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Abstract

BACKGROUND—Understanding the neural mechanisms of psychiatric disorders requires the 

use of rodent models; however, frontal-striatal homologies between rodents and primates are 

unclear. In contrast, within the striatum, the shell of the nucleus accumbens, the hippocampal 

projection zone, and the amygdala projection zone (referred to as the striatal emotion processing 

network, EPN) are conserved across species. We used the relationship between the EPN and 

projections from the anterior cingulate and orbitofrontal cortices (ACC/OFC) to assess network 

similarities across rats and monkeys.

METHODS—We first compared the location and extent of each major component of the EPN in 

rats and macaques. Next, we used anatomical cases with anterograde injections in ACC/OFC to 

determine the extent to which cortico-striatal terminal fields overlapped with these components, 

and with each other.

RESULTS—The location and size of each component of the EPN were similar across species, 

containing projections primarily from infralimbic cortex (IL) in rats and area 25 (a25) in monkeys. 

Other ACC/OFC terminals overlapped extensively with IL/a25 projections, supporting cross-

species similarities between medial versus lateral OFC. However, dorsal ACC had different 

connectivity profiles across species. These results were used to segment the monkey and rat striata 

according to ACC/OFC inputs.

CONCLUSIONS—Based on connectivity with the EPN, and consistent with prior literature, IL 

and a25 are likely homologues. We also see evidence of homologies across medial versus lateral 
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OFC. Along with segmenting the striatum and identifying striatal hubs of overlapping inputs, these 

results help to translate findings between rodent models and human pathology.
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Introduction

Abnormalities of anterior cingulate (ACC)- and orbitofrontal (OFC)-striatal circuits are at 

the root of several psychiatric disorders, including post-traumatic stress disorder (PTSD), 

obsessive-compulsive disorder (OCD), addiction, and major depressive disorder (MDD) (1–

4). While studies in humans highlight the association between these circuits and disease, 

research on rodents is essential for understanding the mechanisms underlying normal and 

abnormal brain function. However, translating results from rodents to humans is challenging, 

as ACC/OFC homologies between rodents and humans remain controversial. In contrast, 

human-nonhuman primate (NHP) ACC/OFC homologies are fairly well-established (5–7). 

Importantly, studies in NHPs and rats have demonstrated the topography of cortico-striatal 

anatomical projections (Table 1). Thus, NHPs provide a key intermediate step to delineate 

homologies central for linking rodent mechanistic studies to human pathologies.

The ACC regions include areas 25 (a25), 32 (a32), and 24 (a24) in NHPs and infralimbic 

(IL), prelimbic (PL), and cingulate (Cg) in rats. Although IL and a25 are largely seen as 

homologues and share emotion processing functions, PL and Cg homologies have generated 

significant controversy. These areas share certain functional features with the dorsolateral 

prefrontal cortex of NHPs (8, 9), but cytoarchitecture and connectivity point toward PL and 

Cg as homologous with a32 and a24 in primates, respectively (7, 10–12). Based on 

cytoarchitectonic similarity, the rat may possess regions homologous only to agranular NHP 

OFC (10). In contrast, based on thalamic projections, the entire primate OFC may be 

encapsulated within the rat lateral OFC (13).

In this paper, we used a striatal-centric approach to examine network homologies. We started 

with three well-conserved and well-defined structures: the shell of the nucleus accumbens 

(NAccS), the hippocampus, and the amygdala. The location, histochemistry, connections, 

and functions of the NAccS, hippocampus, and amygdala are similar across rodents and 

NHPs (14–22). Importantly, these structures are central to emotion processing (23–25). 

Within the ventral striatum, the NAccS is uniquely histochemically identifiable (26), and has 

distinct hypothalamic and extended amygdala projections (27). Likewise, the projections 

from the amygdala and the hippocampus to the striatum are consistent and reliable across 

species (20, 28–31). Thus, we focused first on frontal connectivity with the NAccS, the 

hippocampal-striatal projection zone, and the amygdala-striatal projection zone, which, 

together, we refer to as the striatal emotion processing network (EPN). In contrast to these 

well-defined areas, the nucleus accumbens “core” describes the area outside of the shell (26, 

27). However, the lateral and dorsal boundary of the core is ambiguous, from both 

histochemical and connectivity perspectives (27, 32), and it merges imperceptibly into the 
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dorsal striatum. Thus, the lack of a precise dorsolateral boundary made a cross-species 

analysis of the core difficult.

In both NHPs and rodents, parts of the ACC/OFC project to the striatal EPN to varying 

degrees (33–37). We find that IL in rats and a25 in NHPs are the primary source of cortical 

input to the striatal EPN. Projections from other ACC/OFC areas overlap less with the EPN, 

but do overlap with IL/a25 terminal fields that are outside the EPN. We propose that the 

degree of overlap between these areas with the striatal EPN and IL/a25 indicates the extent 

to which they functionally interact with the EPN system. This provides critical data to the 

question of homologies, allowing us to improve on cross-species inferences about ACC/

OFC-striatal networks.

Methods and Materials

Overview

Starting with a sizable database of cortico-striatal, hippocampal-striatal, and amygdala-

striatal connectivities from our collections in the NHP (Macaca fascicularis/mulatta/
nemestrina) and rat (Rattus norvegicus; Sprague-Dawley, Wistar, hooded strains), we 

selected cases based on good tracer transport and lack of contamination (Figure 1) (29, 31, 

33–36, 38, 39). To ensure there were no gaps in areas of interest, we supplemented with new 

cases from our own collections and the literature. The connectivity overlap between each 

region of the ACC/OFC and the striatal EPN was compared between NHPs and rats to 

identify the locations of and relationships among ACC/OFC cortico-striatal terminal fields. 

Based on these analyses, we established similarities between specific ACC/OFC regions 

across species and segmented the striatum accordingly.

Data collection

Using material from the Haber, Groenewegen, and Deniau labs’ histologically processed 

collections, we outlined injection sites and dense striatal terminal fields using Neurolucida 

software (MBF Bioscience) (35, 36). Dense striatal terminal fields were those that could be 

visualized at low magnifications (1.6 or 2.5X). Injection sites and terminal fields were 

modeled in 3D space using IMOD software (Boulder Laboratory for 3D Electron 

Microscopy) for visualization and analysis purposes (35, 36, 40, 41). Thus, data from each 

case was imported into the appropriate brain section using landmarks of key internal 

structures.

Cases drawn from the literature were from adult animals, with well-confined injection sites 

without white matter contamination, and where figures included the original charts of 

anterograde striatal labeling and photomicrographs or diagrams of the injection site. The 

locations of dense striatal terminal fields were determined using provided figures and textual 

descriptions, then incorporated on the appropriate section in the reference model. For full 

methods from cases in the literature, see corresponding papers (Table 1).
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Analyses

We defined the striatal EPN as the area containing the NAccS, the hippocampal-striatal 

projection, and the amygdala-striatal projection. These were chosen because they are 

conserved across species, are related to emotional functions, and have easily identifiable 

locations and boundaries. We selected three matched reference coronal striatal sections at 

these levels: the rostral pole of the caudate; the mid-level of the NAccS; the decussation of 

the anterior commissure (Figure 2). Although projections of interest can be found caudal to 

this point, we limited our analyses to the rostral striatum, because the striatal EPN is best 

defined there and PFC-striatal projections are densest. Next, we transferred the dense striatal 

terminal fields for each case to fit the reference slices (35, 36), resulting in combined 

cortico-, amygdala-, and hippocampal-striatal maps from multiple sources, at corresponding 

levels in the two species. Analyses were designed to leverage PFC connectivity with the 

most conserved features of the striatum (EPN) to make inferences about ACC/OFC 

homologies (I–III). Identified homologies were used to segment the striatum according to its 

inputs (IV).

I. ACC/OFC overlap with the striatal EPN—The location and size of the NAccS within 

the central reference slice (Figure 2C) were identified for each species based on dense 

GluR1, 5-HT, and acetylcholinesterase staining and lack of calbindin staining (17, 42–45). 

We calculated the percent of each cortical case’s striatal terminal field that was inside the 

NAccS, and created a 3D heat map of cortical injection sites based on this proportion. We 

did a similar analysis with the cortical inputs to the hippocampal and amygdala projection 

zones in this level of the striatum. Together, connectivities with the NAccS and hippocampal 

and amygdala projection zones indicated the extent of interaction between ACC/OFC areas 

and the striatal EPN.

II. Overlap between ACC/OFC projections with those from IL/a25—Because 

IL/a25 projections occupied the largest proportion of the striatal EPN, we assessed overlap 

between ACC/OFC terminal fields with those from IL/a25. We asked whether cortical 

location could predict terminal field position, and thus the extent of striatal projection 

overlap with the striatal EPN and the IL/a25 projection zone. We determined the average 

medial-lateral/dorsal-ventral (M-L/D-V) position of the cortical cases projecting to each 

location in the striatum, and created corresponding heat maps of the striatum. Warmer colors 

correspond to more medial and ventral frontal cortical inputs. These are closer to the EPN 

and the IL/a25 projection zone. We also determined the relationship between location of the 

center of each injection site and the terminal overlap with the IL/a25 projection zone in the 

central reference slice. We used a Pearson’s correlation between M-L/D-V cortical position 

(normalized by cortical size) and overlap with IL/a25 projection zone. This analysis 

included cases that spanned subregions in the medial PFC (mPFC) and OFC.

III. Profile of overlap with the striatal EPN and ACC/OFC projections—We 

assessed the projections from medial orbital (MO), ventral/lateral orbital (VOLO), IL, PL, 

and Cg1/2 (in rat) and medial OFC (mOFC), central/lateral OFC (clOFC), a25, a32, and a24 

(in NHP) to determine the mean proportion of overlap between striatal terminal fields from 

these ACC/OFC areas and with the striatal EPN (percentage of total striatal projection area 
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in the central slice falling within the NAccS or particular projection zones, averaged within 

cortical region). This created a cortico-striatal overlap profile (expressed as a pie chart) for 

each frontal area.

IV. Segmenting the striatum—Using the results from I–III, we segmented the striatum 

according to the relationship between projections from each ACC/OFC area and the striatal 

EPN.

Results

Overview

The location and proportion of the striatum occupied by the striatal EPN is similar across 

species (Figure 3). The NAccS is in a ventral position and occupies a similar proportion of 

striatal area in rats and NHPs (central reference slice: 10.5% rats, 10.4% NHPs). Similarly, 

the hippocampal and amygdala projection zones are of comparable sizes and positions 

within the ventral striatum of both species (hippocampus: 4.6% rat, 3.5% NHP; amygdala: 

25% rat, 17.2% NHP). IL/a25 terminal fields had the greatest overlap with the EPN. Across 

species, specific ACC and OFC regions overlapped similarly with IL/a25 and the striatal 

EPN. Rat MO and PL and NHP mOFC and a32 share similar projections to the medial 

caudate. Rat VOLO and NHP clOFC have extensive central striatal projections. Rat Cg 

projections are mostly dorsal to the striatal EPN, while NHP a24 projects both ventrally and 

dorsally.

I. ACC/OFC overlap with the striatal EPN—One particular area in each species, IL in 

rat and a25 in NHP (5, 46), projects most strongly to the NAccS. On average, 52.9% of the 

IL-striatal projection zone and 50.0% of the NHP a25-striatal projection zone are within the 

NAccS (Figure 4A). While other areas in each species also project to the NAccS, their 

projection to this structure is more limited (Figure 4B). In rats, 10% of the PL projection, 

0% of the Cg projection, and 1.4% of the OFC projection overlap the NAccS. In NHPs, 

13.3% of the a32-striatal projection, 5.5% of the a24 projection, and 3.3% of the OFC 

projection overlap the NAccS. Similarly, IL/a25 terminal fields overlap considerably with 

the hippocampal-striatal projection zone, which is confined to the medial NAccS in the 

central striatal reference slice (Figure 5).

The frontal cases with the largest overlap with the amygdala-striatal projection zone are 

those with injection sites in IL/a25 (Figure 6A). On average, 96% of the IL-striatal 

projection and 76.8% of the a25-striatal projection are located within the amygdala 

projection area. Although other areas terminate here, none does so as strongly as cases 

centered in IL/a25 (Figure 6B). In rats, 28.7% of the PL projection, 1.8% of the Cg 

projection, and 10.6% of the OFC striatal projection fall within the amygdala projection 

zone. In NHPs, 19.4% of the a32-striatal projection, 11.5% of the a24 projection, and 12.6% 

of the OFC projection fall within the amygdala projection zone. In summary, IL/a25 have 

maximal overlap with the striatal EPN, and display similar projection patterns across rats 

and NHPs.
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II. Overlap between ACC/OFC projections with those from IL/a25—There is a 

clear topography in the average cortical dorsal-ventral position of the injection sites placed 

along the medial PFC (mPFC) projecting to each location in the striatum: ventral and medial 

parts of the striatum have relatively more ventral cortical afferents (Figure 7A). Thus, 

moving dorsally in the mPFC, there is a gradual shift to projecting to more dorsal and lateral 

parts of the striatum. This pattern is particularly prominent in the central coronal slice we 

analyzed, where the striatal EPN is best-defined, and terminal fields from different PFC 

regions are maximally segregated. There is also a clear topography in the average medial-

lateral position of injection sites placed on the orbital surface projecting to each location in 

the striatum: the ventral and medial striatum have more medial PFC afferents (Figure 7B). 

Thus, moving laterally in the OFC, there is a gradual shift to projecting to more dorsal and 

lateral parts of the striatum.

Absolute position can give important clues about cortico-striatal topography; however, we 

were also interested in directly assessing overlap with IL/a25. Thus, we examined the extent 

of the striatal terminal field overlap with the IL/a25 projection zone according to cortical 

position. The proportion of the mPFC-striatal terminal field overlapping with the IL/a25-

striatal terminal field decreases with more dorsal mPFC injection sites in both species. 

Pearson’s correlations between the normalized distance for each injection from the ventral 

cortical edge and the proportion overlap by the corresponding striatal terminal field with the 

IL/a25-striatal projection zone, using the central slice only (because it reliably contains IL 

projections in both species), showed significant relationships, rat--r=−0.73, p<0.002; NHP--

r=−0.69, p<0.001 (Figure 8A). These results show that, in both species, the ventral mPFC-

striatal terminals display a greater proportion overlap with the IL/a25-striatal projection zone 

than dorsal mPFC-striatal terminals do.

The proportion of the OFC-striatal terminal field overlapping with the IL/a25-striatal 

projection also decreases with more lateral OFC injection sites in both species. Pearson’s 

correlations between the normalized distance for each case from the cortical medial edge 

and the proportion overlap in the striatal projection with the IL/a25-striatal terminal field 

showed significant relationships, rat--r=−0.67, p=0.02; NHP--r=−0.79, p<0.01 (Figure 8B). 

Thus, medial OFC-striatal terminals display a greater proportion overlap with the IL/a25-

striatal projection than lateral OFC-striatal terminals. In summary, the overlap with the 

IL/a25 projection decreases with distance from the ventromedial surface of the PFC.

III. Profile of overlap with the striatal EPN and ACC/OFC projections—Analyzing 

each ACC and OFC area individually showed specific between-species correspondences 

(Figure 9). As described above, IL/a25 terminal fields are limited in scope compared to 

those from other areas: they are restricted mainly to the striatal EPN. IL/a25 projections also 

overlap substantially with OFC terminals. PL (rat) and a32 (NHP) are also similar: they 

project to the medial wall of the caudate; they project to the EPN, but not as extensively as 

IL/a25; their projections overlap substantially with terminals from amygdala, OFC, and IL/

a25.

Comparing rat Cg and NHP a24 projections is more complex. Striatal fields from the NHP 

a24 cover a large portion of the rostral striatum, whereas those from the rat area Cg are more 
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limited. A24, but not Cg, projections overlap with inputs from the striatal EPN and a25; both 

overlap substantially with OFC terminal fields. Thus, a24 and Cg have different patterns of 

striatal projections. Importantly, NHP a24 can be divided into functionally distinct rostral, 

middle, and caudal regions. We asked whether any of these had striatal terminal fields more 

closely aligned with those from rat Cg. While the rostral a24-striatal projection is 

widespread and has all of the features described above, caudal a24 terminal fields appear 

unique. Like Cg, they are mostly limited to the dorsal striatum (Figure 10). Projections from 

both rostral and caudal portions of rat area Cg are confined to the dorsal striatum, and thus 

do not show the same differentiation as NHP a24.

MO/mOFC terminal fields are located not only in the striatal EPN, but also at the medial 

edge of the dorsal caudate (Figure 9). They do not extend into the lateral striatum. Ventrally, 

MO/mOFC projections overlap considerably with terminal fields from IL/a25. In contrast, 

VOLO/clOFC terminal fields in both species cover a larger region of the rostral striatum. 

They overlap substantially with those from the amygdala, IL/a25, and MO/mOFC ventrally. 

However, they also extend outside these areas, reaching into dorsal and central parts of the 

striatum.

IV. Segmenting the striatum—ACC/OFC projections to the striatum (Figure 11) were 

used to segment the striatum into four functionally distinct zones (Figure 12). First, in rats, 

the medial striatal EPN receives most of its input from IL (red zone, Figure 12). Additional 

input is derived from MO and area PL, but not from Cg. In NHPs, the medial striatal EPN 

receives most of its input from a25, and less from mOFC, a32, and a24. Second, in rats, 

VOLO projections to the striatal EPN (yellow zone) extend laterally to the main IL 

projection area. Similarly, in NHPs, OFC and a24 projections are present lateral to a25 

terminals. Third, the medial wall of the striatum receives a unique set of projections from 

MO/mOFC and PL/a32 (pink zone). VOLO/clOFC and a24 (but not Cg) also project to this 

medial strip, but less exclusively. Finally, inputs to dorsal and lateral parts of the striatum are 

limited to Cg, a24, and VOLO/clOFC (blue zone).

Caudally, in both species, ACC/OFC terminals appear to occupy relatively less surface area, 

likely due to the presence of premotor and motor inputs. Similar to the more rostral section, 

at this caudal coronal level, the medial wall of the caudate receives a unique set of inputs 

from MO/mOFC and PL/a32. NHP a24 and rat VOLO/clOFC also project to this medial 

strip. VOLO inputs extend more dorsally in rats than clOFC inputs do in NHPs.

At the rostral striatal level, IL/a25 projections are very limited and isolated to the 

ventromedial striatum. Projections from other frontal cortical regions in both species appear 

less restricted and topographic than in the middle and caudal sections. For example, PL and 

rostral a24 projections span the entire medial-lateral width of the striatum at this level, 

unlike caudally. Although not analyzed here, the hippocampal-striatal projection is also 

more extensive at this rostralmost level (20, 31).
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Discussion

In this study, we used projections to the NAccS and the hippocampal- and amygdala-striatal 

projection zones (together, the striatal EPN) to assess ACC/OFC homologies across rats and 

NHPs. First, we used connectivity with these conserved striatal features to establish that IL 

(rat) and a25 (NHP) are likely homologues. Although projections from other ACC/OFC 

areas overlap less with the striatal EPN, they do overlap with IL/a25 projections. Thus, we 

next determined the overlap between different ACC/OFC-striatal terminal fields and the 

IL/a25 projection zone, as a second measure of these areas’ influence over basic emotional 

processes in the striatum. We found that both the mPFC and OFC of rats and NHPs obey 

similar organizational principles in their striatal projections. More dorsal and lateral 

ACC/OFC areas are less integrated with the EPN and IL/a25. These analyses suggest that 

the rat homologues of NHP a32, mOFC, and clOFC appear to be PL, MO, and VOLO, 

respectively. However, the rodent homologue of the primate rostral dorsal a24 is not clear, 

and may include portions of PL and Cg.

ACC/OFC homologies

IL cortex in rat and a25 in NHP are generally regarded as homologues. They are thought to 

play a central role in emotion processing (47), and have similar cytoarchitecture, location, 

and connections (7, 11, 48). IL and human a25 have also both been implicated in the 

successful retrieval of fear extinction memories (2). However, Kesner (9) suggests that IL, 

with PL and MO, is homologous to primate lateral PFC. Using circuit-based analyses, our 

data support the congruence between IL and a25. They both have a relatively limited striatal 

projection area, with terminals concentrated in the EPN.

Different authors consider PL to be homologous to NHP a32 (10, 48, 49), lateral PFC (9, 

50), or a24 (51); the homologue of rodent Cg is similarly contentious (8, 10, 48). We find 

that a32 is most similar to PL, because of its medial projection and interface with the striatal 

EPN and IL/a25 (although parts of PL may also be homologous with portions of a24). 

Importantly, both PL and a32 projections are positioned at the intersection of the striatal 

EPN and IL/a25 projections on the one hand, and projections from more cognitive regions 

on the other. Finally, our analyses indicate that the rodent homologue of NHP a24 is not 

straightforward. Portions of PL may be equivalent to rostral a24 in NHP. Projections from 

Cg appear most similar to those from caudal a24, but may also have commonalities with 

rostral a24. Indeed, the fear learning literature points to a shared role for PL and a24 in the 

expression of conditioned fear (2), while a reward learning context suggests that PL and a32 

guide outcome-directed behavior (48).

The homologies between rodent and primate OFC have important implications for how 

rodent OFC results ought to be translated. Passingham and Wise (10, 48) argue that granular 

OFC areas of the NHP (most of the orbital surface) have no homologue in the rodent. By 

contrast, others argue that the entire primate OFC may be homologous to the rat VOLO (13), 

because these regions share similar thalamic projections. Our results suggest that VOLO is 

homologous to NHP clOFC, with terminals spread throughout the central striatum. 

Functional studies concur: neurons in these areas both respond to sensory properties (see 7). 

By contrast, MO might best be compared to mOFC in NHPs. These areas are related to 
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motivational states and visceromotor context (7). Like those from PL, MO/mOFC terminal 

fields are positioned to interact with both the EPN and cognitive systems.

Implications for the study of psychiatric disorders

These results can facilitate cross-species research on psychiatric disorders. For example, 

activation of a25 and a32 is related to negative affect in MDD (52, 53) and drug-related cues 

in addiction (54, 55). Our results suggest that, particularly when studying cortico-basal 

ganglia networks, the mechanisms of such a25 and a32 abnormalities are most appropriately 

modeled in rodent IL and PL, respectively. Similarly, OCD, PTSD, and addicted patients 

show enhancements in a24 activity during symptom/craving provocation (2, 56–58); our 

results indicate that this region may have unique properties in primates relative to rodents. 

Finally, the mOFC is a critical area of disruption in OCD (59), an abnormality that has been 

successfully modeled in rodent MO (60).

Segmenting the striatum and integrative hubs

Our maps use conserved structures to demonstrate shared cortico-striatal topography across 

species. First, IL/a25 inputs dominate the medial striatal EPN in both species, while the 

lateral EPN contains a more diverse set of inputs. Notably, in both species, hippocampal-

striatal terminals are confined to the ventromedial region (at the level of the central reference 

slice), where they can interface with IL/25 projections (20, 30, 31). Second, PL/a32 and 

MO/mOFC inputs extend up the medial caudate: this subarea is an important component of 

the ventral striatum (32). Third, the dorsal and lateral striatum in both species contains 

inputs from VOLO/clOFC and Cg/a24. Finally, there is substantial overlap in functionally 

distinct cortico-striatal terminal fields. Many of the details of this overlap are shared 

between rats and NHPs, indicating that cortico-striatal integration is conserved.

The observed pattern of cortical projections suggests a ventromedial to dorsolateral gradient 

of limbic to cognitive and motor inputs in both species (32, 61). Many functional and 

pharmacological studies of the rodent striatum only distinguish dorsal versus ventral 

portions (e.g., 62, 63), and boundaries between these subregions are ambiguous. However, 

both cortical and subcortical inputs are organized in a rotated (ventromedial to dorsolateral) 

fashion. Thus, there is also considerable evidence for medial/lateral and rostral/caudal 

differentiation (64–69). For example, goal-directed versus habitual actions seem to 

differentially involve the dorsomedial and dorsolateral portions of the striatum, respectively 

(68, 70). Our maps link these results with specific striatal subterritories of ACC/OFC 

connectivity (Figures 9–12).

Striatal regions that combine projections from functionally distinct cortical regions (referred 

to as hubs) may be critical for information integration within the basal ganglia (33). Thus, 

while a small number of inputs may dominate a striatal segment, other projections are also 

present, such that within each segment exist hubs with different combinations of inputs (33). 

Hubs are likely to be embedded within the segments identified in Figure 12, and also present 

in other striatal areas. For example, in the rostralmost section (Figure 2B/F), ACC/OFC 

projections likely overlap substantially with the hippocampal projection (20, 31). In caudal 

striatum, projections from the amygdala can interface with limited ACC/OFC terminal 
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fields. Future work will be able to identify, more precisely, the location of specific hubs and 

the strength of inputs.

Conclusions

Macroscale neuroimaging techniques for assessing connectivity highlight homologies 

between humans and NHPs (6, 71). Here we demonstrate how we can use the precision of 

anatomy to identify homologies between primates and rodents. Combined, these studies 

allow us to make connectivity-based inferences about homologies from rodents to NHPs 

and, finally, to humans.
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Figure 1. Injection sites
Injection sites for the rat (left) and NHP (right) are shown in black on the medial (top) and 

orbital (middle) frontal cortices. Approximate regional boundaries are demarcated with gray 

dotted lines. As in all figures, the rat brain has been enlarged relative to its actual size in 

comparison to the NHP brain for comparison purposes. clOFC=central/lateral orbitofrontal 

cortex; Cg1/2=cingulate areas 1/2; IL=infralimbic cortex; MO=medial orbital cortex; 

mOFC=medial orbitofrontal cortex; PL=prelimbic cortex; VOLO=ventral and lateral orbital 

cortex
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Figure 2. Striatal reference slices
A–D. Striatal reference slices for the rat A. Sagittal view showing levels from which coronal 

slices were drawn. B. Rostral striatal reference slice in the rat. C. Central striatal reference 

slice in the rat. D. Caudal striatal reference slice in the rat. E–H. Striatal reference slices for 

the NHP E. Sagittal view showing levels from which coronal slices were drawn. F. Rostral 

striatal reference slice in the NHP. G. Central striatal reference slice in the NHP. H. Caudal 

striatal reference slice in the NHP. AP=anterior-posterior distance from bregma, estimated 

from (46, 81); AC=anterior commissure; cc=corpus callosum; Cd=caudate; ctx=cortex; 

IC=internal capsule; NAcc=nucleus accumbens; put=putamen; str=striatum
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Figure 3. The striatal EPN in rats (left) and NHPs (right)
A. The NAccS is shown in gray on the central striatal reference slice. It occupies similar 

positions (ventral) and areas (10.5% in rats and 10.4% in NHPs) in both species. B. The 

hippocampal projection zone is shown in olive on the central striatal reference slice. It 

occupies similar positions (medial NAccS) and areas in both species (4.6% in rats and 3.5% 

in NHPs). C. The amygdala projection zone is shown in brown on the central striatal 

reference slice. It occupies similar positions (ventral, but extending dorsally to the NAccS) 

and areas (25% in rats and 17.2% in NHPs) in both species.
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Figure 4. Projections to the shell of the nucleus accumbens from ACC and OFC regions
A. The cortico-striatal projections from the IL (rat, left) and a25 (NHP, right) show 

substantial overlap with the NAccS (gray) in both species. B. Medial sagittal (top) and 

orbital (bottom) views of cortical injection sites, colored according to the proportion of the 

corresponding striatal terminal field that occupies the NAccS. Warmer colors indicate 

greater overlap with the NAccS. Clear “hot spots” of cortico-striatal connectivity with the 

NAccS (orange circle) can be observed in the IL cortex (rat, left) and area 25 (NHP, right).
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Figure 5. Projections to the hippocampal projection zone from ACC and OFC regions
A. The cortico-striatal projections from the IL (rat, left) and a25 (NHP, right) show 

substantial overlap with the hippocampal projection zone (olive) in both species. B. Medial 

sagittal (top) and orbital (bottom) views of cortical injection sites, colored according to the 

proportion of the corresponding striatal terminal field that occupies the hippocampal 

projection zone. Warmer colors indicate greater overlap with the hippocampal projection 

zone. Clear “hot spots” of cortico-striatal connectivity with the hippocampal projection zone 

can be observed in the IL cortex (rat, left) and area 25 (NHP, right).
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Figure 6. Projections to the amgydala projection zone from ACC and OFC regions
A. The cortico-striatal projections from the IL (rat, left) and a25 (NHP, right) show 

substantial overlap with the amygdala-striatal projection region (brown) in both species. B. 

Medial sagittal (top) and orbital (bottom) views of cortical injection sites, colored according 

to the proportion of the corresponding striatal terminal field that occupies the amygdala 

projection zone. Warmer colors indicate greater overlap with the amygdala projection zone. 

Clear “hot spots” of cortico-striatal connectivity with the amygdala projection zone can be 

observed in the IL cortex (rat, left) and a25 (NHP, right).
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Figure 7. Striatal projection location is related to cortical position in both species
A. Heat maps show the average ventral-dorsal position of mPFC input to each position in the 

striatum, at 3 rostral-caudal levels (as shown in Figure 2). Maps were created by averaging 

the V-D position of every mPFC injection site that resulted in dense terminal field in the 

specified striatal location. V-D positions were normalized according to the total V-D distance 

on the medial surface at the coronal slice corresponding to the center of the injection site in 

question. B. Heat maps show the average medial-lateral position of OFC input to each 

position in the striatum, at 3 rostral-caudal levels (as shown in Figure 1). Maps were created 

by averaging the M-L position of every OFC injection site that resulted in dense terminal 

field in the specified striatal location. M-L positions were normalized according to the total 

M-L distance on the orbital surface at the coronal slice corresponding to the center of the 

injection site in question.
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Figure 8. Comparable mPFC and OFC-striatal organization across species
A. Proportion of mPFC striatal field overlap (central slice as shown in Figures 2C and 2G) 

with IL/a25 projection zone decreases with more dorsal injection sites in rats (top) and 

NHPs (bottom). B. Proportion of OFC striatal field overlap (central slice as shown in Figures 

2C/G) with IL/a25 projection zone decreases with more lateral injection sites in rats (top) 

and NHPs (bottom). Thus, more lateral and dorsal ACC/OFC areas are less integrated with 

the striatal EPN.
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Figure 9. Detailed analyses of individual ACC and OFC areas
A–B: Drawings show the overlapping striatal terminal fields from different frontal cortical 

cases, grouped by region. Pie charts show proportion of the corresponding striatal terminal 

field that overlaps with projection zones from the IL/a25 (red), MO/mOFC (purple), VOLO/

clOFC (orange), amygdala (brown), and hippocampus (olive), and the NAccS (gray). 

Numbers inside pie charts indicate the mean proportion of the cortical area’s striatal terminal 

field overlapping with the striatal zone indicated (central coronal slice, Figure 2C/G). For 

example, for the pie chart shown at the upper left, the 96% of the average terminal field from 

IL falls within the amygdala-striatal projection zone, 53% falls within the NAccS, 35% falls 

within the hippocampal-striatal projection zone, 40% falls within the MO-striatal projection 

zone, and 16% falls within the VOLO-striatal projection zone.
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Figure 10. Rostral vs caudal primate a24 show different striatal projection patterns
A. Upper left shows subdivsions of rostral, middle, and caudal dACC zones in NHP 

(boundaries indicated by dotted lines). Bottom shows corresponding striatal projections. 

Rostral and middle a24 terminals span ventral and dorsal striatum (and elsewhere in the 

paper are combined and described as only “rostral a24”). Caudal primate a24 terminals are 

mainly located in the dorsal striatum. B. a24 subdivisions used for A. C. The rat Cg striatal 

projection is shown for comparison purposes (there are no rostral-caudal differences in rat 

Cg projections).
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Figure 11. Striatal projection zones according to identifiable ACC/OFC homologies
A. IL (red), PL (yellow-green), and Cg (teal) projections in rat (left); areas a25 (red), a32 

(yellow), rostral 24 (r24, green), and caudal a24 (c24, blue) in NHP (right). B. MO/mOFC 

(purple) and VOLO/clOFC (orange) projections in rat (left) and NHP (right). For both 

species, reference slice locations are shown in sagittal slices at upper left, and in Figure 2.
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Figure 12. Schematic representation of cross-species striatal segmentation, according to 
characteristic ACC/OFC projections
Although there are substantial areas of overlap among cortical terminal fields, different 

striatal segments have unique combinations of ACC/OFC inputs (listed in italics within each 

segment; dominant ones are in larger font). Within each segment, hubs of unique cortical 

and subcortical connections can be found.
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Table 1

Injection sites & sources.

RAT IL PL Cg OFC hipp amyg TOTALS

Deniau collection 4 2 2 8

Groenewegen collection 2 1 2 7 2 5 19

Haber collection 1 1

Kelley & Domesick (30) 1

Krettek & Price (28) 4 4

Reep et al. (72) 1 1

Hurley et al. (73) 1 1

Sesack et al. (74) 3 1 4

Zeng & Stuesse (75) 1 1

Vertes collection (76, 77) 1 1 2 4

TOTALS 4 10 5 12 3 10 54

NHP vmPFC OFC dACC dmPFC hipp amyg TOTALS

Friedman et al. (20) 2 5 7

Cho et al. (78) 4 4

Haber collection 3 9 7 7 1 2 29

Chiba et al. (79) 2 1 3

Ferry et al. (80) 2 11 1 14

TOTALS 7 20 9 7 3 11 57
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