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Transcriptomic analyses and leukocyte telomere length
measurement in subjects exposed to severe recent stressful
life events
N Lopizzo1, S Tosato2, V Begni3, S Tomassi2, N Cattane1, M Barcella2, G Turco2, M Ruggeri2, MA Riva3, CM Pariante4 and A Cattaneo1,4

Stressful life events occurring in adulthood have been found able to affect mood and behavior, thus increasing the vulnerability for
several stress-related psychiatric disorders. However, although there is plenty of clinical data supporting an association between
stressful life events in adulthood and an enhanced vulnerability for psychopathology, the underlying molecular mechanisms are still
poorly investigated. Thus, in this study we performed peripheral/whole-genome transcriptomic analyses in blood samples obtained
from 53 adult subjects characterized for recent stressful life events occurred within the previous 6 months. Transcriptomic data
were analyzed using Partek Genomics Suite; pathway and network analyses were performed using Ingenuity Pathway Analysis and
GeneMANIA Software. We found 207 genes significantly differentially expressed in adult subjects who reported recent stressful life
experiences (n= 21) compared with those without such experiences (n= 32). Moreover, the same subjects exposed to such stressful
experiences showed a reduction in leukocyte telomere length. A correlation analyses between telomere length and transcriptomic
data indicated an association between the exposures to recent stressful life events and the modulation of several pathways, mainly
involved in immune-inflammatory-related processes and oxidative stress, such as natural killer cell signaling, interleukin-1 (IL-1)
signaling, MIF regulation of innate immunity and IL-6 signaling. Our data suggest an association between exposures to recent
stressful life events in adulthood and alterations in the immune, inflammatory and oxidative stress pathways, which could be also
involved in the negative effect of stressful life events on leukocyte telomere length. The modulation of these mechanisms may
underlie the clinical association between the exposure to recent Stressful life events in adulthood and an enhanced vulnerability to
develop psychiatric diseases in adulthood.
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INTRODUCTION
Stressful life events (SLEs) occurring in adulthood, such as
illnesses, social difficulties, unemployment, and loss of an intimate
relationship because of death or separation, not only impair the
quality of life of an individual,1 but also increase the risk for
developing both physical and mental disorders, such as metabolic
syndromes,2 cardiovascular diseases,3 post-traumatic stress
disorder,4,5 major depression6,7 and bipolar disorder.8,9 Most of
the evidence supporting these relationships have focused the
attention on short-term consequences of stress, typically within a
period of no 41 year.10,11 Importantly, it has been reported that
severe recent SLEs are impactful on the onset of psychiatric
disorders,12 in particular, the initial episodes are more likely to be
precipitated by a severe SLE experience.12,13 The biological
responses to SLEs can occur mainly via the involvement of two
different biological systems, both responsive to stress, the
sympathetic–adrenal–medullary axis and the hypothalamic–
pituitary–adrenal axis, thereby inducing the release of pituitary
and adrenal hormones. Indeed, adrenaline and noradrenaline,
adrenocorticotropic hormone, cortisol, growth hormone and
prolactin are all influenced by SLEs, and each of them can induce
alterations in immune functions.14–16 This immune modulation

might occur directly, through the binding of the hormone to its
receptor or indirectly, by inducing alterations in the production of
cytokines.17 The capability of SLEs to modulate immune system
has been supported by a recent meta-analysis, which shows a
significant association between exposure to SLEs in the pre-
diagnostic period and the development of several autoimmune
diseases, like rheumatoid or psoriatic arthritis, type 1 diabetes,
multiple sclerosis and autoimmune thyroid disease, suggesting
that these kinds of stressors can have a key role in the
etiopathogenesis of a wide range of diseases, all characterized
by immune system alterations.18 Recently, it has been suggested
that SLEs can also be involved in the mechanisms underlying
telomere shortening.19–21 Telomeres are DNA–protein complexes
at the end of chromosomes, composed of tandem TTAGGG
repeats ranging from a few to 15 kb in length. Telomeres are
essential for providing protection from enzymatic degradation
and for maintaining chromosomal stability, therefore, an adequate
telomere structure is pivotal in avoiding cellular dysfunctions.
Telomeres shorten in each cell division, and the maintenance of
their functions depends both on a minimal length of TTAGGG
repeats and on the presence of telomere-binding proteins.22

Telomere length decreases physiologically during aging, but this
shortening can be accelerated by a combination of genetic,
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epigenetic and environmental factors.23–25 Importantly, telomere
shortening can also be influenced by alterations in the immune
and stress response systems26,27 and, in support to this, leukocyte
telomere length have been found altered in patients with chronic
inflammation,28 with mood disorders29,30 and also in subjects
exposed to chronic social stress or in post-traumatic stress
disorder patients exposed to childhood trauma.31,32 In a recent
meta-analysis, Darrow et al.33 examined the relationship between
cellular aging as indicated by leukocyte telomere length and a
wide range of psychiatric disorders, including 14 827 participants
from several studies, supporting the hypothesis that shortened
leukocyte telomere length is seen across many psychiatric
disorders, with a larger effect size in post-traumatic stress disorder,
anxiety disorders and depressive disorders as compared with
psychotic and bipolar disorder that had smaller, but significant,
effect size. These data were partially in contrast with a recent
systematic review and meta-analysis by Colpo et al.,34 where they
reported no significant difference of telomere length in bipolar
disorder patients as compared with control subjects. These
contrasting data suggest that the relationship between psychiatric
disorders and telomere length is not yet completely clear and
needs further investigation.
Although plenty of literature data have supported the relation-

ship between exposure to recent SLEs in adulthood and
alterations in mood and behavior,1,9 the biological mechanisms
underlying this association are still not clear. Thus, in this study, in
order to identify possible pathways and networks influenced by
recent SLEs and potentially involved in the vulnerability for
psychiatric disorders, we have used a hypothesis-free approach
and assessed the entire transcriptome in the peripheral blood of
adult subjects exposed to one or more SLEs in the previous
6 months. Moreover, we have investigated possible associations
between the identified biological pathways influenced by SLEs
and leukocyte telomere length.

MATERIALS AND METHODS
Participants and clinical assessment
Healthy subjects were recruited through notices posted at the Verona
University Hospital, Verona (Italy). Individuals presenting a history of
neurological or psychiatric diseases, prior traumatic brain injury, or mental
retardation (IQo70) were excluded from the study. The absence of
psychiatric disorder was ascertained via two schedules: the Mini
International Neuropsychiatric Interview (M.I.N.I. Plus35), to exclude any
psychiatric disorder in Axis I; and the Structured Clinical Interview for DSM
disorders (SCID-II36) to exclude any psychiatric disorder in Axis II. Moreover,
depressive symptoms were evaluated by the administration of the
Hamilton Rating Scale for Depression (HAMD)37 and symptoms of mania
by the administration of the Bech-Rafaelsen Mania Rating Scale (BRMRS).38

In addition, being pregnant or in lactation represented an exclusion
criterion. Subjects underwent also a detailed medical examination
including tobacco and current drug therapies. Written informed consent
was obtained by participants after receiving a complete description of the
study, which has been approved by the ethic committee of the Verona
University Hospital. All the subjects were assessed for exposures to
childhood traumatic experiences, by the CECA-Q scale,39 and in adulthood
by the administration of a modified version of the Life Events Scale.40 The
latter one is a 56-item instrument and it covers a comprehensive range of
recent life events, their timing and their date. It has two time frames for
evaluation: (1) life events that occurred during the 6 months before the
assessment; (2) those that occurred before the last 6 months (lifetime). As
our specific aim was to identify possible short-term consequences of stress
on pathways and networks, we focused only on recent SLEs (that is, ⩽
6 months).
The severity of each SLE was assessed using the Holmes–Rahe Life Stress

Inventory.41 On the basis of our previous work,42 only ‘severe stressful life
events’ (that is, death of a family member, sexual or physical abuse, being
accused of having committed a crime, sentence of imprisonment, being
exposed to war and natural catastrophes, family breakdown, being
removed from home, sentimental breakdown and severe physical illness)
were taken into account.

According to inclusion criteria, we recruited and assessed a total of 72
subjects. Out of these, 8 subjects reported both childhood trauma and SLEs
experiences, 11 subjects reported childhood trauma only, 32 subjects
reported neither childhood trauma nor recent adulthood traumatic
experiences and 21 subjects reported SLEs but not childhood trauma. As
we wanted to evaluate specifically the short-term effects of stress in
adulthood, excluding any possible long-lasting effect due to childhood
trauma exposures, we focused the attention on the group of 32 subjects
who reported neither severe SLEs nor childhood trauma and on the 21
subjects that experienced at least one severe recent SLEs in adulthood, but
not childhood trauma.
Blood samples were collected fasting in the morning by using PaxGene

Blood RNA Tubes (PreAnalytix, Hombrechtikonas, Switzerland) and BD
Vacutainer K2E EDTA Tubes (BD-Plymouth, Oxford, UK) for DNA isolation
and in anticoagulant-free tubes for serum (BD-Plymouth).
Subjects exposed and subjects not exposed to SLEs were similar for age,

gender, smoking, body mass index, depressive symptoms (in term of
HAMD scores), ethnicity, education and marital status (Supplementary
Table 1). Moreover, the two study groups were not significantly different
for the presence of recent drug therapies (subjects exposed to SLEs, n=21:
2/21 were receiving drugs for thyroid disorders, 5/21 were receiving
cortisonic drugs, 2/21 were receiving psychotropic drugs, 1/21 was
receiving drugs for gastrointestinal disorders, 2/21 were receiving drugs
for cardiovascular diseases; subjects not exposed to SLEs, n=32: 2/32 were
receiving drugs for thyroid disorders, 2/32 were receiving cortisonic drugs,
3/32 were receiving psychotropic drugs, 2/32 were receiving drugs for
gastrointestinal disorders, 1/32 was receiving drugs for cardiovascular
diseases).

RNA and DNA isolation
After blood collection, PaxGene Tubes were kept at room temperature for
2 h, then at − 20 °C for 2 days and then at − 80 °C until their processing for
RNA isolation. Total RNA was isolated using PaxGene miRNA kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions and RNA
quantity and quality was assessed by evaluation of the A260/280 and
A260/230 ratios using a Nanodrop spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). Genomic DNA was isolated from
peripheral whole blood, by using the Gentra Puregene Blood Kit (Qiagen),
according to the manufacturer’s instructions and DNA quality was assessed
by evaluation of the A260/280 and A260/230 ratios using a Nanodrop
spectrophotometer (NanoDrop Technologies).

Serum cortisol determination
After blood sample collection, anticoagulant-free tubes have been kept at
room temperature for 2 h, followed by 1 hour at 4 °C before serum
separation by centrifugation (1620 g for 15 min) and subsequently, serum
samples were kept at − 80 °C until the time of the assay. Cortisol levels
were measured by enzyme-linked immunosorbent assay (ELISA) method
using the Human Cortisol Quantikine ELISA Kit (R&D Systems, Minneapolis,
MN, USA), according to the manufacturer’s instructions; the minimal
detection limit for serum cortisol, by using this kit, is 0.071 ng ml− 1. The
optical density was recorded at 450 nm wavelength with an automated
ELISA-plate reader and subsequently the absorbance was converted to ng/
ml for cortisol. All the samples were evaluated in duplicate together with
the standard curve.

Whole-genome expression analyses
Gene expression microarray assays were performed as reported in our
previous works,43,44 using Human Gene 1.1 ST Array Strips on GeneAtlas
platform (Affymetrix, Wycombe, UK) and following the WT Expression Kit
protocol described in the Affymetrix GeneChip Expression Analysis
Technical Manual. Briefly, 250 ng RNA were used to synthesize second
strand cDNA with the Ambion Express Kit (Ambion, Life Technologies,
Monza, Italy) and subsequently, the purified cDNA was fragmented and
hybridized onto Human Gene 1.1 ST Array strips. The reactions of
hybridization, fluidics and imaging were performed on the Affymetrix Gene
Atlas instrument according to the manufacturer’s protocol.

Telomere length measurement by quantitative real-time PCR
Leukocyte telomere length was measured using the quantitative real-time
PCR method. A six-point standard curve, derived from serially diluted DNA
pool and ranging from 50 to 1.25 ng μl− 1, was included in each PCR plate,
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so that relative quantities of telomere repeat (T) and single-copy gene
number (S) could be determined. All the samples were run in triplicate on a
CFX 384 Real-Time PCR System (Bio-Rad, Milan, Italy). Data were calculated
by the method described by Cawthon45 that measures the relative
telomere length in genomic DNA by determining the T/S ratio. The data
were then expressed in term of Relative Expression Ratio, with subjects not
exposed to recent SLEs as control group.

Statistical and bioinformatic analysis
Data (mean± s.d. or s.e.m.) were analyzed using the Statistical Package for
Social Sciences, Version 22.0 (SPSS).
For comparison of demographical and clinical variables between groups,

student’s t-test or chi-square-test were applied.
For transcriptomic analyses, Affymetrix CEL files were imported into

Partek Genomics Suite (version 6.6) for data visualization, quality control
assessment and statistical testing.
Quality criteria for hybridization controls, labeling controls and 3′/5′

Metrics have been passed by all the samples. Background correction was
conducted using Robust Multi-strip Average (RMA)46 to remove noise from
auto fluorescence. After background correction, normalization was
conducted using Quantiles Normalization47 to normalize the distribution
of probe intensities among different microarray chips. Subsequently, a
summarization step was conducted using a linear median polish
algorithm48 to integrate probe intensities in order to compute the
expression levels for each gene transcript. After having performed a quality
control of the data, analysis of the variance (ANOVA) test was performed to
assess the effect of recent SLEs, comparing subjects exposed to SLEs vs
subjects not exposed. List of significant genes was then obtained by
applying a fold change (FC) cutoff of 10% and by applying a multiple
testing correction procedure for all our data (q-valueo0.05).
Lists of significant genes were then uploaded in Ingenuity Pathway

Analyses Software to identify molecular pathways associated to recent
SLEs exposure and pathways with a cutoff of P-valueo0.05 were
considered significant.
For network analyses we used the tool Gene Multiple Association

Network Integration Algorithm (GeneMANIA) (http://www.genemania.org/
), which is a web-based tool for the prediction of gene function. Based on
single gene or gene set query from 7 organisms, it shows results for
interactive functional associative network according to their co-expression
data from Gene Expression Omnibus (GEO), physical and genetic
interaction data derived from BioGRID, predicted protein interaction data
based on orthology from I2D, co-localization, shared protein domain, and
GO function.49

Cortisol levels and telomere length data were shown as mean± s.e.m.
and, as their distribution was normal after a Kolmogorov–Smirnov test
(P40.05), we run Univariate General Linear Model, using age and gender
whenever appropriate.
Correlation analyses between transcriptomics data and leukocyte

telomere length, HAMD score, peripheral blood cortisol levels were run
by using a Pearson correlation analyses; correlation analyses between
telomere length or cortisol levels with smoking, gender, age were run by
applying a Spearman correlation analyses.

RESULTS
Transcriptomic analyses in the blood of subjects characterized for
recent SLEs exposure
Our first aim was to identify differences in gene expression levels
in association with recent SLEs exposure, thus we conducted a
transcriptome analysis in the blood of subjects exposed (n= 21)
and not exposed (n= 32) to recent SLEs and we found, comparing
the two groups, significant differences in the expression of 207
genes. We listed the 24 top modulated genes (12 upregulated and
12 downregulated) in Table 1, and all the significant genes in the
Supplementary Table 2. We then performed a pathway analyses
on the 207 genes and we found 38 significantly modulated
pathways (Po0.05) in association with recent SLEs exposures.
Among the most significant biological processes there are several
pathways involved in the modulation of the immune system and
inflammation (including natural killer cell signaling, T-cell receptor
signaling, crosstalk between dendritic cells and natural killer cells)
and metabolism (including superpathway of methionine

degradation, glycine biosynthesis I). The entire list of significant
pathways is shown in Table 2.
We performed correlation analyses between the transcriptome

profile and the HAMD scores and we identified a list of 201
significantly correlated genes (Po0.05; Supplementary Table 3).
Among the top significant genes, we found several genes that
have been found associated with mood disorders such as period
circadian clock 1 (PER1),50,51 interferon alpha 2 (IFNA2)52 and
period circadian clock 2 (PER2).53

Cortisol levels analysis
Here we wanted to evaluate possible differences in the stress
response system in association with exposure to recent and severe
SLEs, thus we assessed cortisol levels in the serum of subjects
exposed and in those not exposed to SLEs. Cortisol levels did not
correlate with any of the demographic features as well as with
HAMD score or telomere length (all the P-values 40.05).
We didn’t find any significant differences in cortisol levels in the

two groups (mean± s.e.m.: 15.88 ± 1.73 vs 18.97 ± 1.58 ng ml− 1 in
subjects exposed vs subjects not exposed to SLEs, respectively;
P= 0.22). Correlation analyses between cortisol levels and
transcriptomic profile identified 321 significantly correlated
genes (Supplementary Table 4) and among the top significant
ones we found several genes that have been found associated
with inflammation and stress response such as CD69 molecule
(CD69),54 period circadian clock 1 (PER1)55 and chemokine
receptor type 4 (CXCR4).56

Network analysis
For network analyses, we first sorted the genes that we found
differentially expressed between the two groups according to the
FC values, and then we chose 30 genes that resulted to be

Table 1. Top significantly modulated genes by SLEs exposure

Gene Assignment Gene symbol Fold
change (SLE
vs. No SLE)

1 CD38 molecule CD38 − 1.4
2 Ring finger protein 182 RNF182 − 1.4
3 SLAM family member 7 SLAMF7 − 1.4
4 Perforin-1 (pore forming protein) PRF1 − 1.4
5 SH2 domain containing 1B SH2D1B − 1.4
6 Immunoglobulin heavy variable 3–33 IGHV3-33 − 1.3
7 Immunoglobulin lambda joining 3 IGLJ3 − 1.3
8 Immunoglobulin heavy variable 3–38 IGHV3-38 − 1.3
9 Fc receptor-like 5 FCRL5 − 1.3
10 Histone cluster 1, H3i HIST1H3I − 1.3
11 G-protein-coupled receptor 56 GPR56 − 1.3
12 Transforming growth factor, beta

receptor III
TGFBR3 −1.3

13 S100 calcium binding protein A9 S100A9 1.2
14 Cystatin A (stefin A) CSTA 1.2
15 Carboxymethylenebutenolidase

homolog
CMBL 1.2

16 Ribosomal protein S26 RPS26 1.2
17 RNA, 5S ribosomal 399 RN5S399 1.3
18 Ribosomal protein L7 RPL7 1.3
19 Interleukin 8 IL8 1.3
20 Tubulin, beta 4B class Ivb TUBB4B 1.3
21 Lymphocyte antigen 96 LY96 1.3
22 Ribosomal protein L21 RPL21 1.3
23 S100 calcium binding protein A8 S100A8 1.4
24 KIAA1324 KIAA1324 1.6

Abbreviation: SLE, stressful life event. Selection of the 24 genes with the
lowest or highest values of fold change (all q-valueo0.05), 12 down-
regulated and 12 upregulated.
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differentially modulated with a larger effect size (with the highest
or lowest FC) as a query gene set for GeneMANIA tool, in order to
build up a gene-network. As shown in Figure 1, all the selected
genes tightly interact each other with physical interactions (26.3%)
and co-expression (38.2%) among the most significant types of
interactions. Several genes presented more than ten interactions,
such as Perforin-1 (PRF1), S100 calcium binding protein A8
(S100A8), and interleukin-8 (IL-8). Moreover, by using Pathway
Analyses Tool within GeneMania, we also found that these tightly
interacting genes are mainly involved in immune and inflamma-
tion related signaling, such as the Toll-like receptor signaling,
cytokine–cytokine receptor interaction, natural killer cell signaling,
IL-2 signaling and chemokine receptor-chemokine interaction.

Leukocyte telomere length in subjects exposed to SLEs
In order to study the impact of recent SLEs on peripheral blood
telomere length and the possible underlying mechanisms, we
investigated the relative telomere length in the genomic DNA of
the same subjects exposed or not to recent SLEs, and
subsequently we performed correlation analyses between telo-
mere length and the transcriptome profile.

Telomere length was significantly reduced (by 19.1%) in
subjects exposed to recent SLEs (mean of relative normalized
expression ± s.e.m.: 2.12 ± 0.12 vs 2.62 ± 0.13 in subjects exposed
vs subjects not exposed to SLEs, respectively; P= 0.03). As reported
in the data on the demographic features, age was not significantly
different between the two study groups and there was no
significant correlation between age and leukocyte telomere
length; however, as age is a well-known variable influencing the
leukocyte telomere length, we also run the analyses adding age as
covariate and we found that the difference in leukocyte telomere
length remained significant (P= 0.04).
Correlation analyses between leukocyte telomere length and

others demographic features as well as with HAMD score, cortisol
levels or smoking revealed no significant association for all the
tested variables (all P-values 40.05).
Correlation analyses between leukocyte telomere length and

transcriptomic profile identified a data set of 405 genes signifi-
cantly associated with telomere length reduction (Supplementary
Table 5), which resulted to be involved in 56 pathways, with
natural killer cell signaling, IL-1 signaling, MIF regulation of innate
immunity and IL-6 signaling as the most significant pathways (see
Table 3 for the entire list of pathways modulated).

Table 2. Pathways differentially modulated in subjects exposed to SLEs (P-valueo0.05)

Pathway Molecules

1 Role of IL-17A in psoriasis CXCL8, S100A9, S100A8, CXCL1
2 Caveolar-mediated endocytosis signaling FLNB, FLNA, ABL1, ITGAL, ITGB7
3 Natural killer cell signaling CD247, NCR1, LAT, ZAP70, KIR3DL2,

SH2D1B
4 Tumoricidal function of hepatic natural killer cells PRF1, GZMB, ITGAL
5 Virus entry via endocytic pathways FLNB, FLNA, ABL1, ITGAL, ITGB7
6 Cytotoxic T lymphocyte-mediated apoptosis of target cells CD247, PRF1, GZMB
7 Superpathway of methionine degradation FTSJ1, GOT2, AHCY
8 Role of IL-17F in allergic inflammatory airway diseases CXCL8, CCL4, CXCL1
9 CTLA4 signaling in cytotoxic T lymphocytes CD247, PPP2R5D, LAT, ZAP70
10 Granzyme B signaling PRF1, GZMB
11 Crosstalk between dendritic cells and natural killer cells PRF1, KIR3DL2, ITGAL, IL2RB
12 Methionine degradation I (to Homocysteine) FTSJ1, AHCY
13 Differential regulation of cytokine production in macrophages and T helper cells by IL-17A

and IL-17F
CCL4, CXCL1

14 T-cell receptor signaling CD247, PTPRH, LAT, ZAP70
15 Cysteine biosynthesis III (mammalia) FTSJ1, AHCY
16 Granzyme A signaling PRF1, HIST1H1E
17 iCOS-iCOSL signaling in T helper cells CD247, LAT, ZAP70, IL2RB
18 Glycine biosynthesis I SHMT2
19 Differential regulation of cytokine production in intestinal epithelial cells by IL-17A and IL-17F CCL4, CXCL1
20 TCA cycle II (eukaryotic) SDHA, ACO1
21 IL-17A signaling in gastric cells CXCL8, CXCL1
22 Cell cycle control of chromosomal replication MCM3, CDK6
23 NADH repair APOA1BP
24 5-aminoimidazole ribonucleotide biosynthesis I GART
25 Glutamate degradation II and aspartate biosynthesis GOT2
26 Aspartate biosynthesis GOT2
27 EIF2 signaling RPS26, RPL21, RPS21, RPL7, RPSA
28 TREM1 signaling SIGIRR, CXCL8, NLRC3
29 Cyclins and cell cycle regulation PPP2R5D, CDK6, ABL1
30 Proline biosynthesis I ALDH18A1
31 L-Cysteine degradation I GOT2
32 Phenylalanine degradation I (Aerobic) QDPR
33 Regulation of IL-2 expression in T lymphocytes CD247, LAT, ZAP70
34 Ceramide signaling SMPD4, S1PR5, PPP2R5D
35 Tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate GART
36 dTMP de novo biosynthesis SHMT2
37 Folate polyglutamylation SHMT2
38 Regulation of eIF4 and p70S6K signaling RPS26, PPP2R5D, RPS21, RPSA

Abbreviations: IL, interleukin; SLE, stressful life event. All the 38 pathways obtained from Ingenuity pathway analysis (P-valueo0.05) using as input gene set all
the 207 genes significantly modulated in subjects exposed to SLEs.
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The role classification of all the 56 significant pathways has
been summarized in a pie chart (see Figure 2), where the
inflammatory-related processes, metabolism- and developmental-
related processes, cancer and neuroplasticity, apoptosis, oxidative
stress and toxicity related processes are the main represented
biological processes.

DISCUSSION
To our knowledge, this is the first study investigating the effect of
recent SLEs occurring in adulthood in peripheral blood using a
whole-genome transcriptomic approach. Moreover, we have
coupled the transcriptomic data with leukocyte telomere length
analyses in order to study possible mechanisms underlying the
effect of stress on telomere shortening.
The transcriptomic analyses revealed that 207 genes are

significantly differentially expressed in subjects exposed to at
least one episode of severe recent SLE as compared with not

exposed subjects. Among the top genes, we found PRF1, IL-8,
S100A8 and S100 calcium binding protein A9 (S100A9), together
with many other genes, involved in the modulation of immune/
inflammatory systems.
PRF1 is an important modulator within the cytolytic activity of

both natural killer cells and cytotoxic CD8+ T-cells.57 It codes for
the cytolytic protein Perforin stored in granules in T-cells and
natural killer cells and it is involved in cellular defence response
and programmed cell death.58 Indeed, mutations within PRF1
gene and defects in its expression can cause an abnormal function
of the immune system.59

IL-8 is a proinflammatory cytokine, member of the CXC
chemokine subfamily. IL-8, also known as neutrophil chemotactic
factor, induces chemotaxis and phagocytosis in target cells,
primarily neutrophils, inducing them to migrate toward the site of
infection.60 Elevated IL-8 levels have been found in patients with
inflammatory-related diseases, such as Alzheimer's disease,61

major depressive disorder62–64 and cardiovascular diseases.65,66

Figure 1. Network of genes significantly modulated and their main pathways. Gene network shows the relationships between genes from the
input gene list (30 striped nodes in black) and genes strictly related from literature (small nodes in black) connected (with edges) according to
the functional association networks from the databases. Different lines and colors denote the different type of interactions: in purple co-
expression, in orange predicted, in blue co-localization, in green genetic interactions, in light red physical interactions, in light blue pathway.
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S100A8/A9 acts as a chemotactic molecule expressed by
neutrophils, monocytes and macrophages.67,68 In particular,
S100A8/A9, released by primed myeloid cells under inflammatory
conditions, promotes further leukocytes recruitment, thus enhan-
cing a chronic inflammatory state.69

Taking into consideration the role of these genes, the presence
of a significant reduction in PRF1 peripheral blood expression
levels together with higher IL-8 and S100A8/A9 expression levels
suggests an altered inflammatory response in association with

SLEs exposure. This finding is supported by pathway analysis run on
the 207 significantly differentially expressed genes, which revealed
an enrichment in pathways related to metabolism (such as super-
pathway of methionine degradation, cysteine biosynthesis III, glycine
biosynthesis I, TCA cycle II) and inflammation/immune responses
(such as IL-17A in psoriasis, caveolar-mediated endocytosis signaling,
natural killer cell signaling, T-cell receptor signaling).
Up to now, only few studies have investigated the impact of

recent SLEs occurring in adulthood on immune and inflammatory

Table 3. Pathways significantly correlated with telomere shortening in association with SLEs exposures

Pathway Molecules

1 Natural killer cell signaling KIR3DL1, RRAS2, LAIR1, INPP5B, SYK, MAPK3, KIR3DL2, KIR2DL4, KIR3DL3
2 Phosphatidylglycerol biosynthesis II GPAM, LPCAT4, PTPMT1, AGPAT1
3 Prostate cancer signaling RRAS2, FOXO1, PA2G4, MAPK3, NFKBIE, NFKB2, GSTP1
4 Ephrin B signaling GNAS, RGS3, MAPK3, GNAO1, ACP1, HNRNPK
5 CDP-diacylglycerol biosynthesis I GPAM, LPCAT4, AGPAT1
6 MIF-mediated glucocorticoid regulation MAPK3, NFKBIE, CD14, NFKB2
7 Triacylglycerol biosynthesis GPAM, LPCAT4, AGPAT1, PLPP1
8 Role of NFAT in regulation of the immune response GNAS, RRAS2, SYK, MAPK3, NFKBIE, GNAO1, MS4A2, MEF2A, NFKB2
9 Crosstalk between dendritic cells and natural killer cells KIR3DL1, FSCN1, KIR3DL2, NFKB2, KIR2DL4, KIR3DL3
10 IL-1 signaling IL1A, GNAS, NFKBIE, GNAO1, NFKB2, IRAK2
11 MIF regulation of innate immunity MAPK3, NFKBIE, CD14, NFKB2
12 iNOS signaling NFKBIE, CD14, NFKB2, IRAK2
13 LPS-stimulated MAPK signaling RRAS2, MAPK3, NFKBIE, CD14, NFKB2
14 D-myo-inositol (1,4,5)-trisphosphate biosynthesis PIP4K2B, PI4K2B, PLCH1
15 TNFR1 signaling NAIP, CRADD, NFKBIE, NFKB2
16 PDGF signaling RRAS2, ABL2, INPP5B, MAPK3, ACP1
17 fMLP signaling in neutrophils ACTR2, GNAS, RRAS2, MAPK3, NFKBIE, NFKB2
18 Ephrin receptor signaling ACTR2, GNAS, RGS3, RRAS2, PTPN13, MAPK3, GNAO1, ACP1
19 TNFR2 signaling NAIP, NFKBIE, NFKB2
20 Glutathione-mediated detoxification HPGDS, ANPEP, GSTP1
21 PPARÎ± /RXRÎ± activation GNAS, RRAS2, PRKAB1, MAPK3, NFKBIE, CYP2C18, NFKB2, ACVR1C
22 Epithelial adherens junction signaling EPN2, ACTR2, RRAS2, LMO7, TUBB4A, ACVR1C, FARP2
23 Histamine biosynthesis HDC
24 Alanine biosynthesis III NFS1
25 4-1BB signaling in T lymphocytes MAPK3, NFKBIE, NFKB2
26 IL-6 signaling IL1A, RRAS2, MAPK3, NFKBIE, CD14, NFKB2
27 Choline biosynthesis III PLD3, PHKA1
28 Apoptosis signaling NAIP, RRAS2, MAPK3, NFKBIE, NFKB2
29 TWEAK signaling NAIP, NFKBIE, NFKB2
30 PI3K/AKT signaling RRAS2, FOXO1, INPP5B, MAPK3, NFKBIE, NFKB2
31 IL-17A signaling in fibroblasts MAPK3, NFKBIE, NFKB2
32 PPAR signaling IL1A, RRAS2, MAPK3, NFKBIE, NFKB2
33 Superpathway of inositol phosphate compounds ATP1A1, PTPN13, NUDT9, INPP5B, PIP4K2B, ACP1, PI4K2B, PLCH1
34 IL-15 signaling RRAS2, SYK, MAPK3, NFKB2
35 Role of PI3K/AKT signaling in the pathogenesis of influenza IFNA8, MAPK3, NFKBIE, NFKB2
36 Hepatic cholestasis IL1A, GNAS, ABCC2, NFKBIE, CD14, NFKB2, IRAK2
37 Eicosanoid signaling PTGFR, DPEP3, ALOX5AP, HPGDS
38 Phospholipase C signaling ARHGEF5, GNAS, PLD3, RRAS2, SYK, MAPK3, MEF2A, NFKB2, RHOH
39 Angiopoietin signaling RRAS2, FOXO1, NFKBIE, NFKB2
40 Erythropoietin signaling RRAS2, MAPK3, NFKBIE, NFKB2
41 Insulin receptor signaling RRAS2, FOXO1, TRIP10, INPP5B, MAPK3, ASIC3
42 Antioxidant action of vitamin C PLD3, MAPK3, NFKBIE, NFKB2, SLC2A3
43 IL-10 signaling IL1A, NFKBIE, CD14, NFKB2
44 Spermine biosynthesis SMS
45 Cardiolipin biosynthesis II PTPMT1
46 Putrescine biosynthesis III AZIN2
47 Cholecystokinin/gastrin-mediated signaling IL1A, RRAS2, MAPK3, MEF2A, RHOH
48 Small cell lung cancer signaling PA2G4, NFKBIE, NFKB2, SKP2
49 PEDF signaling RRAS2, MAPK3, NFKBIE, NFKB2
50 B-cell receptor signaling RRAS2, FOXO1, INPP5B, SYK, MAPK3, NFKBIE, NFKB2
51 Rac signaling ACTR2, RRAS2, MAPK3, PIP4K2B, NFKB2
52 Role of RIG1-like receptors in antiviral innate immunity IFNA8, NFKBIE, NFKB2
53 Systemic lupus erythematosus signaling IL1A, RRAS2, IFNA8, PRPF3, MAPK3, SNRPB2, PRPF6, SNRPE
54 NF-KB activation by viruses RRAS2, MAPK3, NFKBIE, NFKB2
55 Toll-like receptor signaling IL1A, CD14, NFKB2, IRAK2
56 Fc epsilon RI signaling RRAS2, INPP5B, SYK, MAPK3, MS4A2

Abbreviations: IL, interleukin; SLE, stressful life events. All the 56 pathways from Ingenuity pathway analysis, using as input gene set the 405 genes significantly
correlated between telomere shortening and SLEs (P-valueo0.05).
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mechanisms, but the findings are restricted to natural killer cells.
Indeed, a meta-analysis conducted by Segerstrom and Miller
(2004) shows a positive association between the number of recent
SLEs and the increased number of circulating natural killer cells.70

Our study represents the first evidence, coming from a whole-
genome transcriptomic approach, indicating that, besides stressful
experiences early in life,71–73 also recent SLEs, experienced in
adulthood, can affect the same biological systems. This suggests
that recent SLEs may cause an enhanced vulnerability for the
development of several illnesses, including psychiatric disorders or
act as precipitating factor in already vulnerable individuals, via an
activation of the inflammatory/immune system.
In the same group of subjects who experienced recent SLEs in

adulthood we also reported the presence of shorter leukocyte
telomere length. This finding is in line with some recent data on
the topic. Verhoeven et al.19 investigated both the effects of
childhood trauma and recent SLEs on leukocyte telomere length,
reporting a negative association only with recent SLEs. Moreover,
Parks et al.74 reported shorter leukocyte telomere length in female
subjects exposed, in adulthood, to a major loss, whereas, none of
the other recent major examined stressors were significantly
associated with telomere length. A recent prospective study also
found that recent SLEs predicted the rate of leukocyte telomere
shortening over a 1-year period.75 However, it remains still
unknown which are the specific stressors that affect telomere
length, how long these effects last and importantly, whether
telomere shortening could be potentially reversible.76

The correlation analysis between telomere length and tran-
scriptomic data indicated 405 significantly correlated genes that
belong to pathways highly related to inflammation, immune
system and oxidative stress. In particular, among the top pathways
associated both with SLEs exposure and leukocyte telomere
length reduction, we identified the natural killer cell signaling,
iNOS signaling, MIF-mediated glucocorticoid regulation and MIF
regulation of innate immunity. Over the years, several studies have
shown the impact of stressful life events on the blood levels and
the activity of circulating natural killer cells.70,77 Natural killer cells
represent the first line of defence against virally infected cells, and
immunological studies proposed that natural killer cells immuno-
senescence could contribute to the higher incidence of infections
that is observed in older adults.70,78,79 Natural killer cells can also
amplify immune responses by enhancing the early phases of an
adaptive immune response and by promoting dendritic cell
maturation and T-cell differentiation.
The inducible isoform iNOS, which produces large amount of

nitric oxide (NO), has a key role in defence mechanisms. NO is
synthesized by many cell types in response to cytokines activation.
It is an important factor in the response against parasites, bacterial
infections, and tumor growth and it has a key role in many

diseases with an autoimmune etiology.80 In basal conditions, it has
anti-inflammatory effects, but under stress conditions NO acts as a
proinflammatory mediator due to its overproduction.81 In vivo
evidence from Stadler and collaborators suggest a role for iNOS
also in oxidative stress processes and free radicals production.82

MIF is a cytokine with a known ability to prevent random
migration of macrophages. It is released from intracellular pools
by T-lymphocytes, B-lymphocytes, monocytes, macrophages,
dendritic cells, neutrophils, eosinophils, mast cells and basophils.
It is widely distributed in several tissues83 and its release is
triggered by cells exposure to microbial products, proinflamma-
tory cytokines, or specific antigens. Upon release, it acts in an
autocrine and paracrine way to induce production of proinflam-
matory cytokines84 and it also opposes the anti-inflammatory
activity of glucocorticoids.85 It has been suggested to be involved
in the pathogenesis of several immune and inflammatory
disorders such as asthma, pulmonary fibrosis and rheumatoid
arthritis,86,87 as well as in psychiatric disorders.88,89 In our previous
findings MIF blood levels were higher in depressed patients as
compared to controls and this alteration was associated with a
poor response to conventional antidepressants.63,64

Although all these pathways share a role in immune and
inflammatory processes, their possible role in association with the
effect of SLEs on leukocyte telomere length has not fully been
elucidated yet. Indeed, although telomere shortening during
lifespan is part of the physiological aging process, adverse factors
such as environmental and toxic stressors can increase the rate of
telomere attrition, thus leading to telomere shortening and to an
acceleration of the aging process.90–92 Kiecolt-Glaser et al.93

reported a correlation between increased inflammatory biomar-
kers, like IL-6 and tumor necrosis factor-α, associated to childhood
adversities exposure and accelerated leukocyte telomere short-
ening mechanisms. Telomere attrition due to oxidative damage,
promoted by iNOS signaling modulation, is another possible cause
for an increased rate of telomere shortening.94 The G-rich
telomeric sequences are particularly sensitive to oxidative stress
and the consequent damage may also affect the binding ability of
the telosome/shelterin complex, that is crucial for its protective
role in telomere maintenance,95 further leading to telomere
dysfunction and cellular senescence.96,97 A recent review sum-
marizes all these results and strictly links inflammatory mechan-
isms with telomere shortening in aging processes, pointing out
the importance of oxidative stress. Our results fit into this
framework, highlighting the possible synergistic role of factors
related both to inflammation and to oxidative stress in mediating
peripheral telomere shortening. However, the exact role of each
component and the real causality effect is still under investigation.
Limitations of our study have to be mentioned. First, we focused

our analyses only on recent severe SLEs in adulthood, so we are
not able to exclude that also recent mild SLEs and/or SLEs
occurred in the 6 months preceding the assessment could have
had an effect on the expression of the 207 genes differentially
expressed in our sample. Second, we did not perform a
longitudinal follow up of the subjects, so we are not able to
assess whether differences in gene expression and in leukocyte
telomere shortening, can predict future poor health outcomes and
also, whether these differences are maintained over time. More-
over, we have analyzed the telomere length in a single cell type
(whole blood cells) and just at one-time point, thus, repeated
measurements at different time points and a validation in specific
cell types could be useful to implement our findings.
In conclusion, our data suggest immune response, inflammation

and oxidative stress as principal processes affected by SLEs;
moreover, these systems could be associated with the negative
effect of SLEs on leukocyte telomere length. The modulation of
these mechanisms may underlie the clinical association between
the exposure to recent SLEs in adulthood and an enhanced
vulnerability to develop illnesses, as well as the ability of SLEs to

Figure 2. Biological processes pie chart. Pathways related both to
SLEs and telomere shortening grouped according to their asso-
ciated biological processes. SLE, stressful life events.
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act as precipitating factors in already vulnerable individuals.
However, this hypothesis deserves further clarifications.
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