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Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may
reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomog-
raphy (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other
modalities and has great potential for widespread clinical implementation, particularly in RT. The
purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging.
Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-
inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents,
(2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and
(3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a
map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol
approved by the institutional animal care and use committee, the authors acquired CT scans in
the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and
seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR
was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks
per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the
displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast
end-inspiratory image were corrected for variation in the lung inflation level between the precontrast
and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast
CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and
gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung
subjects using a two-sample two-tailed t-test.
Results: The mean TRE (and standard deviation) was 0.6±0.7 mm (smaller than the voxel
dimension) for DIR between pre contrast and postcontrast end-inspiratory CT image data sets. No
singularities were observed in the displacement vector fields. The mean HU enhancement (and
standard deviation) was 37.3±10.5 HU for normal lung subjects and 30.7±13.5 HU for diseased
lung subjects. Spatial heterogeneity of regional perfusion was found to be higher for diseased lung
subjects than for normal lung subjects, i.e., a mean coefficient of variation of 2.06 vs 1.59 (p= 0.07).
The average gravitationally directed gradient was strong and significant (R2= 0.99, p < 0.01) for
normal lung dogs, whereas it was moderate and nonsignificant (R2= 0.61, p= 0.12) for diseased lung
dogs.
Conclusions: This canine study demonstrated the accuracy of DIR with subvoxel TREs on average,
higher spatial heterogeneity of regional perfusion for diseased lung subjects than for normal lung
subjects, and a strong gravitationally directed gradient for normal lung subjects, providing proof-
of-principle for single-energy CT pulmonary perfusion imaging. Further studies such as comparison
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with other perfusion imaging modalities will be necessary to validate the physiological significance.
C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4953188]
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(CT), deformable image registration

1. INTRODUCTION

Pulmonary toxicity is substantial in lung cancer radio-
therapy (RT), particularly for locally advanced disease.1,2

Symptomatic (grade ≥ 2) radiation pneumonitis is a common
toxicity that occurs in approximately 30% of patients irradi-
ated for lung cancer, with fatal pneumonitis in about 2% of
patients.1,2 The current paradigm of RT is based on anatomic
imaging and assumes a homogeneous radiation dose–response
of normal tissues. RT that selectively avoids irradiating highly
functional lung regions may reduce pulmonary toxicity. This
hypothesis is supported by several reports in the literature,
demonstrating that lung dose-function metrics improve predic-
tive power for pulmonary toxicity compared to dose–volume
metrics (the current clinical standard).3–5 In addition, informa-
tion of regional lung function, such as perfusion defect, was
found to be beneficial in predicting toxicity.6,7

There are several modalities for pulmonary perfusion imag-
ing, including nuclear medicine imaging,8 magnetic reso-
nance (MR) imaging,9 and dual-energy computed tomography
(CT) imaging.10 Perfusion images can also be acquired using
single-energy CT scans with deformable image registration
(DIR)-assisted image subtraction, henceforth referred to as
single-energy CT perfusion imaging. Single-energy CT perfu-
sion imaging is based on the following: (1) breath-hold CT
scans before and after intravenous (IV) injection of iodinated
contrast agents, (2) DIR, and (3) subtraction of the precontrast
image data set from the postcontrast image data set, yield-
ing a map of regional Hounsfield unit (HU) enhancement
as a surrogate for perfusion. Single-energy CT perfusion
imaging has a higher spatial resolution, shorter scan time,
and/or is potentially more cost-effective than other modalities.
Moreover, this method has great potential for widespread
clinical implementation, particularly for applications in RT,
considering that single-energy CT is already available at most
RT centers and that many lung cancer patients (especially
those with centrally located tumors) receive CT scans with
IV contrast for improved target delineation.11 Some of these
routinely acquired CT image data could be used for perfusion
imaging. Single-energy CT perfusion imaging was first pro-
posed by Wildberger et al. using a swine model with artificially
induced pulmonary embolism.12 Their method was based on
precontrast and postcontrast CT scans acquired during a single
breath-hold (<30 s), and they successfully visualized perfu-
sion defects. However, a long breath-hold poses a challenge
for clinical implementation of this method, as many patients,
especially lung cancer patients with poor pulmonary function,
cannot tolerate holding their breath for extended periods.

The purpose of this study was to establish proof-of-
principle for single-energy CT perfusion imaging based on
precontrast and postcontrast CT scans acquired with two

separate breath-holds using canine models of normal lungs and
diseased lungs. The accuracy of DIR between the precontrast
and postcontrast CT image data sets was quantified, as this
is the key to accurate computation of regional perfusion.
Moreover, we assessed spatial heterogeneity and gravitation-
ally directed gradients of regional perfusion for normal lung
subjects and diseased lung subjects.

2. METHODS AND MATERIALS
2.A. Subjects

We used seven canines that were considered to have normal
lungs (no clinical or radiographic evidence of pulmonary
disease) and seven canines with diseased lungs (including
primary lung tumor, lung metastasis, and bronchointerstitial
pneumonia) recruited from animals presenting to the William
R. Pritchard Veterinary Medical Teaching Hospital at Univer-
sity of California Davis for veterinary care. Dogs had to be at
least one year of age, weigh between 10 and 50 kg, and have
adequate health and organ function as identified on a physical
examination, complete blood count, and a chemistry panel to
allow safe anesthesia administration. Owner informed consent
was obtained. The protocol was approved by the institutional
clinical trials review board and the institutional animal care
and use committee.

Dogs were premedicated with intramuscular administra-
tion of either butorphanol (0.3 mg/kg) or hydromorphone
(0.05 mg/kg) and atropine (0.02 mg/kg). An IV catheter was
placed in a cephalic vein. Anesthesia was induced with propo-
fol (2 mg/kg IV) and midazolam (0.1 mg/kg IV) to effect in
most cases. Dogs were intubated and maintained on isoflurane
gas anesthesia to effect. An arterial catheter was placed in the
dorsal pedal artery. Dogs were kept in ventral recumbency to
limit the effects of atelectasis. Heart rate, blood pressure, body
temperature, depth of anesthesia, and end-tidal carbon dioxide
were monitored throughout the anesthetic procedure. The dogs
were then transported to the CT scanner and kept in ventral
recumbency when placed on the CT table.

2.B. Overview of single-energy CT perfusion imaging

Figure 1 shows a schematic of image acquisition, pro-
cessing, and analysis for single-energy CT pulmonary perfu-
sion imaging. End-inspiratory breath-hold CT scans before
and after IV injection of iodinated contrast (CTpre

end_ins and
CTpost

end_ins, respectively) were acquired for perfusion compu-
tation. In addition, two CT scans were also acquired at end-
expiration (CTpre

end_exp) and midinspiration (CTpre
mid_ins) before

contrast administration to build a model to correct HUs of
CTpre

end_ins for variation in the lung inflation level between the
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F. 1. Schematic of image acquisition, processing and, analysis for single-energy CT pulmonary perfusion imaging. Three precontrast breath-hold CT scans
acquired at end-expiration, midinspiration, and end-inspiration were used to correct HUs of the precontrast end-inspiratory image for variation in the lung
inflation level between the precontrast and postcontrast end-inspiratory scans. A pair of the HU-corrected precontrast image data set and deformed postcontrast
image data set was used for perfusion computation.

CTpre
end_ins and CTpost

end_ins scans. The main reason of using end-
inspiratory breath-hold CT scans for perfusion computation
was because this study was designed based on a likely clinical
scenario in RT applications. End-inspiratory breath-hold CT
scans are sometimes preferred rather than end-expiratory CT
scans because of a relatively long acquisition time for the
whole lungs on CT scanners currently available at most RT
centers than on diagnostic CT scanners.

2.C. Breath-hold CT imaging

Breath-hold CT scans were acquired in the prone posi-
tion with a LightSpeed 16-slice CT scanner (GE Healthcare,
Waukesha, WI). Assisted hyperventilation was performed
before CT scans to facilitate breath-hold. Scan parameters
were as follows: 120 kV, 150 mA, 1.25 mm slice thickness,
1 s rotation time, and 1.375 pitch. For CTpost

end_ins scans, iodin-
ated contrast (3 ml/kg; Isovue, 370 mg of iodine/ml, Bracco
Diagnostics, Cranbury Township, NJ) was administered intra-
venously at a flow rate of 4 ml/s through a peripheral IV line
inserted into the cephalic vein. The delay time between the
start of contrast administration and start of CT scan ranged
from 13 to 20 s, depending on the volume of contrast agent
administered. CT images were reconstructed using a filtered
backprojection algorithm with a sharp reconstruction kernel
(GE Lung).

2.D. Deformable image registration

DIR for spatial mapping of CTpost
end_ins (moving) to CTpre

end_ins
(fixed) was performed for perfusion computation (Fig. 1). DIR
of CTpre

end_exp (moving) to CTpre
mid_ins (fixed) and then CTpre

mid_ins
(moving) to CTpre

end_ins (fixed) was also performed to correct
HUs of CTpre

end_ins for variation in the lung inflation level (see
Sec. 2.E). elastix, an open source software package for med-
ical image registration,13 was used along with parameter set-
tings used by Metz et al.14 B-spline DIR was performed in
a multigrid setting, which was driven by a similarity func-
tion and a transform bending energy penalty (set to 0.05
for all conditions).15 For the similarity function, normalized
cross correlation and mutual information were compared to
select the one that showed better performance based on visual
assessment. Normalized cross correlation was selected for
DIR between CTpost

end_ins and CTpre
end_ins, and mutual informa-

tion for DIR between CTpre
end_exp and CTpre

mid_ins, and between
CTpre

mid_ins and CTpre
end_ins. For the image data, Gaussian pyra-

mids were used for down-sampling to increase robustness.
For the B-spline transformation, a multigrid approach was
used. Five resolution levels were used with the following
parameter settings: down-sampling factor 16, 8, 4, 2, and 1;
B-spline grid spacing 80, 40, 20, 10, and 5 mm. DIR was
performed with lung masks that were generated by segment-
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ing the lungs on both the fixed and moving CT images and
merging those segmented lungs together. The DIR method
and parameter settings used in this study are similar to Staring
et al.16

The accuracy of DIR was evaluated based on the target
registration error (TRE) of anatomic pulmonary landmarks
and on singularities in the displacement vector field (DVF)
in a manner similar to the MICCAI EMPIRE10 Challenge.17

The TRE is defined as the distance between landmarks in
the fixed image mapped from the moving image by DIR
and those mapped manually as the reference. Manual anno-
tation of landmarks was performed by a medical physicist.
We used the iX software18 to generate 50 landmarks per
subject distributed throughout the lungs. The DVF was also
analyzed for singularities, i.e., regions where the DVF is not
bijective. The Jacobian determinant of the DVF was calcu-
lated for each voxel and analyzed to examine whether there
was any voxel with a negative Jacobian value. The follow-
ing two scenarios of DIR were evaluated for 10 randomly
selected subjects out of 14 subjects: (1) CTpre

end_exp (moving)
to CTpre

mid_ins (fixed), and (2) CTpost
end_ins (moving) to CTpre

end_ins
(fixed).

2.E. HU correction for variation in lung inflation level

Lung HUs vary with the lung inflation level (depth of
breathing), i.e., lower HUs for deeper breathing. Thus, the lung
inflation variation between CTpre

end_ins and CTpost
end_ins hampers

accurate computation of postcontrast HU enhancement. To
address this issue, we corrected HUs of CTpre

end_ins for the lung
inflation variation based on a relationship between the HU
for each voxel and total lung volume as a measure of the
lung inflation level. This relationship was determined using
three precontrast CT scans (CTpre

end_exp, CTpre
mid_ins, and CTpre

end_ins)
as follows. First, DIR was performed to establish the spatial
correspondence between the three image data sets for each
voxel. Second, a relationship between the HU and total lung
volume (measured by segmented lungs in the CT image) was
modeled using linear regression for each voxel. Third, this
relationship was used to estimate a HU at the lung inflation
level of CTpost

end_ins by linear interpolation or extrapolation. Fi-
nally, the original HU of CTpre

end_ins was replaced with the esti-
mated HU for each voxel, yielding an image with precontrast
HUs at the same lung inflation level as CTpost

end_ins. For perfusion
computation, the resulting HU-corrected CTpre

end_ins image data

F. 2. Box plots of target registration errors (TREs) for DIR (a) between end-expiratory (CTpre
end_exp) and midinspiratory CT image data sets (CTpre

mid_ins), and (b)

between precontrast end-inspiratory (CTpre
end_ins) and postcontrast end-inspiratory CT image data sets (CTpost

end_ins) for five normal lung subjects and five diseased
lung subjects (50 pulmonary landmarks/subject). Each box is composed of three horizontal lines corresponding to the 25th, 50th (median), and 75th percentile.
Whiskers extend to 2.7 times the standard deviation. Outliers are plotted as individual points.
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T I. Weight and lung volumes of four breath-hold CT scans for seven normal lung subjects and seven diseased lung subjects.

Lung volume (cm3) % difference

Subject Weight (kg) CTpre
end_exp CTpre

mid_ins CTpre
end_ins CTpost

end_ins

(
CTpre

mid_ins−CTpre
end_exp

)
/CTpre

end_exp

(
CTpost

end_ins−CTpre
end_ins

)
/CTpre

end_ins

Normal
C1 42.5 2217 3193 3532 3888 44.0 10.1
C2 13.1 302 468 514 481 54.7 −6.3
C3 25.5 963 1610 1732 1671 67.1 −3.5
C4 22.0 1592 1847 2059 2029 16.0 −1.4
C5 34.4 2090 2524 3075 3085 20.8 0.3
C6 36.4 1534 2330 2422 2316 51.9 −4.4
C7 24.4 792 1084 1137 1032 37.0 −9.3
Mean 28.3 1356 1865 2067 2072 41.7 −2.1
Diseased
D1 40.4 920 1296 1764 2046 40.9 16.0
D2 13.7 906 1212 1202 1295 33.8 7.7
D3 33.6 1533 2035 2294 2247 32.7 −2.0
D4 13.5 616 726 824 801 17.9 −2.7
D5 23.0 1468 1677 1959 1847 14.2 −5.7
D6 26.6 1489 1922 2060 2184 29.1 6.0
D7 21.2 968 1076 1171 1169 11.2 −0.2
Mean 24.6 1128 1420 1610 1656 25.7 2.7

set was subtracted from the deformed CTpost
end_ins image data

set.

2.F. Analysis of CT perfusion images

Spatial heterogeneity of regional perfusion was evaluated to
determine whether diseased lung subjects demonstrated higher
heterogeneity than normal lung subjects. Several investiga-
tors reported significantly higher heterogeneity of regional
perfusion or ventilation for subjects with diseased lungs than
healthy subjects.19,20 The coefficient of variation (CoV), i.e.,
standard deviation (SD)/mean of HU enhancement was used to
quantify overall heterogeneity of regional perfusion. The CoV
has been used by several investigators in the literature.19–22

Lung masks were generated by delineating voxels with less
than −250 HU within lung outlines. A two-sample two-tailed
t-test was used to compare the CoVs of diseased lung subjects
with those of normal lung subjects.

Moreover, gravitationally directed gradients of regional
perfusion were evaluated to determine whether single-energy
CT perfusion imaging demonstrated the known effect of grav-
ity on regional perfusion, i.e., greater perfusion in gravity-
dependent (ventral) regions than in nondependent (dorsal)
regions. This effect has been demonstrated with other imaging
modalities.22–24 The slope (regression coefficient) was quan-
tified from linear regression for the relationship between the
relative ventral-to-dorsal distance and HU enhancement. The
total lung was divided into five coronal section regions of
interest (ROIs), equally spaced along the ventral-to-dorsal
direction. The mean HU enhancement was calculated for each
ROI. Statistical analysis was performed to test whether the
slope was significantly different from zero (p < 0.05) using
a two-sample two-tailed t-test.

3. RESULTS
3.A. Accuracy of deformable image registration

Across the entire data set, the mean TRE (and SD) was 0.6
± 0.6 mm for DIR between CTpre

end_exp and CTpre
mid_ins, and 0.6

±0.7 mm for DIR between CTpre
end_ins and CTpost

end_ins. The mean
TRE was smaller than the voxel dimension (approximately
1×1×1.25 mm3) in both DIR scenarios. Figure 2 shows a box
plot of TREs for individual subjects. For most cases, there were
only several landmarks with a TRE exceeding the voxel dimen-
sion. Subject C1 and D1 showed a relatively large number
(range 6–13) of such TREs in both DIR scenarios. In particular,
subject D1 showed large TREs of up to 6.5 mm, many of which
occurred around dark streaks of beam hardening artifacts from
dense iodinated contrast in great vessels. Table I shows weight

F. 3. Overall postcontrast HU enhancement (average in the lung
parenchyma) without and with HU correction of precontrast CT images for
seven normal lung subjects and seven diseased lung subjects.
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F. 4. Example images of the precontrast (CTpre
end_ins) (HU-corrected), postcontrast (CTpost

end_ins) (deformed to precontrast) and perfusion for two representative
subjects: normal (C6) and diseased (D4). Histograms of perfusion (HU enhancement) are also shown. Subject C6 showed a more homogeneous perfusion
distribution with a more sharp-peaked histogram and a lower coefficient of variation (CoV) (1.66) compared to subject D4 (2.10).

and lung volumes of four breath-hold CT scans for individual
subjects. The % differences in the lung volume ranged from
11.2% to 67.1% for the pair of CTpre

end_exp and CTpre
mid_ins, and

0.2%–16.0% for the pair of CTpre
end_ins and CTpost

end_ins. There were
only weak correlations between the maximum TREs and %
differences in the lung volume for both pairs: CTpre

end_exp and
CTpre

mid_ins (r = 0.27), CTpre
end_ins and CTpost

end_ins (r = 0.50). No
singularities were observed in the displacement vector fields
for both DIR scenarios.

3.B. Overall HU enhancement

Figure 3 shows the overall postcontrast HU enhancement
without and with HU correction of the precontrast CT im-
ages for individual subjects. With HU correction, the mean
enhancement (and SD) was 37.3± 10.5 HU for normal lung
subjects and 30.7±13.5 HU for diseased lung subjects. There
was no significant difference between the normal and diseased
lung groups (p = 0.33). The HU enhancement varied widely
among subjects, ranging from 17.9 HU (C4) to 60.3 HU
(D1).

3.C. CT perfusion images

Figure 4 shows example images of CTpre
end_ins, deformed

CTpost
end_ins, and perfusion for two representative subjects:

normal (C6) and diseased (D4). The CTpost
end_ins images showed

considerable HU enhancement in great vessels and slight
enhancement in the lung parenchyma. The perfusion image
of subject C6 showed a more homogeneous distribution (CoV
= 1.66) and more sharply peaked histogram compared to
subject D4 showing poorly perfused regions near the tumors
(CoV= 2.10). Subject C6 showed higher perfusion in gravity-
dependent ventral regions than in nondependent regions.

Table II shows CoVs for individual subjects. The mean CoV
of the normal lung group was 1.59, which was lower (i.e.,

more homogeneous) than the diseased lung group (mean CoV
= 2.06) (p = 0.07). Although the difference was not statis-
tically significant at the 0.05 level, this result suggests that
spatial heterogeneity of regional perfusion is higher for
diseased lung subjects than for normal lung subjects.

Figure 5 shows ventral-to-dorsal gradients of regional
perfusion for individual subjects as well as an average for each
group. The average ventral-to-dorsal gradient of the normal
lung group was found to be strong and significant (R2= 0.99,
p < 0.01), indicating higher perfusion in gravity-dependent
ventral regions than in nondependent regions. In contrast,
the diseased lung group showed a moderate, nonsignificant
gradient (R2= 0.61, p= 0.12). The R2 values ranged from 0.57

T II. CoVs as a measure of overall heterogeneity of regional perfusion
for seven normal lung dogs and seven diseased lung dogs.

Subject CoV

Normal
C1 1.48
C2 1.14
C3 1.35
C4 2.44
C5 1.73
C6 1.66
C7 1.34
Mean 1.59
Diseased
D1 1.22
D2 2.36
D3 2.02
D4 2.10
D5 2.06
D6 1.97
D7 2.67
Mean 2.06
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F. 5. Ventral-to-dorsal gradients of regional perfusion for seven normal lung dogs, seven diseased lung dogs, and average for each group. Each data point
represents the mean HU enhancement in a coronal section ROI. The equations from linear regression are also shown for the average gradients.

(subject C4) to 0.96 (subject C2) for normal lung subjects,
and 0.12 (subject D4) to 0.94 (subject D7) for diseased lung
subjects.

4. DISCUSSION

This canine study on single-energy CT pulmonary perfu-
sion imaging demonstrated the accuracy of DIR with subvoxel
TREs on average, higher spatial heterogeneity of regional
perfusion for diseased lung subjects than for normal lung
subjects, and a strong gravitationally directed gradient for
normal lung subjects. These results provide proof-of-principle
for single-energy CT perfusion imaging. This is the first inves-
tigation to quantify spatial heterogeneity and a gravitationally
directed gradient using single-energy CT perfusion imaging.
Our results were consistent with the previous studies based
on other imaging modalities. Vidal Melo et al. demonstrated
higher heterogeneity of regional perfusion measured by 13N
positron emission tomography (PET) for patients with chronic
obstructive pulmonary disease (COPD) compared to healthy
subjects.20 Similarly, Tzeng et al. showed higher ventila-
tion heterogeneity measured by hyperpolarized 3He MRI for
asthmatic patients than healthy subjects.19 The gravitation-
ally directed gradient of regional perfusion has also been
reported by many investigators with several different imaging
modalities including 99mTc-labeled macroaggregated albu-
min (MAA) single-photon emission CT (SPECT),23 Fourier
decomposition MRI,24 and arterial spin labeling MRI.22 High
heterogeneity in diseased lungs and a ventral-to-dorsal
gradient in normal lungs are both necessary but not sufficient
conditions for accurate perfusion imaging. Further studies
such as a comparison with other perfusion imaging modalities
will be necessary for validation in the future.

The proposed method of single-energy CT perfusion imag-
ing is considered a form of parametric response mapping
(PRM), an emerging method of classifying and measuring
tissue changes voxel by voxel. PRM has been used in oncology
for assessment of response to therapy for gliomas,25 head
and neck cancer,26 breast cancer,27 and metastatic prostate
cancer to the bone,28 and moreover for assessment of COPD
phenotypes.29 For example, a PRM parameter, i.e., % of voxels

within the tumor yielding increased apparent diffusion coeffi-
cient (ADC) values determined by pretreatment and midtreat-
ment diffusion-weighted MRI, was found to be predictive of
clinical progression for head and neck cancer patients, whereas
% changes in tumor volume and whole-tumor ADC were
not predictive.26 Similar analysis to investigate the predictive
power of single-energy CT perfusion imaging for pulmonary
toxicity after RT or respiratory diseases would be a fascinating
topic for future work.

A pair of the end-expiration and midinspiration or end-
inspiration breath-hold CT scans acquired for HU correction
can also be used to compute regional volume change, a surro-
gate for ventilation.30–33 Under normal conditions, regional
ventilation and perfusion are tightly matched to each other,
yielding efficient gas exchange. However, normal distributions
of regional ventilation and perfusion change dramatically
under pathological conditions, leading to ventilation/perfusion
mismatch and inefficient gas exchange.34 For example, Vidal
Melo et al. reported significantly higher heterogeneity of venti-
lation/perfusion ratios measured by 13N PET for sheep with
pulmonary embolism, saline lung lavage or bronchoconstric-
tion compared to control sheep.35 Investigations into ventila-
tion and perfusion, e.g., comparison of ventilation/perfusion
heterogeneity in diseased lungs and in normal lungs are
currently underway to provide further validation of CT perfu-
sion imaging.

There are several limitations in this study. First, dense
concentration of iodinated contrast in great vessels caused dark
streaks (beam hardening artifacts), which could lead to DIR
errors and negative HU enhancement due to lower HUs in the
postcontrast CT image. Voxels with negative HU enhancement
appeared to be distributed mainly in the proximity of great
vessels as shown in Fig. 6. There were a considerable number
of voxels with negative HU enhancement, perhaps because
of beam hardening artifacts and also residual DIR errors
and/or uncertainty in the HU correction method for precon-
trast CT images. For future studies, strategies that reduce
beam hardening artifacts such as an iterative reconstruction
algorithm36 might increase the accuracy of DIR and reduce
negative HU enhancement. Second, the HU enhancement was
relatively subtle (34 HU on average) and varied widely among
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F. 6. Example images of the postcontrast CT (left) and voxels with negative HU enhancement denoted in green (right) for subject D1. The number of voxels
with negative HU enhancement accounted for 15% of the lung voxels. (See color online version.)

subjects (range 17.9–60.3 HU), suggesting that there is room
for improvement. The average HU enhancement of 34 HU in
this study is similar to the work of Groell et al., which observed
an enhancement of 30 HU in the normal lung segment by
comparing precontrast and postcontrast CT scans.37 Also the
13–20 s delay time between contrast administration and CT
image acquisition in this study is similar to other CT perfusion
studies, e.g., 13 s by Wildberger et al.12 and 15 s by Fuld
et al.,38 Given that this study included dogs with varying breeds
(e.g., Pembroke Welsh Corgi and Shepherd), weight (range
13.1–42.5 kg), and lung pathologies (normal, primary lung
tumor, lung metastasis, or interstitial lung disease), there might
be intersubject variability in the hemodynamic profile, which
could influence the optimal delay time. Optimizing the delay
time using a more specific patient population would be an
important subject of future work. Finally, different disease
models were used in this study, which might have contributed
to a nonsignificant difference in the mean CoV between the
normal and diseased lung groups (p = 0.07). Some dogs had
relatively small lung tumors that might have little effect on

regional perfusion. For future studies, respiratory diseases that
result in large perfusion defects (e.g., pulmonary embolism)
may provide further insights into the physiological signifi-
cance of CT perfusion imaging. Also other methods to quantify
heterogeneity, including texture analysis, fractal techniques,
and Minkowski functionals, should also be considered.

Table III shows advantages and disadvantages of pulmo-
nary perfusion imaging modalities including single-energy
CT, dual-energy CT, SPECT, and MRI. One of the major
disadvantages of single-energy CT perfusion imaging is that
multiple CT acquisitions (i.e., precontrast and postcontrast CT,
and CT at different lung inflation levels for HU correction)
are required for accurate perfusion computation, leading to a
higher radiation dose than other modalities. This disadvantage
may not pose a major challenge for applications in RT. Most
patients treated with modern RT receive CT scans for treatment
planning. Also many lung cancer patients (especially cen-
trally located tumors11) receive CT scans with IV contrast for
improved target delineation on a routine basis. These treatment
planning CT scans could also serve as a precontrast or postcon-

T III. Advantages and disadvantages of pulmonary perfusion imaging modalities.

Modality Advantages Disadvantages

Single-energy CT Excellent availability of single-energy CT scanners in RT centers,
great potential for widespread implementation, high resolution,
and applicability to RT (large bore; electron density for dose
calculation)

Multiple acquisitions required, DIR optimization and validation
required, radiation dose, and potential side effects of iodinated
contrast agents

Dual-energy CT High resolution, applicability to RT (electron density for dose
calculation)

Limited availability in RT centers, virtual noncontrast imaging may
not satisfactory remove the need for multiple acquisitions
(Ref. 40), small FOV for dual-source CT, typically ineffective in
obese patients, radiation dose, potential side effects of iodinated
contrast agents, and typically small bore

SPECT Well-established Limited resolution, limited availability in RT centers, and radiation
dose

MRI No radiation dose and excellent soft tissue contrast Limited availability in RT centers and potential side effects of
gadolinium-based contrast agents (dynamic contrast-enhanced
MRI)
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trast CT for perfusion imaging. Furthermore, four-dimensional
(4D) CT acquired for motion management is estimated to
be used at approximately 70% of RT centers in the US.39 A
HU correction model could also be built from the 4D CT
image data. Nevertheless, strategies for dose reduction and
optimization should be explored prior to clinical applications.

5. CONCLUSIONS

This canine study demonstrated the accuracy of DIR with
subvoxel TREs on average, higher spatial heterogeneity of
regional perfusion for diseased lung subjects than normal lung
subjects, and a strong ventral-to-dorsal gradient for normal
lung subjects, providing proof-of-principle for single-energy
CT pulmonary perfusion imaging. Further studies such as
comparison with other perfusion imaging modalities (e.g.,
99mTc−MAA SPECT) will be necessary to validate the phys-
iological significance.

ACKNOWLEDGMENTS

This study was supported by Philips Healthcare/Radi-
ological Society of North America (RSNA) Research Seed
Grant No. RSD1458. The authors are grateful to Teri Guerrero
of the Department of Surgical and Radiological Sciences at the
University of California Davis School of Veterinary Medicine
for her support in coordinating the canine clinical trial. The
authors also thank the veterinary radiology staff for their
clinical support.

CONFLICT OF INTEREST DISCLOSURE

The authors have no COI to report.

a)Author to whom correspondence should be addressed. Electronic mail:
toyamamoto@ucdavis.edu

1D. A. Palma, S. Senan, K. Tsujino, R. B. Barriger, R. Rengan, M. Moreno, J.
D. Bradley, T. H. Kim, S. Ramella, L. B. Marks, L. De Petris, L. Stitt, and G.
Rodrigues, “Predicting radiation pneumonitis after chemoradiation therapy
for lung cancer: An international individual patient data meta-analysis,” Int.
J. Radiat. Oncol., Biol., Phys. 85, 444–450 (2013).

2Z. Q. Jiang, K. Yang, R. Komaki, X. Wei, S. L. Tucker, Y. Zhuang, M.
K. Martel, S. Vedam, P. Balter, G. Zhu, D. Gomez, C. Lu, R. Mohan, J.
D. Cox, and Z. Liao, “Long-term clinical outcome of intensity-modulated
radiotherapy for inoperable non-small cell lung cancer: The MD Anderson
experience,” Int. J. Radiat. Oncol., Biol., Phys. 83, 332–339 (2012).

3Y. Seppenwoolde, K. De Jaeger, L. J. Boersma, J. S. Belderbos, and J. V.
Lebesque, “Regional differences in lung radiosensitivity after radiotherapy
for non-small-cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 60,
748–758 (2004).

4Y. Vinogradskiy, R. Castillo, E. Castillo, S. L. Tucker, Z. Liao, T. Guerrero,
and M. K. Martel, “Use of 4-dimensional computed tomography-based
ventilation imaging to correlate lung dose and function with clinical out-
comes,” Int. J. Radiat. Oncol., Biol., Phys. 86, 366–371 (2013).

5K. P. Farr, J. F. Kallehauge, D. S. Moller, A. A. Khalil, S. Kramer, H.
Bluhme, A. Morsing, and C. Grau, “Inclusion of functional information
from perfusion SPECT improves predictive value of dose-volume param-
eters in lung toxicity outcome after radiotherapy for non-small cell lung
cancer: A prospective study,” Radiother. Oncol. 117, 9–16 (2015).

6R. P. Abratt, P. A. Willcox, and J. A. Smith, “Lung cancer in patients with
borderline lung functions–zonal lung perfusion scans at presentation and

lung function after high dose irradiation,” Radiother. Oncol. 19, 317–322
(1990).

7I. W. Gayed, J. Chang, E. E. Kim, R. Nunez, B. Chasen, H. H. Liu, K.
Kobayashi, Y. Zhang, Z. Liao, S. Gohar, M. Jeter, L. Henderson, W. Erwin,
and R. Komaki, “Lung perfusion imaging can risk stratify lung cancer
patients for the development of pulmonary complications after chemoradi-
ation,” J. Thorac. Oncol. 3, 858–864 (2008).

8J. Petersson, A. Sanchez-Crespo, S. A. Larsson, and M. Mure, “Physio-
logical imaging of the lung: Single-photon-emission computed tomography
(SPECT),” J. Appl. Physiol. 102, 468–476 (2007).

9H. Hatabu, J. Gaa, D. Kim, W. Li, P. V. Prasad, and R. R. Edelman, “Pulmo-
nary perfusion: Qualitative assessment with dynamic contrast-enhanced
MRI using ultra-short TE and inversion recovery turbo FLASH,” Magn.
Reson. Med. 36, 503–508 (1996).

10F. Pontana, J. B. Faivre, M. Remy-Jardin, T. Flohr, B. Schmidt, N. Tacelli, V.
Pansini, and J. Remy, “Lung perfusion with dual-energy multidetector-row
CT (MDCT): Feasibility for the evaluation of acute pulmonary embolism in
117 consecutive patients,” Acad. Radiol. 15, 1494–1504 (2008).

11S. Senan, D. De Ruysscher, P. Giraud, R. Mirimanoff, V. Budach, and Radio-
therapy Group of the European Organization for Research and Treatment of
Cancer (EORTC), “Literature-based recommendations for treatment plan-
ning and execution in high-dose radiotherapy for lung cancer,” Radiother.
Oncol. 71, 139–146 (2004).

12J. E. Wildberger, E. Klotz, H. Ditt, E. Spuntrup, A. H. Mahnken, and R. W.
Gunther, “Multislice computed tomography perfusion imaging for visuali-
zation of acute pulmonary embolism: Animal experience,” Eur. Radiol. 15,
1378–1386 (2005).

13S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim, “:
a toolbox for intensity-based medical image registration,” IEEE Trans. Med.
Imaging 29, 196–205 (2010).

14C. T. Metz, S. Klein, M. Schaap, T. van Walsum, and W. J. Niessen, “Non-
rigid registration of dynamic medical imaging data using nD + t B-splines
and a groupwise optimization approach,” Med. Image Anal. 15, 238–249
(2011).

15D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J.
Hawkes, “Nonrigid registration using free-form deformations: Application
to breast MR images,” IEEE Trans. Med. Imaging 18, 712–721 (1999).

16M. Staring, S. Klein, J. H. C. Reiber, W. J. Niessen, and B. C. Stoel,
“Pulmonary image registration with  using a standard intensity-
based algorithm,” in Proceedings of Medical Image Analysis for the
Clinic—A Grand Challenge, MICCAI (Beijing, China, 2010), Vol. 73–79.

17K. Murphy, B. van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding, X. Deng,
K. Cao, K. Du, G. E. Christensen, V. Garcia, T. Vercauteren, N. Ayache,
O. Commowick, G. Malandain, B. Glocker, N. Paragios, N. Navab, V. Gor-
bunova, J. Sporring, M. de Bruijne, X. Han, M. P. Heinrich, J. A. Schnabel,
M. Jenkinson, C. Lorenz, M. Modat, J. R. McClelland, S. Ourselin, S. E.
Muenzing, M. A. Viergever, D. De Nigris, D. L. Collins, T. Arbel, M. Peroni,
R. Li, G. C. Sharp, A. Schmidt-Richberg, J. Ehrhardt, R. Werner, D. Smeets,
D. Loeckx, G. Song, N. Tustison, B. Avants, J. C. Gee, M. Staring, S. Klein,
B. C. Stoel, M. Urschler, M. Werlberger, J. Vandemeulebroucke, S. Rit,
D. Sarrut, and J. P. Pluim, “Evaluation of registration methods on thoracic
CT: The EMPIRE10 challenge,” IEEE Trans. Med. Imaging 30, 1901–1920
(2011).

18K. Murphy, B. van Ginneken, S. Klein, M. Staring, B. J. de Hoop, M.
A. Viergever, and J. P. Pluim, “Semi-automatic construction of reference
standards for evaluation of image registration,” Med. Image Anal. 15, 71–84
(2011).

19Y. S. Tzeng, K. Lutchen, and M. Albert, “The difference in ventilation
heterogeneity between asthmatic and healthy subjects quantified using hy-
perpolarized 3He MRI,” J. Appl. Physiol. 106, 813–822 (2009).

20M. F. Vidal Melo, T. Winkler, R. S. Harris, G. Musch, R. E. Greene, and J.
G. Venegas, “Spatial heterogeneity of lung perfusion assessed with 13NPET
as a vascular biomarker in chronic obstructive pulmonary disease,” J. Nucl.
Med. 51, 57–65 (2010).

21M. Mure, K. B. Domino, S. G. Lindahl, M. P. Hlastala, W. A. Altemeier, and
R. W. Glenny, “Regional ventilation-perfusion distribution is more uniform
in the prone position,” J. Appl. Physiol. 88, 1076–1083 (2000).

22A. C. Henderson, R. C. Sa, R. J. Theilmann, R. B. Buxton, G. K. Prisk, and
S. R. Hopkins, “The gravitational distribution of ventilation-perfusion ratio
is more uniform in prone than supine posture in the normal human lung,” J.
Appl. Physiol. 115, 313–324 (2013).

23J. Petersson, M. Rohdin, A. Sanchez-Crespo, S. Nyren, H. Jacobsson, S.
A. Larsson, S. G. Lindahl, D. Linnarsson, B. Neradilek, N. L. Polissar, R.

Medical Physics, Vol. 43, No. 7, July 2016

mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
mailto:toyamamoto@ucdavis.edu
http://dx.doi.org/10.1016/j.ijrobp.2012.04.043
http://dx.doi.org/10.1016/j.ijrobp.2012.04.043
http://dx.doi.org/10.1016/j.ijrobp.2011.06.1963
http://dx.doi.org/10.1016/j.ijrobp.2004.04.037
http://dx.doi.org/10.1016/j.ijrobp.2013.01.004
http://dx.doi.org/10.1016/j.radonc.2015.08.005
http://dx.doi.org/10.1016/0167-8140(90)90031-Q
http://dx.doi.org/10.1097/JTO.0b013e31818020d5
http://dx.doi.org/10.1152/japplphysiol.00732.2006
http://dx.doi.org/10.1002/mrm.1910360402
http://dx.doi.org/10.1002/mrm.1910360402
http://dx.doi.org/10.1016/j.acra.2008.05.018
http://dx.doi.org/10.1016/j.radonc.2003.09.007
http://dx.doi.org/10.1016/j.radonc.2003.09.007
http://dx.doi.org/10.1007/s00330-005-2718-9
http://dx.doi.org/10.1109/TMI.2009.2035616
http://dx.doi.org/10.1109/TMI.2009.2035616
http://dx.doi.org/10.1016/j.media.2010.10.003
http://dx.doi.org/10.1109/42.796284
http://dx.doi.org/10.1109/TMI.2011.2158349
http://dx.doi.org/10.1016/j.media.2010.07.005
http://dx.doi.org/10.1152/japplphysiol.01133.2007
http://dx.doi.org/10.2967/jnumed.109.065185
http://dx.doi.org/10.2967/jnumed.109.065185
http://dx.doi.org/10.1152/japplphysiol.01531.2012
http://dx.doi.org/10.1152/japplphysiol.01531.2012


4007 Yamamoto et al.: Single-energy CT pulmonary perfusion imaging 4007

W. Glenny, and M. Mure, “Posture primarily affects lung tissue distribution
with minor effect on blood flow and ventilation,” Respir. Physiol. Neurobiol.
156, 293–303 (2007).

24G. Bauman, U. Lutzen, M. Ullrich, T. Gaass, J. Dinkel, G. Elke, P. Mey-
bohm, I. Frerichs, B. Hoffmann, J. Borggrefe, H. C. Knuth, J. Schupp, H.
Prum, M. Eichinger, M. Puderbach, J. Biederer, and C. Hintze, “Pulmo-
nary functional imaging: Qualitative comparison of Fourier decomposition
MR imaging with SPECT/CT in porcine lung,” Radiology 260, 551–559
(2011).

25B. A. Moffat, T. L. Chenevert, T. S. Lawrence, C. R. Meyer, T. D. Johnson,
Q. Dong, C. Tsien, S. Mukherji, D. J. Quint, S. S. Gebarski, P. L. Robertson,
L. R. Junck, A. Rehemtulla, and B. D. Ross, “Functional diffusion map: A
noninvasive MRI biomarker for early stratification of clinical brain tumor
response,” Proc. Natl. Acad. Sci. U. S. A. 102, 5524–5529 (2005).

26C. J. Galban, S. K. Mukherji, T. L. Chenevert, C. R. Meyer, D. A. Hamstra,
P. H. Bland, T. D. Johnson, B. A. Moffat, A. Rehemtulla, A. Eisbruch,
and B. D. Ross, “A feasibility study of parametric response map analysis
of diffusion-weighted magnetic resonance imaging scans of head and neck
cancer patients for providing early detection of therapeutic efficacy,” Transl.
Oncol. 2, 184–190 (2009).

27B. Ma, C. R. Meyer, M. D. Pickles, T. L. Chenevert, P. H. Bland, C. J. Galban,
A. Rehemtulla, L. W. Turnbull, and B. D. Ross, “Voxel-by-voxel functional
diffusion mapping for early evaluation of breast cancer treatment,” Inf.
Process. Med. Imaging 21, 276–287 (2009).

28C. Reischauer, J. M. Froehlich, D. M. Koh, N. Graf, C. Padevit, H. John, C.
A. Binkert, P. Boesiger, and A. Gutzeit, “Bone metastases from prostate can-
cer: Assessing treatment response by using diffusion-weighted imaging and
functional diffusion maps–initial observations,” Radiology 257, 523–531
(2010).

29C. J. Galban, M. K. Han, J. L. Boes, K. A. Chughtai, C. R. Meyer, T.
D. Johnson, S. Galban, A. Rehemtulla, E. A. Kazerooni, F. J. Martinez,
and B. D. Ross, “Computed tomography-based biomarker provides unique
signature for diagnosis of COPD phenotypes and disease progression,” Nat.
Med. 18, 1711–1715 (2012).

30T. Guerrero, K. Sanders, J. Noyola-Martinez, E. Castillo, Y. Zhang, R.
Tapia, R. Guerra, Y. Borghero, and R. Komaki, “Quantification of regional

ventilation from treatment planning CT,” Int. J. Radiat. Oncol., Biol., Phys.
62, 630–634 (2005).

31T. Guerrero, K. Sanders, E. Castillo, Y. Zhang, L. Bidaut, T. Pan, and R.
Komaki, “Dynamic ventilation imaging from four-dimensional computed
tomography,” Phys. Med. Biol. 51, 777–791 (2006).

32J. M. Reinhardt, K. Ding, K. Cao, G. E. Christensen, E. A. Hoffman, and
S. V. Bodas, “Registration-based estimates of local lung tissue expansion
compared to xenon CT measures of specific ventilation,” Med. Image Anal.
12, 752–763 (2008).

33T. Yamamoto, S. Kabus, C. Lorenz, E. Mittra, J. C. Hong, M. Chung, N.
Eclov, J. To, M. Diehn, B. W. Loo, Jr., and P. J. Keall, “Pulmonary ventilation
imaging based on 4-Dimensional computed tomography: Comparison with
pulmonary function tests and SPECT ventilation images,” Int. J. Radiat.
Oncol., Biol., Phys. 90, 414–422 (2014).

34R. W. Glenny, “Determinants of regional ventilation and blood flow in the
lung,” Intensive Care Med. 35, 1833–1842 (2009).

35M. F. Vidal Melo, D. Layfield, R. S. Harris, K. O’Neill, G. Musch, T. Richter,
T. Winkler, A. J. Fischman, and J. G. Venegas, “Quantification of regional
ventilation-perfusion ratios with PET,” J. Nucl. Med. 44, 1982–1991 (2003).

36J. F. Barrett and N. Keat, “Artifacts in CT: Recognition and avoidance,”
Radiographics 24, 1679–1691 (2004).

37R. Groell, K. H. Peichel, M. M. Uggowitzer, F. Schmid, and K. Hartwagner,
“Computed tomography densitometry of the lung: A method to assess perfu-
sion defects in acute pulmonary embolism,” Eur. J. Radiol. 32, 192–196
(1999).

38M. K. Fuld, A. F. Halaweish, S. E. Haynes, A. A. Divekar, J. Guo, and
E. A. Hoffman, “Pulmonary perfused blood volume with dual-energy CT
as surrogate for pulmonary perfusion assessed with dynamic multidetector
CT,” Radiology 267, 747–756 (2013).

39D. R. Simpson, J. D. Lawson, S. K. Nath, B. S. Rose, A. J. Mundt, and L. K.
Mell, “Utilization of advanced imaging technologies for target delineation
in radiation oncology,” J. Am. Coll. Radiol. 6, 876–883 (2009).

40S. Faby, S. Kuchenbecker, S. Sawall, D. Simons, H. P. Schlemmer, M. Lell,
and M. Kachelriess, “Performance of today’s dual energy CT and future
multi energy CT in virtual non-contrast imaging and in iodine quantification:
A simulation study,” Med. Phys. 42, 4349–4366 (2015).

Medical Physics, Vol. 43, No. 7, July 2016

http://dx.doi.org/10.1016/j.resp.2006.11.001
http://dx.doi.org/10.1148/radiol.11102313
http://dx.doi.org/10.1073/pnas.0501532102
http://dx.doi.org/10.1593/tlo.09175
http://dx.doi.org/10.1593/tlo.09175
http://dx.doi.org/10.1007/978-3-642-02498-6_23
http://dx.doi.org/10.1007/978-3-642-02498-6_23
http://dx.doi.org/10.1148/radiol.10092469
http://dx.doi.org/10.1038/nm.2971
http://dx.doi.org/10.1038/nm.2971
http://dx.doi.org/10.1016/j.ijrobp.2005.03.023
http://dx.doi.org/10.1088/0031-9155/51/4/002
http://dx.doi.org/10.1016/j.media.2008.03.007
http://dx.doi.org/10.1016/j.ijrobp.2014.06.006
http://dx.doi.org/10.1016/j.ijrobp.2014.06.006
http://dx.doi.org/10.1007/s00134-009-1649-3
http://dx.doi.org/10.1148/rg.246045065
http://dx.doi.org/10.1016/S0720-048X(99)00032-7
http://dx.doi.org/10.1148/radiol.12112789
http://dx.doi.org/10.1016/j.jacr.2009.08.006
http://dx.doi.org/10.1118/1.4922654

