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An Evaluation of the Current State of Genomic Data Privacy
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A b s t r a c t The incorporation of genomic data into personal medical records poses many challenges to patient
privacy. In response, various systems for preserving patient privacy in shared genomic data have been developed and
deployed. Although these systems de-identify the data by removing explicit identifiers (e.g., name, address, or Social
Security number) and incorporate sound security design principles, they suffer from a lack of formal modeling of
inferences learnable from shared data. This report evaluates the extent to which current protection systems are capable
of withstanding a range of re-identification methods, including genotype–phenotype inferences, location–visit patterns,
family structures, and dictionary attacks. For a comparative re-identification analysis, the systems are mapped to
a common formalism. Although there is variation in susceptibility, each system is deficient in its protection capacity.
The author discovers patterns of protection failure and discusses several of the reasons why these systems are
susceptible. The analyses and discussion within provide guideposts for the development of next-generation protection
methods amenable to formal proofs.
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The biomedical community currently finds itself in the midst
of a genomics revolution. Genomic data, combined with in-
creasing computational capabilities, provide opportunities
for health care that until recently were severely limited.
Beyond gross diagnostics, mounting evidence suggests geno-
mic variation influences disease susceptibility and the ability
to metabolize drugs. As a result, genomic data are increas-
ingly collected, stored, and shared in research and clinical
environments.1

The sharing and application of person-specific genomic data
pose complex privacy issues and are considered the foremost
challenges to the biomedical community.2,3 Many people fear
knowledge gleaned from their genome will be misused, be
abused, or instigate social stigma for themselves or familial
relations.4,5 This fear is exacerbated by the HIPAA Privacy
Rule, under which genomic data are not specified as an iden-
tifying patient attribute.6 As such, genomic data may be re-

leased for public research purposes under HIPAA’s safe
harbor provision.* Yet, when genomic data are not publicly
available, recipients may be subject to data use agreements.
Although legally binding, there is no guarantee genomic
data will be used according to specification. Thus, it is best
that privacy laws are complemented with technology to assist
in the enforcement of protections.

Privacy protection technologies for genomic data must ad-
dress the question, ‘‘How can person-specific DNA be shared,
such that a recipient can not sufficiently associate the DNA to
its explicit identity (i.e., name, Social Security number, etc.)?’’
Although genome variation uniquely characterizes an indi-
vidual,7 there exists no public registrar that maps genomes
to names of individuals. Over the last several years, many ge-
nomic data privacy protection systems have implicitly relied
on this premise. These systems tend to separate DNA from
explicit identifiers through methods ranging from simple re-
moval of identifiers to strong cryptographic protocols.y

This report addresses the extent to which current privacy-
enhancing technologies for genomic data are susceptible to
compromise. Specifically, this work studies computational at-
tacks that leverage information learned from shared genomic
data and additional resources for linkage to named individu-
als. None of the systems analyzed is impregnable to re-iden-
tification. Rather, there exist patterns of flaws due to neglect
of inferences that can be made from genomic data itself and
the environments in which the data are shared.
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The remainder of this report is organized as follows. In the
following section, background on several published protec-
tion strategies for genomic data are provided. Each system
is represented and discussed in a structured relational nota-
tion for comparative analysis. Next, computational re-identi-
fication methods for testing the protection systems are
defined. With protection and re-identification methods pre-
sented, susceptibility analyses are performed and patterns
of protection failures are discussed. This work concludes
with a discussion on the need for research into formal ano-
nymity protection schemas for genomic data and how such
developments may proceed.

Current Privacy Protection Systems
In this section, four types of genomic data privacy protection
systems are reviewed. Briefly, we introduce the following re-
lational formalism to represent the systems. Person-specific
data are organized as a table T(A1, A2,., An) of rows and col-
umns. Each column Ai is a semantic attribute, such as ‘‘date of
birth,’’ ‘‘DNA sequence,’’ or ‘‘zip code.’’ Each row is an n-tuple
t[a1, a2,., an], where ai corresponds to a specific value of
the ith attribute. An identified table, T+, includes explicitly iden-
tifiable information, such as name or Social Security number.
Conversely, a de-identified table, T2, is devoid of identifiable
information. Figure 1 provides examples of tables and tuples.
For example, the record t[Bradley Malin, 000-00-0000, BIGBM,
actg] is a relevant tuple for table T(Name, Social Security
Number, Pseudonym, DNA). Adversaries are never provided
with DNA in an identified table, so the DNA-identity map-
ping is unknown prior to receiving the de-identified table.

De-identification
The first type of protection system, adopted in awide range of
communities and environments, is based on de-identification
(DEID).8–10 The data holder classifies attributes into three
types: explicit identifiers, quasi-identifiers, and nonidentify-
ing. Explicit identifiers consist of information that can directly
reveal, or allow for contact with, an individual, such as name
or Social Security number. A quasi-identifying attribute does
not reveal identity by itself but, in combination with other at-
tributes, can be used to link to other sourceswith explicit iden-
tifying attributes. For example, Sweeney demonstrated the
values for {date of birth, gender, and five-digit zip code}
uniquely characterized over 87% of the United States popula-
tion.11 Advocates of de-identification claim the corresponding
identity of genomic data is sufficiently protectedwhen explicit
and quasi-identifying attributes are removed or generalized.

In DEID, the original table of a data holder takes the form
T(Explicit-identifiers, Quasi-identifiers, Non-identifiers). When
the data holder shares information, he removes Explicit-iden-
tifiers and generalizes values in Quasi-identifiers to prevent

unique combinations. Thus, the data holder shares the dataset
T#(Quasi-identifiers#, Non-identifiers), where every value in the
set of Quasi-identifiers# is derivative of its corresponding value
in the original set of Quasi-identifiers. In many situations, a
unique identifier is assigned to a patient for linkage purposes.
For instance, in the Utah Resource for Genetic and Epidemi-
ologic Research (RGE) system, the unique identifier is a ran-
dom number.9 As a result, RGE data are released in a table
T#(Quasi-identifying Attributes#, Other Attributes, Random
Number). Figure 2 depicts a data release for a DEID system.

Denominalization
Systems based on denominalization (DENOM) are similar to
DEID, except they incorporate structured coding, often for fa-
milial relationships.12 In the original model, each patient is
represented by six attributes {Individual, Family, Relation,
Marriage, Sibling, Multiple}. Individual is a unique random
number assigned to a patient, akin to the RGE system, which
is used tomanage the individual’s clinical and biological sam-
ples. The remaining attributes correspond to genealogical in-
formation. Family is a random number assigned to every
member of the same family. Relation corresponds to the rela-
tionship of an individual to another family member, such as
child or parent. Sibling denotes the birth order of a child
(i.e., oldest, next oldest, etc.). Marriage specifies which mar-
riage a child was born into. Multiple specifies which family
a tuple pertains to when the individual is classified under
multiple families.

The individual and family codes are managed independently.
In the system description, it is claimed different levels of an-
onymity are achieved through the suppression, or withhold-
ing, of various attributes. For example, biological samples are
considered to be sufficiently anonymous when stripped of the
latter five attributes.

Trusted Third Parties
The third system (TRUST), introduced by deCode Genetics,
Inc., facilitates data transfers via a trusted third party (TTP)
intermediary empowered with full data encryption/decryp-
tion capability.13 The full system consists of two protocols,
both based on encryption and security. The first protocol

F i g u r e 1. The table T(Name, Social Security Number,
Pseudonym, DNA) is data collected by a specific location.
T1(Name, Social Security Number) and T2(Pseudonym, DNA),
are identified and de-identified tables, respectively.

F i g u r e 2. (A) Attributes of the original table are parti-
tioned into explicit identifying (identifying), quasi-identifying
(quasi), and nonidentifying (non). (B) Identifying attributes are
removed, the quasi attributes are generalized (quasi#). A
unique ID has been added.
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facilitates discovery of research subjects, while the second
specifies how biological samples are transferred to research-
ers. For brevity, we concentrate on the subject discovery
protocol.z

Researchers initiate the protocol by communicating a specific
disease of interest to physicians attending the patient popu-
lation. The physicians create and send a population-based
list L{Name, Social Security Number, Additional Demographic
Features§, Disease} to the TTP. The TTP applies a reversible en-
cryption function f to the Social Security Number (SSN) to de-
rive an alphabet-based pseudonym f(SSN). Next, the TTP
sends researchers the encrypted data, minus explicit identi-
fiers, as a list L#{f(SSN), Disease}. Upon reception, the research-
ers match L# against f-encrypted genealogies linked to patient
medical information. Based on these data, the researchers
send a wish list of patients for further study, N{f(SSN)},
back to the TTP. Finally, the TTP decrypts, appends the proper
identifying information, and forwards the list N#{name, SSN}
to the appropriate attending physicians.

Semitrusted Third Parties
A fourth, and the most recent, system (SEMITRUST) was in-
troduced by researchers at the University of Gent and affili-
ates.14 Akin to TRUST, this system also employs a third
party, but one with restricted access to plaintext data, or
a semitrusted third party (sTTP). The third party is permitted
to hold and distribute encrypted data only.

For the first step of the SEMITRUST protocol, the data holder
constructs a list of identified individuals and their corre-
sponding genomic data L{Identity, DNA}. The data holder ap-
plies public-key encryption function h to the Identity attribute
and sends L#{h(Identity), DNA} to the sTTP. Next, the sTTP ap-
plies its own public-key encryption function g to h(Identity) to
create L##{g(h(Identity)), DNA}. In addition, the sTTP can act
as a data broker for multiple data holders and can maintain
a set of lists, A{g(hA(Identity)), DNA}, B{g(hB(Identity)),
DNA}, ., Z{g(hZ(Identity)), DNA} for locations A, B, ., Z.
When researchers query the sTTP for data, they are supplied
with doubly encrypted lists. For additional data, researchers
send requests onto the sTTPwith a list of encrypted identities.
In turn, the sTTP decrypts and sends the single-encrypted
pairs onto the appropriate locations for additional data.

Re-identification Methods
In the following sections we briefly review four different
types of re-identification techniques.

Family Structure
The first re-identification method (FAMILY) employs genea-
logical data accompanying genomic data. Genealogies, rich
in depth and structure, permit the construction of complex fa-
milial relationships. Consider a simple family structure of two
parents and one child. Since the parental genders are guaran-
teed, there exist 2 variants of this structure, since the child’s
gender is either male or female. When disease status is taken
into account, it is represented as a Boolean variable; either an
individual afflicted or not afflicted. In this aspect, all three

family members can be represented as three attributes
{Father, Mother, Child}, and there exist (father’s disease sta-
tus)*(mother’s disease status)*(child’s disease status)*(child’s
gender) = 2*2*2*2 = 16 possible family-disease combinations.
In reality, pedigrees are much more robust than a simple nu-
clear family. For example, a three-generation family of two
children per family permits on the order of 105 distinct var-
iants of the family-disease structure and 106 individuals
that could be uniquely characterized. The number of
combinationsk is larger when supplementary informa-
tion, such as living status or medical/genetic features, is
considered.16

The ability to determine unique family structures is only one
part of the re-identification process. These structures must be
linked to identifiable information, which, in many instances,
is publicly available in the form of various genealogical data-
bases. These databases are accessible both offline and via the
WorldWideWeb. For example, genealogical records are avail-
able in many public databases, including ,Ancestry.com>,
,Infospace.com>, ,RootsWeb.com>, ,GeneaNet.com>,
,FamilySearch.org>, and ,Genealogy.com>.{ From such
data, it is not difficult to construct family structures and,
with such information in hand, an adversary can link dis-
ease-labeled family structures to named individuals.

Genotype–Phenotype Inference
The second method relies on phenotype inferences extracted
from the genomic data (GENPHEN). Given two tables X(A1,
A2,.,An) andY(B1,B2,.,Bm) a set of relations is constructed,
and,when auniquematch is foundbetween the two, a re-iden-
tification is discovered. In the base case, thismodel is similar to
the quasi-identifier–based linkage model used in Sweeney’s
earlier work with health data re-identification.14,17 For exam-
ple, consider Health(Name, Address, Birthdate, Gender, Zip
Code, Hospital Visit Date, Diagnosis, Treatment) and
Genomic(Age, Gender, Hospital Visit Date, DNA). The set of ex-
tracted attribute relationships is {ÆBirthdate, Ageæ, ÆGender,
Genderæ, ÆHospital Visit Date, Hospital Visit Dateæ}, but the set
of relationships is expanded when relationships between clin-
ical and genomic data are known. It has been demonstrated
there exist a minimum of 40 standardized diseases (via ICD-
9 codes) to which DNA mutations in the genome are directly
related.18 Furthermore, pharmacogenomics continues to un-
cover relationships between genomic variation and the ability
to process drugs and treatments.2-3,19 Given such domain
knowledge, it is possible to include {ÆDiagnosis, DNAæ,
ÆTreatment, DNAæ} relations.
Furthermore, extending Sweeney’s original work, it is possi-
ble to build systems that utilize attributes not observed in
clinical or genomic information for linkage. When more com-
plete clinical information is available, nonstandard informa-
tion, such as age of onset for progressive disorders, can
be inferred. In previous research, we showed how this
could be achieved with longitudinal clinical information
and Huntington’s disease. Our system was able to infer age

zDetails on the second protocol and its mapping to this paper’s
formalism are available in reference 19.

§The set of attributes Additional Demographic Features corresponds to
demographic attributes deemed useful by deCode.

kDetails of the combinatorics for more complex combinations of
family-disease structures are provided elsewhere.15

{At the time of writing, the website http://www.rat.de/kuijsten/
navigator/ provided links to a number of genealogical resources.
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of onset within a 3-year period and subsequently match DNA
to clinical data.20 In its current implementation, this approach
is applicable to any simple genetic disorder with defined clin-
ical phenotypes.

An additional feature of the inference attack is it becomes
more powerful with time. Since the goal of genomic medicine
is to elicit the relationships between genomic data and clinical
phenotype, the number of relations and specificity of such in-
crease with advances in basic medical research. For example,
the goal of the human genome diversity project and genomic
anthropology is to pinpoint relationships between genomic
variation and ethnicity. As a result, both the number and
specificity of relations will expand, thus permitting an in-
creasing capability for linkage.

Trails
The method of trail re-identification (TRAIL) utilizes location-
specific information to match DNA to identity.21 Consider an
environment with a set of locations, such as a set of hospitals,
and a set of data subjects, such as a set of patients. Each loca-
tion has the ability to collect multiple types of information,
such as clinical and genomic data. To protect privacy when
data are released, each hospital releases identified data and
de-identified data separately. The first table released is
T+(Demographic Information, Clinical Information), where
Demographic Information contains identifiable data. The sec-
ond table released, T2(DNA), consists of a list of genomic
data samples.

An adversary retrieves data from a set of locations and creates
two new tables, each one corresponding to location informa-
tion for a particular data type. The first table consists of iden-
tified data, while the second consists of DNA data. The
mapping of data to location is referred to as the data trail.
In Figure 3, trails are depicted as Boolean vectors; either
a data value is observed at a location (1) or not (0). Details
on trail-matching algorithms and their application to real-
world populations can be found in reference 21. In short,
genomic data left behind by an individual are matched to ex-

plicitly identifiable data based on the patterns of trails be-
tween the tracks.

Dictionary Attack
The fourth re-identification method (DICTIONARY) is appli-
cable when data are encrypted, or recoded, using nonrandom
information. These methods, which obscure information, can
provide the basis for further erosion of patient privacy, be-
yond that of a susceptibility to the re-identification methods
presented above. Consider a set of hospitals H, where each
hospital heH releases tables Th

+ and Th
2 with attributes

Ah
+ = {name, date of birth, gender, zip code, clinical data} and

Ah
2 = {pseudonymh, DNA}. The attribute pseudonymh is gener-

ated through a reversible encryption function fh, such as pub-
lic-key encryption fh(Identity, keyh) = pseudonymh, where
Identity is a tuple of patient information [name, date of birth,
gender, zip code]. An adversary can use a trail attack to re-iden-
tify some of the patients released from a set of data-releasing
locations. Through re-identification, the adversary has con-
structed a table with the attributes {name, date of birth, gender,
zip code, pseudonym1, pseudonym2, ., pseudonymH}, where
pseudonymx is the pseudonym that hospital x uses for the
identity of the patient. Thus, the adversary has achieved his
goal of re-identifying the protected genomic data.

System Susceptibility Analyses
In this section, the general re-identification susceptibility for
each of the protection methods is evaluated. The results are
presented at a meta-level, such that either a system is consid-
ered susceptible or not susceptible. In Table 1, a side-by-side
comparison of protection model susceptibility is presented.
Each of the protection models is susceptible to a minimum
of three of the four re-identification attacks. Here, we discuss
how each of the re-identification methods fares against the
protection models in more detail.

Family Structure Susceptibility
The only model not susceptible to the family structure attack
is the SEMITRUST system. Under this model, no familial re-
lationships are considered in the genomic data. In specific
cases, familial inferences may be possible, such as through
haplotype analysis of DNA sequences. However, without
more confidence regarding whether related family members
are in the dataset, such analysis could create false family
structures and familial relations.

It is interesting to note that the denominalization strategy be-
hind DENOM strives to prevent the family attack almost ex-
plicitly. It provides protections by separating the individual
from the family and using a local recoding of the identity.
Yet, once this information is studied in a genealogical setting,
the protections are minimal. Similarly, TRUST reveals genea-
logical information on a large scale, since this is how subject
recruitment is performed.

F i g u r e 3. (A) Identified and de-identified data releases of
locations loc1, loc2, and loc3. (B) Resulting identified and
DNA tracks created. When re-identification is based on exact
trail matching, John, Brad, and Bob are re-identified to catg,
actg, and tgca, respectively.21

Table 1 j General Susceptibility of Privacy
Protection Models to Re-identification

Re-identification
Attack

Privacy Protection System

TRUST SEMITRUST DENOM DEID

FAMILY Yes No Yes Yes
TRAIL No Yes No Yes
GENPHEN Yes Yes Yes Yes
DICTIONARY Yes Yes No No
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In contrast, the RGE model of DEID is more difficult to ana-
lyze. As shown in Table 1, the RGE model is susceptible to
all re-identification attacks—although this may be somewhat
deceiving. Since the RGE maintains a massive repository of
diverse datasets, not all re-identification attacks can be per-
formed on every dataset released. Thus, the analysis of re-
identifiability for RGE released datasets is data dependent.
Since RGE does have the ability to reveal genealogical infor-
mation, and the only protection afforded to such data is de-
identification and pseudonymization with random IDs, this
model is susceptible to the family structure attack.

Trails Susceptibility
To construct a trail attack, two criteria must be satisfied. The
first requirement is an individual’s data are distributed over
multiple locations. The second requirement is both genomic
and identified data are available in partitions of the original
collection. Table 2 provides a characterization of which re-
quirements the protection methods satisfy.

The TRUST model does not satisfy the multiple location crite-
ria. No location-based information is revealed, nor is it neces-
sary. In addition, the DENOM model is not susceptible, since
under the current version, genomic data are collected at one
location only. Yet, if this model is applied to a distributed en-
vironment, then the trail attack is a feasible re-identification
route.

In comparison, it can be verified that the SEMITRUST model
does satisfy both criteria and is susceptible. The RGEmodel of
de-identification is susceptible as well, since genomic data
could be requested from multiple sources. The health-specific
information could be either supplied directly as a separate
source or derived from various external resources, such as
discharge information.

Genotype–Phenotype Susceptibility
This inference attack exploits relationships constructed be-
tween genomic data and known demographic or clinical in-
formation. As such, all four protection methods are
susceptible to the attack, mainly due to the fact that the pro-
tection systems do not act directly on the genomic data. When
considering simple versions of the inference attack, such as
through direct ICD-9 linkage, with genomic data by itself,
as is the case with the SEMITRUST model, this attack is de-
pendent on the specificity of the known relationships be-
tween genomic data and clinical phenotype.

It is apparent that these methods can leak relationships that,
although useful for research purposes and correlation studies,
can allow for unique linkages to be constructed between iden-
tified and genomic data. This does not imply such relation-
ships should not be inferable from shared data—rather the
contrary. Yet, such inferences must be learnable or communi-
cated in such a way that identities to which the data corre-

spond can not be determined. The concept of revealing
inferences without revealing identity will be addressed
below.

Dictionary Susceptibility
The model most susceptible to DICTIONARY is a single pseu-
donymization function, in which pseudonyms are derived
from patient-specific information. Since the RGE model uses
random IDs for pseudonyms, a direct dictionary attack can
not be achieved, regardless of the number of people re-iden-
tified through other means. In contrast, the other three sys-
tems are susceptible. The TRUST and SEMITRUST models
are susceptible to a cryptographic dictionary attack. As an in-
creasing number of people are re-identified, an adversary can
collect a set of SSN, pseudonym pairs. Given enough pairs,
the adversary may learn the key of the pseudonymizing func-
tion. In TRUST, the adversarial role can be played by any data
requester. However, in the SEMITRUST model, this is not
possible because the pseudonyms supplied to the researchers
are doubly encrypted. Although nonrandom, it is virtually
impossible to discern the effects of the originating location’s
pseudonymizing function from the semitrusted third party’s
(sTTP). Yet, in the event the sTTP is corrupt, it can leverage
the fact that it receives single-encrypted pseudonyms from
each of the submitting sources and attempt its own dictionary
attack.

A modified version of the dictionary attack can be used to ex-
ploit familial relationship information released under the
DENOM model. Given sufficient information to reconstruct
and re-identify a certain amount of familial information, the
recoding of familial relations can reveal additional informa-
tion that may not have been learned in the family-structure
attack, such as temporal information in the genealogy. For ex-
ample, when a family has multiple children, the fifth cell of
the family code denotes what order of birth a sibling is.
Moreover, under the coding schema, this information is dis-
tinguishable for men, where the system uses even numbers,
and women, where odd numbers are employed.

Compounding Re-identification
Many of the re-identification attacks presented in this report
are complementary. As a result, they can be combined to as-
semble more robust re-identification methods. For example,
FAMILY can be used in combination with GENPHEN to con-
struct more informative family structures, or with
DICTIONARY when additional information about familial re-
lationships is known. Moreover, an iterative process of alter-
nating re-identification methods can be employed. Since
different re-identification methods exploit different types of
information, an adversary could use one method to re-iden-
tify a certain number of individuals in the population, then
a second method to re-identify individuals not re-identified
by the first or until certain confounding entities were re-
moved from consideration. This process can continue with
as many methods as necessary, or repeat with the same meth-
ods, until no more re-identifications are possible.

Discussion
To an extent, the re-identification methods used in this study
can be used to evaluate privacy protection technologies be-
yond those specifically designed for genomic data. The sole
re-identification method directly dependent on genomic
data is the GENPHEN attack, yet at its foundation, this

Table 2 j System Satisfiability of Trail
Re-identification Criteria

System Multiple Locations
Partitioned Identified and

DNA Data Available

TRUST No Yes
SEMITRUST Yes Yes
DENOM No Yes
DEID Yes Yes
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method was based on the explicit representation of inferences
between data types. As such, it is adaptable for other types of
data relations. However, a note of caution: before re-identifi-
cation susceptibility for additional types of data can be
claimed, a careful analysis of the social setting and attendant
protections must be made. Although linkage of data types
may be possible, it must be validated that such data are
equally accessible. With respect to genomic data, the status
as a lesser-protected data type allows for re-identification us-
ing the above methods.

Given the current state of privacy protection systems, there
exists a need for a new type of genomic data privacy protec-
tion model. In this sense, the results of this evaluation are
a call to arms. Researchers must develop privacy protection
methods that incorporate guarantees about the afforded pro-
tections. New methods must account for multiple environ-
ments of data sharing as well as the type of inferences that
can be gleaned from the shared data themselves. These meth-
ods must be developed in a more scientific and logical man-
ner, with formal proofs about the protection capabilities and
limitations afforded by the specific method. Although proofs
may be difficult to derive in the face of uncertainties about the
sharing environment, especially when the data hold latent
knowledge to be learned at a later point in time, researchers
can validate their approaches against known re-identification
attacks in a logical manner.

Pseudonyms and Linkage
Based on the system analyses above, it is apparent the appli-
cation of pseudonymization and naı̈ve de-identification alone
are not sufficient as proofs of identity protection. Mainly, this
is because current systems tend to be narrow in their consid-
eration of what is inferable from genomic data as well as what
additional information is available for relating genomic data
to identified data. Yet, this does not imply pseudonyms and
third-party solutions are worthless in the pursuit of genomic
data privacy protection. Rather, to some extent, these systems
do provide a level of privacy protection and additional
functionality for data sharing. First, pseudonyms serve as
a first-order protector and deterrent. It is conceivable that
an adversary, who approaches re-identification in a noncom-
putational manner, will be deterred by the simple obscuring
of explicitly identifiable information. Second, datasets devoid
of linkage capabilities severely limit the types of research that
can be performed. It is often the case in which researchers
may need to request additional information about a subject.
Third, a subject maywish to remove their data from a research
study or audit how their data have been accessed. Yet, if
a pseudonym, or linkage value, is to be used as a primary
key, it must be chosen appropriately. It should not be based
on personal demographics as is currently the case with the
TRUST and SEMITRUST models. A pseudonym based on
this type of information is susceptible to various attacks,
such as DICTIONARY. Consequently, the RGE form of
DEID and the DENOM models are more secure in their
protection of linkage capabilities, with respect to pseudonym
usage.

Accounting for Genomic Data
A common reason for re-identification susceptibility is the
uniqueness of data that permit matching. One promising
direction for research is the construction and analysis of
systems based on formal computational models, such as

k-anonymity.22 Under the model of k-anonymity, every re-
leased record is indistinguishable from k-1 other records in
the release. Within the genomics community, the k-anonymity
model, under the term binning, has recently been adapted for
the protection of single nucleotide polymorphism (SNP)
data.23 For example, consider the employment of the DNA
generalization hierarchy in Figure 4 for purines (R) and pyr-
imadines (Y). If we wish to generalize the nucleotides C and
G together, we only need to generalize up one level, and re-
lease R and R. To relate A and T, we must generalize to the in-
determinate character N.

Although it has not been presented as a full system or for gen-
eral genomic data, the binning method is a feasible solution
and worthwhile area of study for genomic privacy protection.
This is especially so, since suchmodels are amenable to proofs
of withstanding various re-identification attacks. However,
this research is in a nascent stage, and there are several defi-
ciencies in the current binning model that researchers can
build upon for more robust protection models. First, this
model is restricted to SNP data and not more general genomic
data. For a privacy protection system to function in the real
world, it must be able to account for complex genomic
features, such as nucleotide repeat structures and complex
mutations.

Second, current binning models measure the amount of infor-
mation lost via protection using an information theoretic per-
spective. While this is one way to characterize information
loss, it does not take into account what the data are to be
used for. Although formal protection methods, such as k-an-
onymity, advocate the direct manipulation of data values,
there is no guarantee it will hinder applications or data use-
fulness. For example, in the statistics community, there has
been much research into the design of formal protection
methods that influence individual records but permit the
recovery of aggregate statistics.24,25 More relevant to the ge-
nomics community, however, is recent research in privacy-
preserving data mining, in which the privacy-preserving
methods are being validated with objective functions, such
that logical rules or classifiers can be constructed with formal
privacy guarantees about the data values shared.26,27 The de-
velopment of genomic data privacy methods, which incorpo-
rate models of utility, is an open and fruitful direction of
research.

From an opposing perspective, researchers can not remain
content with their proofs and experiments. New re-identifica-
tion attacks will be developed by those in the academic com-
munity as well as adversaries outside the public realm. As
such, researchers must continue to innovate and develop
new methods of re-identification for testing their protection

F i g u r e 4. SNP generalization hierarchy for purines and
pyrimadines.
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techniques. These methods may be new types of inferential or
location-based techniques or completely newmodels yet to be
discovered. Without the development of new protection and
re-identification methods, researchers will continue to rely
upon unfounded and possibly dangerous methods of privacy
protection. The development of new identity protection strat-
egies is paramount for continued data sharing and innovative
research studies.

Conclusion
This research provided an analysis of the re-identification sus-
ceptibility of genomic data privacy protection methods for
shared data. The results prove the current set of privacy pro-
tection methods do not guarantee the protection of the iden-
tities of the data subjects. This work stresses that a new
direction in the research and advancement of anonymity pro-
tection methods for genomic data must be undertaken. The
next generation of privacy protection methods must account
for both social and computational interactions that occur in
complex data sharing environments. In addition, privacy pro-
tection methods must provide proofs about what protections
can and cannot be afforded to genomic data, as well as the
limits of research with protected data. The development of
new identity protection strategies is paramount for continued
data sharing and innovative research.
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