; also known 
as PABP1) associates with the poly(A) tail of mRNAs and 
interacts with eIF4G via direct binding to the PAM1 motif in 
the N-terminus of eIF4G (42). This interaction enhances the 
efficiency of ET either by augmenting the cap-binding ability of 
eIF4E (43, 44), which may lead to stable mRNA circularization 
(45), or by directly or indirectly facilitating the recruitment of 
the 60S ribosome to the 48S PIC (46). In addition, PABPC1 
binds to eukaryotic polypeptide chain release factor 3 (eRF3), 
one of translation release factors that promotes translation 
termination (47, 48). In contrast, there is no known CT-specific 
poly(A)-binding protein, and whether the poly(A) tail of 
CBC-bound mRNAs is involved in CT has not been confirmed. 
Notably, there is no characterized binding motif or domain 
within CBP80 and CTIF for binding to poly(A)-binding proteins 
(either PABPN1 or PABPC1). However, considering that 
PABPN1 forms a complex with the CBC but not with eIF4E 
(20) and that it is detected in actively translating polysomes 
(49), the possibility that PABPN1 may participate in CT cannot 
be completely ruled out.

CT VS. ET IN NONSENSE-MEDIATED mRNA DECAY

During mRNA processing in eukaryotic cells, premature 
termination codons (PTCs) can arise on mRNAs as a con-
sequence of mutations in somatic cells, inaccurate trans-
cription or splicing, or alternative splicing that leads to intron 
retention or inclusion of a PTC-containing exon (50). These 
aberrant mRNAs would express truncated polypeptides, the 
accumulation of which is potentially deleterious to the cells. 
Fortunately, eukaryotic cells have evolved several mRNA 
quality control pathways, which are typified by nonsense- 
mediated mRNA decay (NMD). The aberrant mRNAs harboring 
PTCs would be selectively recognized and rapidly degraded 
by the NMD pathway before truncated polypeptides are 
accumulated within the cells (7, 51-53). 

Efficient NMD requires at least a single round of translation 
to recognize the PTCs on mRNAs. NMD has long been 
considered to occur during CT because (i) CBC-bound mRNAs 
are precursors of eIF4E-bound mRNAs, (ii) the CBC can drive 
cap-dependent translation, and (iii) the majority of NMD 
occurs on CBC-bound mRNAs (7, 8, 20, 49, 54, 55). Therefore, 
the traditional model of CT-coupled NMD can be described as 
follows: newly synthesized CBC-bound and EJC-deposited 
mRNAs are subject to the first round of translation during or 
after their export from the nucleus to the cytoplasm. The first 
round of translation would be predominantly mediated by the 
CBC rather than eIF4E because newly synthesized mRNAs 
have a 5’-end cap bound by the CBC. During the first round of 
CBC-mediated translation, an elongating 80S ribosome removes 
EJCs deposited 20-24 nucleotides upstream of exon-exon 
junctions after splicing. When the elongating 80S ribosome 
reaches a termination codon, eRF1 and eRF3 are recruited to 
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the terminating ribosome along with UPF1 (a key NMD factor) 
and SMG1 kinase, forming the SMG1-UPF1-eRF1/3 (SURF) 
complex. The stability of the SURF complex is dependent on 
the presence or absence of EJCs downstream of the termination 
codon. The SURF complex would be unstable if there is no 
EJC downstream of the termination codon; consequently, the 
termination codon would be recognized as “normal”, and the 
mRNA would be stable. On the other hand, if EJC is present 
downstream of the termination codon, it interacts with the 
SURF complex and induces complex remodeling; consequently, 
the termination codon would be recognized as a “PTC”, and 
the mRNA would be rapidly degraded via exoribonucleolytic 
or endoribonucleolytic cleavage. 

Recently, two separate studies claimed that NMD can occur 
on eIF4E-bound mRNAs as well as CBC-bound mRNAs (56, 
57). To verify their hypothesis, they examined the efficiency of 
NMD under conditions where ET is compromised. The studies 
found that treatment of cells with 4EGI-1, a specific trans-
lational inhibitor, which disrupts the interaction between eIF4E 
and eIF4G (58), and overexpression of eIF4E-BP1, which 
competes with eIF4G for binding to eIF4E (59), suppressed the 
NMD of PTC-containing mRNAs (e.g., -globin and GPx1). 
Furthermore, the half-life of PTC-containing mRNAs (e.g., 
-globin, immunoglobulin , and TCR) was also decreased in 
eIF4E-bound messenger ribonucleoproteins (mRNPs) as well as 
in CBP80-bound mRNPs. In addition, eIF4E was found to be 
associated with UPF1 in an RNA-dependent manner. Based on 
these observations, the authors proposed that both CBC-bound 
and eIF4E-bound mRNAs are subject to NMD.

Although the data are compelling, several key issues should 
be carefully considered. First, considering that CBC-bound 
mRNA is a precursor of eIF4E-bound mRNA, it is likely that a 
majority of the first round of translation may be predominantly 
mediated by the CBC rather than eIF4E. Therefore, it should be 
clearly determined whether the observed reduction in the level 
and half-life of eIF4E-bound NMD substrates simply reflects 
the reduction in the level and half-life of CBC-bound NMD 
substrates. Second, although 4EGI-1 was originally reported as 
a specific compound that inhibits ET (58), several subsequent 
studies have reported additional 4EGI-1 targets besides the 
interaction between eIF4E and eIF4G (60, 61). Notably, it has 
been reported that treatment of cells with 4EGI-1 in relatively 
low concentrations strongly inhibited translation without 
significant changes in eIF4F levels; on the other hand, 4EGI-1 
treatment increased the association of the 5’-cap with 
ribosomal complexes containing the phosphorylated (inactive) 
form of eIF2 (60). This effect would inhibit the efficiency of 
both CT and ET. Third, CBC-bound mRNPs but not eIF4E- 
containing mRNPs contain detectable amounts of EJCs, which 
are critical for stimulating the NMD of PTC-containing mRNAs 
(8, 17, 20, 32, 49, 62). Therefore, as mentioned earlier, the 
rapid degradation of NMD substrates in eIF4E-containing 
mRNPs would reflect the rapid degradation of NMD substrates 
in CBC-containing mRNPs. However, another equally plausible 

explanation is that CBC-bound NMD substrates may be 
predominantly subject to EJC-dependent NMD, whereas eIF4E- 
bound NMD substrates may be subject to EJC-independent 
NMD. Fourth, the replacement of the CBC by eIF4E occurs in 
a translation-independent manner (55). Therefore, even before 
the complete termination of CT, CBC would be replaced by 
eIF4E, suggesting the possibility of a transient interaction 
between eIF4E and UPF1.

Recently, two independent studies revealed that mammalian 
target of rapamycin complex 1 (mTORC1), which specifically 
controls ET efficiency by phosphorylating eIF4E-BP (63), can 
modulate the efficiency of NMD (64, 65). One study demon-
strated that insulin treatment increased the interaction between 
UPF1 and eIF4E-bound PTC-containing mRNAs and augmented 
eIF4E-associated NMD, which was blocked by treatment with 
rapamycin (a selective inhibitor of mTORC1) (65). On the 
other hand, another study reported that rapamycin treatment 
promoted the NMD of a subset of mRNAs, probably by 
blocking the replacement of CBC by eIF4E (64). Therefore, it 
would be interesting to determine whether there are 
CT-specific or ET-specific NMD substrates depending on 
cellular conditions. 

REPLICATION-DEPENDENT HISTONE mRNAs ARE 
LARGELY TRANSLATED VIA CT

Histone genes are essential as structural and functional units 
for packaging genomic DNA into chromatin to sustain 
genomic integrity and for regulating transcriptional activity, 
respectively (66, 67). In particular, the expression of replication- 
dependent histone (RDH) genes is tightly controlled during the 
cell cycle. Upon entry into the S phase, the levels of RDH 
mRNAs increase by approximately 35-fold at the trans-
criptional level (68). Newly synthesized RDH transcripts are 
processed into mature RDH mRNAs with the aid of (i) U7 
small nuclear ribonucleoprotein (U7 snRNP), which interacts 
with histone downstream element (HDE), (ii) stem-loop 
binding protein (SLBP), which directly binds to the histone 
stem-loop (HSL) located in the 3’UTR, and (iii) a 3’-end 
cleavage complex containing cleavage and polyadenylation 
specificity factor subunit 73 (CPSF73), CPSF100, and 
symplekin (69, 70). The site between the HSL (recognized by 
SLBP) and the HDE (base-paired with U7 snRNA) is cleaved by 
CPSF73 and further trimmed by ERI1, a 3’-to-5’ exonuclease. 
The resulting RDH mRNAs, which have a HSL instead of a 
poly(A) tail, are exported from the nucleus to the cytoplasm for 
translation. On the other hand, at the end of S phase or under 
genotoxic stresses, actively translating RDH mRNAs are 
rapidly degraded via hyperphosphorylation of UPF1, which 
recruits various mRNA degradation factors to RDH mRNAs 
(70-72).

RDH mRNAs are unique in their structure because they lack 
a poly(A) tail but instead have a conserved HSL at their 3’UTR. 
In the case of canonical mRNAs, the interaction between 
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Fig. 2. Translational control mediated by eIF2 phosphorylation 
under stress conditions. The details are described in the text.

Fig. 3. Translational control under prolonged hypoxic conditions. 
The details are described in the text.

PABPC1 and eIF4G triggers mRNA circularization for efficient 
translation. Similarly, the circularization of RDH mRNAs has 
been proposed to be mediated by an indirect interaction 
between SLBP and eIF4G via SLBP-interacting protein 1 
(SLIP1), suggesting a possible role of ET in the translation of 
RDH mRNAs (73). However, this view was recently challenged 
by two reports demonstrating that the degradation of RDH 
mRNAs largely occurs on CBC-bound RDH mRNAs (32, 74). 
Considering that (i) RDH mRNA degradation requires 
translation (75, 76) and (ii) SLIP1-mediated RDH mRNA circu-
larization increases the ET of RDH mRNAs (73), the eIF4E- 
bound RDH mRNPs are expected to be subject to rapid decay. 
In contrast, the authors found that a majority of RDH mRNA 
degradation occurs on CBC-bound RDH mRNAs depending 
on the direct association between CTIF and SLBP (74). 
Downregulation of a CT-specific factor, either CTIF or eIF4A3, 
was found to increase the abundance of RDH mRNAs. 
Furthermore, overexpression of eIF4E-BP1 or eIF4E-T did not 
affect the levels of RDH mRNAs. These observations support 
that the majority of RDH mRNAs are translated via CT instead 
of ET. Although the two studies described above have 
conflicting results, the findings indicated that at least a subset 
of mRNAs (e.g. RDH mRNAs) may preferentially use CT 
instead of ET for protein synthesis and mRNA degradation.

DIFFERENTIAL REGULATION OF CT AND ET UNDER 
STRESS CONDITIONS

Eukaryotic cap-dependent translation is regulated at various 
steps under certain conditions such as oxidative stress, 
hypoxia, viral infection, apoptosis, nutrient starvation, differen-
tiation, and development (77, 78). Under stress conditions, 
two main factors involved in translation initiation are post-
translationally regulated: phosphorylation of eIF2 (Fig. 2) and 
eIF4E-BP (Fig. 3). GTP-bound eIF2 associates with the initiator 

tRNA (14). After establishment of the 48S PIC onto the start 
codon, eIF5 stimulates the conversion of eIF2-GTP to 
eIF2-GDP, which is released from the ribosome after the 
joining of the 60S ribosome (38-40). The released eIF2-GDP 
binds to eIF2B, which is an eIF2-specific guanosine exchange 
factor (GEF), and is converted to eIF2-GTP for recycling (14). 
However, under stress conditions, several eIF2-specific kinases 
are activated and phosphorylate Ser51 in eIF2, which include 
PERK (ER stress), PKR (double-stranded RNA upon viral 
infection), HRI (heme deficiency), and GCN2 (amino acid 
starvation) (14, 77-79). The phosphorylated eIF2 complex 
sequesters eIF2B, leading to a decrease in the amount of 
available eIF2-GTP and shutdown of translation. Therefore, 
both CT and ET can be blocked by eIF2 phosphorylation as 
both types of translation require a functionally active eIF2 
complex (Fig. 2).

In addition to eIF2, the phosphorylation status of eIF4E-BP 
is changed in response to intrinsic or extrinsic stresses. 
eIF4E-BP competes with eIF4G for binding to eIF4E (59). 
Under normal or actively growing conditions, active mTORC1 
phosphorylates eIF4E-BP, leading to the decreased binding of 
eIF4E-BP to eIF4E and consequently resulting in an increase in 
ET efficiency (59, 63). However, under stress conditions, 
eIF4E-BP becomes hypophosphorylated and strongly binds to 
eIF4E, resulting in the inhibition of ET. Therefore, eIF4E-BP is 
an ET-specific translation regulator, and CT is insensitive to 
eIF4E-BP activity (Fig. 3).

In comparison with ET, CT is relatively insensitive to certain 
environmental stresses, and this can be demonstrated by 
translational regulation during hypoxia, a condition in which 
cells or tissues have low oxygen levels. Global translation is 
regulated during hypoxic stresses at two independent stages: (i) 
eIF2 phosphorylation at the early stage (acute/moderate 
hypoxia) and (ii) eIF4E-BP hypophosphorylation and eIF4E 
sequestration into the nucleus or the cytoplasmic processing 
bodies at the late stage (prolonged hypoxia) (80-83). The 
former induces the global shutdown of protein synthesis by 
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targeting both CT and ET, whereas the latter blocks ET but not 
CT. Accordingly, acute hypoxia inhibits NMD (84), whereas 
prolonged hypoxia does not affect NMD even though ET is 
markedly compromised (85). The relative resistance of CT to 
environmental stresses is further demonstrated by translational 
regulation under serum starved conditions, in which mTORC1 
is inactivated and the amount of hypophosphorylated eIF4E-BP 
is elevated. Under these conditions, ET efficiency is drastically 
reduced. However, CT-coupled NMD remains efficient (86). 
Taken together, CT could support the translation of a subset of 
mRNAs under stress conditions when ET is compromised.

CONCLUSION REMARKS

CT and ET have long been considered to be largely involved in 
mRNA quality control and the bulk of protein synthesis, 
respectively. However, recent studies have reassessed their 
roles in translation initiation, revealing that both CT and ET are 
functionally interchangeable. Although definitive conclusions 
are difficult given the contradictory data, the following general 
conclusions can be made:

(i) NMD occurs during CT or ET; however, NMD is 
predominantly coupled to CT. 

(ii) CT instead of ET is preferred in the protein synthesis of a 
subset of mRNAs. In other words, CT can drive multiple 
rounds of translation of a subset of mRNAs, similar to ET (17, 
87-89).

(iii) In comparison with ET, CT is relatively resistant to 
intrinsic or extrinsic stresses. 

In this context, future studies should elucidate the molecular 
features of CT, identify mRNAs that are specific to CT or ET, 
and evaluate CT- or ET-specific NMD.
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