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Abstract

Recent developments of rational strategies for the design of antiviral therapies, including 

monoclonal antibodies (mAbs), have naturally relied extensively on available viral structural 

information. As new strategies continue to be developed, it is equally important to continue to 

refine our understanding and interpretation of viral structural data. There are known limitations to 

the traditional (Caspar-Klug) theory for describing virus capsid structures that involves 

subdividing a capsid into triangular subunits. In this context, we describe a more general 

polyhedral framework for describing virus capsid structures that is able to account for many of 

these limitations, including a more thorough characterization of inter-subunit interfaces. 

Additionally, our use of pentagonal subunits instead of triangular ones accounts for the intrinsic 

chirality observed in all capsids. In conjunction with the existing theory, the framework presented 

here provides a more complete picture of a capsid's structure and therefore can help contribute to 

the development of more effective antiviral strategies.
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Understanding Viral Capsid Structural Information

The widespread availability of viral capsid structural information has played a key role in 

the rational engineering of novel antiviral agents. For example, recent reports have 

successfully demonstrated the design of monoclonal antibodies (mAbs) that target linear and 

conformational viral epitopes in order to neutralize viruses such as dengue and influenza 

[1,2]. These structure-guided approaches to effective mAb design inherently rely on the 

accurate determination of the atomic coordinates of viral capsid epitope residues using 

techniques such as x-ray crystallography and three-dimensional electron cryo-microscopy 
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(cryo-EM) [3-8]. As researchers continue to leverage this existing structural knowledge to 

further develop new antiviral strategies, it is equally important to continue to refine our 

understanding and interpretation of viral structural data. Our current understanding of this 

information is naturally based deeply in the history of past approaches for describing virus 

capsid structures. In 1956, Watson and Crick proposed that virus capsids are built from a 

number of identical coat proteins (or subunits) that arrange themselves according to cubic 

symmetry [9]. This hypothesis was based on the observation that it would require quite a 

large amount of genetic material to code for a complete viral capsid, so it would be much 

more efficient if the capsid were composed of many identical smaller subunits. Furthermore, 

of the three types of cubic symmetry, tetrahedral, octahedral, and icosahedral, it was thought 

that the latter would be most commonly observed in such capsid structures. This is because 

an icosahedron would enable a capsid containing individual viral subunits of a given size to 

enclose the largest possible volume [10]. As more viral capsid structures were solved, it 

became clear that icosahedral symmetry does indeed dominate [11,12]. Of course, the 

requirement of icosahedral symmetry is not a rule for all virus structures as there are several 

viruses that do not exhibit it [12].

A capsid structure possessing icosahedral symmetry requires six five-fold symmetry axes, 

ten three-fold axes, and fifteen two-fold axes. For example, in a regular icosahedron, a five-

fold axis passes through each vertex, a three-fold axis through each face, and a two-fold axis 

through each edge. If a capsid were to be composed of strictly identical subunits, the 

maximum number of possible subunits would be sixty, where each icosahedron face is 

decorated with three subunits symmetrically about the three-fold axis. However, the 

evidence of structures containing more than sixty subunits that furthermore are not 

necessarily all identical led Caspar and Klug to formulate their theory of quasi-equivalence, 

which allowed overall icosahedral symmetry to be preserved while relaxing the constraint of 

strict equivalence [10]. This theory introduced the concept of the triangulation number 

T=H^2+HK+K^2, where (H, K) is any pair of nonnegative integers. This number refers to 

the number of smaller triangles (or subunits) that are present in the full assembly.

As more capsid structures were solved, it became clear that the Caspar-Klug rules and the 

notion of triangulation number alone do not account for all observed icosahedral capsids 

[12]. For example, icosahedral capsids consisting of 120 identical subunits in theory should 

correspond to a triangulation number of two (T=2). However, this value of T is not permitted 

since there are no two integers (H, K) that solve H^2+HK+K^2=2. This type of structure is 

commonly observed in dsRNA viruses, including the fungal L-A virus and others [13, 14]. 

Other notable exceptions to the triangulation number rules include viruses of the papilloma-

polyoma type, whose capsids consist of 360 subunits, corresponding to the forbidden T=6 

case [15]. High-resolution structural studies show that these 360 subunits are organized as 

72 pentamers located on a T=7d icosahedral lattice [15, 16]. This is not true T=7 symmetry, 

as that would require 420 subunits organized as 60 hexamers and 12 pentamers [17]. 

Therefore, this observed structure of only pentameric capsomers cannot be explained in 

terms of triangulation numbers and traditional Caspar-Klug theory.

A few previous efforts have been made to provide explanations for these exceptions to the 

traditional Caspar-Klug theory. For example, a recent extension of the Caspar-Klug theory is 
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able to approximately predict in general the locations of viral subunits on a spherical 

icosahedral lattice [18]. In contrast to a lattice-based approach, an alternative polyhedral 

approach would be valuable since the properties of a given polyhedron's faces, including the 

relative orientations of two adjacent faces, would have important implications for a capsid's 

overall surface structure. In this vein, some other approaches have applied viral tiling 

methods using multiple types of shapes [19]. However, a polyhedral framework that uses 

only one type of subunit shape possesses an appealing simplicity that increases its potential 

for future use in structure determination applications.

In an attempt to develop such an applicable yet simple polyhedral framework, we first revisit 

the specific exceptions to the Caspar-Klug theory discussed above and note that it is not 

adequate to describe these exceptional capsid structures using triangular units. However, 

triangular units are still commonly used to represent nearly all capsids, save for a few 

specific models that have used trapezoids, and even these use underlying triangular scaffolds 

[20-22]. We consider herein some specific aspects of capsid structure that are not sufficiently 

described by triangles alone, focusing particularly on the orientations of inter-subunit 

interfaces. Motivated by these observations and the limitations of the original Caspar-Klug 

theory, we first develop a broad method of investigating viral capsid structures in terms of 

their specific associated icosahedral polyhedra that can be applied both to structures that 

follow the triangulation number rules and those that do not. We apply this approach to 

propose specific, simple solutions that provide explanations for capsid structures that are 

“forbidden” in the view of or cannot be explained by the triangulation number theory, 

including those of the L-A virus and viruses of the papilloma-polyoma type. Based on these 

specific analyses, we propose a general framework for describing capsid structures using 

pentagonal units instead of triangles, which accounts for intrinsic capsid chirality and 

provides a more complete characterization of inter-subunit interfaces. We suggest that this 

general approach can be applied to offer new insight into the details of capsid geometry, 

regardless of whether they follow the Caspar-Klug triangulation rules.

Polyhedral Framework for Describing Virus Capsid Structure

Though the concept of triangulation numbers is undoubtedly useful in categorizing capsid 

structures, a triangulation number alone does not fully characterize the geometry of a given 

viral capsid. Namely, it alone does not define the orientation of inter-subunit interfaces of the 

capsid and the relationship between subunits in the complete assembly. These interface 

orientations are critically relevant in order to accurately understand mAb binding to 

conformational epitopes, which is important both for mAb design and effective vaccine 

design in the context of such epitopes [23-25]. In order to ensure a complete characterization 

of such interfaces and the structure as a whole, a given capsid structure's associated 

polyhedron must be taken into account.

Nearly all of the icosahedral polyhedra that correspond to viral capsids can be classified as 

hexecontahedra, meaning polyhedra with sixty faces (Supp. Figure 1). There are only a few 

such spherical shells, namely the four Catalan-type solids: the pentagonal and deltoidal 

hexecontahedra, the pentakis dodecahedron, and the triakis icosahedron [26]. In addition, the 

rhombic triacontahedron, which has thirty faces, can be thought of as a hexecontahedron if 
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each of the rhombic faces is divided into two triangular faces. These hexecontahedra all 

possess icosahedral symmetry but differ in the shapes and orientations of their faces about 

the 5-3-2 symmetry axes.

Different viruses with the same triangulation number can still exhibit very different surface 

geometries depending on the hexecontahedron that they most closely resemble. The main 

distinction between these icosahedral polyhedra is the degree of curvature on the five-fold 

and three-fold axes. In the deltoidal hexecontahedron, the geometry on the three-fold axis is 

nearly planar. In this case, essentially all of the curvature is contained in the five-fold axes. 

However, in the triakis icosahedron, the triangular faces about the three-fold axes are not 

perpendicular to the three-fold axis, giving that axis some curvature, which is not present in 

the deltoidal hexecontahedron. An example of this would be the hepatitis A virus capsid 

structure, which has the appearance of a facetted triakis icosahedron [27].

The other two hexecontahedra, the pentakis dodecahedron and the rhombic triacontahedron, 

are also distinguished by differing degrees of curvature, this time on the two-fold axes. The 

rhombic triacontahedron is completely planar on the two-fold axes, while the pentakis 

dodecahedron is bent inwards. This difference at the two-fold axes does affect the curvatures 

about the three-fold and five-fold axes like in the previous case, but not to as great of a 

degree. For example, flaviviruses such as Zika and Dengue exhibit a “herringbone” pattern 

of dimers that requires a planar geometry on the two-fold axis [28]. The dimers would have 

to bend unnaturally to accommodate a pentakis dodecahedron, which is more appropriate for 

other viruses such as picornaviruses (Supp. Figure 2) [29].

All of the viruses discussed above are classified as T=3 or pseudo T=3 capsids, but it is clear 

that they are still very structurally distinct. In this way, the association of viral capsid 

structures with appropriate icosahedral polyhedra reveals important geometric information 

that is not accounted for by the triangulation number theory. This suggests the possibility 

that structures that do not follow the triangulation number rules might instead be better 

explained in terms of an icosahedral polyhedral framework. We show that in fact this 

approach does provide feasible solutions to the current structural puzzles of the L-A virus 

and papilloma-polyoma type virus capsids, where the triangulation number theory fails to 

provide rational explanations or a solution.

Polyhedral Framework Applied to the L-A Virus Capsid

The L-A virus capsid consists of 120 subunits and therefore immediately cannot be 

explained by the triangulation number theory, since this corresponds to the forbidden T=2 

case. However, there does exist an icosahedral polyhedron scaffold that is able to accurately 

describe this structure. As noted in the previous section, our search space of possible 

icosahedral polyhedron scaffolds for modeling virus capsids is restricted to the 

hexecontahedra. A particularly distinctive feature of the L-A virus capsid is its noticeably 

chiral assembly. This chirality is manifested in the relative “twist” between groups of 

subunits around adjacent five-fold symmetry axes (Figure 1). This “twist” and the resulting 

chirality require that any polyhedron that could potentially model this capsid must also 
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possess intrinsic chirality. The pentagonal hexecontahedron is the only hexecontahedron that 

is chiral, making it the only suitable choice for the L-A virus structure.

The pentagonal hexecontahedron has an asymmetric unit that is an irregular pentagon, 

defined by two lengths and two angles (Supp. Figure 3). Because of this irregularity, the full 

polyhedron exists in two forms, or “enantiomorphs” (Supp. Figure 4). From the location of 

the five-fold, three-fold, and two-fold symmetry axes in relation to the crystal structure data, 

the dimensions of an appropriate pentagonal asymmetric unit can be calculated (Supp. 
Figure 5).This pentagon shape closely fits the geometry of two adjacent subunits of the L-A 

virus capsid, since three of its edges align with inter-viral protein interfaces (Figure 2). This 

close fit in addition to appropriately describing the chirality further supports the suitability 

of the pentagonal hexecontahedron in describing the L-A virus capsid structure (Figure 3, 
Key Figure). In this way, the polyhedral approach is able to provide a rational model for a 

capsid structure that cannot be explained in terms of Caspar-Klug theory and triangulation 

numbers.

Polyhedral Framework Applied to the Papilloma-Polyomavirus Capsid

The pentameric capsomers of the papilloma-polyoma type viruses are located at the vertices 

of a T=7 icosahedral lattice, with a total of seventy-two occupied locations. This lattice 

possesses an intrinsic handedness, so at a first glance it seems that the pentagonal 

hexecontahedron could also be suitable for describing a structure based on the T=7 lattice, 

again using the chirality argument. However, in the case of the polyomavirus structure, there 

are a few issues that make this particular pentagonal tiling unsuitable. In this case, to convert 

from the polyhedron model to the actual capsid, the vertices of the polyhedron would have 

to be “decorated” with the VP1 pentameric capsomers. A pentagonal hexecontahedron has 

92 vertices so only 72 of these would be decorated with subunits or capsomers in order to 

reflect the polyomavirus structure. Therefore, each individual pentagon unit would need to 

be decorated at exactly four vertices. Due to the geometry of the pentagon unit of the 

pentagonal hexecontahedron, it is impossible to feasibly satisfy this decoration requirement. 

Let the vertices of the pentagon be labeled O, A, B, C & D (Supp. Figure 3). It would be 

possible to have a capsomer at O, A, and B, leaving C and D undecorated, but this would not 

add up to a total of 72 capsomers in the total assembly. Decorating either C or D (but not 

both) would give the correct total, but would not be feasible in terms of that one short inter-

capsomer distance. This problem can be fixed by considering an alternate irregular pentagon 

unit, which can be derived from first going back to the dual of the pentagonal 

hexecontahedron, the Archimedean solid known as the snub dodecahedron (Supp. Figure 
6).

From the snub dodecahedron, a solid or shell can be created that uses this geometry as a 

scaffold but ultimately consists of a spherical tiling of only one shape: an asymmetric 

irregular pentagon (Figure 3). Overall, the construction fixes the position of the true five-

fold symmetry vertices and also adds a vertex on each three-fold axis. This vertex can 

remain undecorated because of its proximity to its two adjacent ones, since it would not be 

possible to decorate both C and D or B and D (Supp. Figure 7A). Therefore, if each vertex 

O, A, B, and C is decorated with a viral pentamer unit, the full assembly would include 
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seventy-two as observed. In this way, the asymmetric pentagonal hexecontahedron would 

perfectly describe the geometry of the polyomavirus capsid.

Some lengths and angles can be varied, which generalizes to a family of such asymmetric 

irregular pentagons derived from the snub dodecahedron. In fact, these pentagons can be 

thought of as a combination of three triangles: two isosceles ones and the center triangle that 

can be of any type (Supp. Figure 7B). This results in a maximum of four different inter-

capsomer distances. Any capsid arrangement of only pentamers can be described in terms of 

these four distances, and therefore any such arrangement can be described in terms of one of 

these asymmetric pentagons.

Regardless of the exact geometry of the asymmetric pentagon, the viral monomer vertex 

decoration will be the same in every case in order to ensure 72 pentameric capsomers (360 

monomer viral protein units). In each pentagon, vertices O and C will be decorated with a 

single viral monomer since they are the smallest angles, vertices A and B will be decorated 

with two monomers since they have larger angles, and vertex D is undecorated for reasons 

described above, namely that the BD/CD distance is too short to support three capsomers at 

B, C, and D (Figure 4). If the decoration is done in this way, then there will always be five 

monomers at every point where three pentagons meet in the 3D assembly (at the vertices A, 

B & C), except at the three-fold axes (vertex D).

From the available crystal structures of the polyomavirus, papillomavirus, and simian virus 

40, the four relevant distances can be extracted and an asymmetric pentagon tiling can be 

constructed for each case. These capsids are very similar in structure, so it is not surprising 

that they yield very similar asymmetric pentagons. For the polyomavirus, using the crystal 

structure, we found that an asymmetric pentagon can be obtained by connecting the 

appropriate capsomers and raising the true five-fold vertex slightly (by about 10 Å) in order 

to put it in the same plane as the other three decorated vertices (Figure 3) [30]. A similar 

method can be applied to the crystal structures of the papillomavirus and simian virus 40 

[32, 33]. Each pentagon has slightly different relative dimensions, but in every case the 

pentagon assembly is able to describe the observed geometry (Supp. Figure 8).

The Pentagonal Polyhedral Framework and Intrinsic Capsid Chirality

The two examples presented above are specific applications of the icosahedral polyhedral 

framework that result in solutions involving pentagonal subunits. An important facet of this 

pentagonal polyhedral framework is its ability to capture intrinsic capsid chirality. Chirality 

in virus capsids originates from the chirality of amino acids, as is the case with any protein 

complex. In the case of virus capsids, the overall chirality is additionally manifested by the 

orientations of viral subunits, as illustrated for example in Figure 1. We have shown that, in 

the particular case of the L-A virus, a tiling of triangles or deltoids is an inappropriate fit for 

the structure because it is impossible for such shapes to capture any sort of chiral assembly 

manifested by the subunit orientations (Figure 2). The only way to appropriately capture 

this chirality is to use variations of a pentagonal framework, which introduces the required 

asymmetries while preserving the overall icosahedral symmetry. The fact that all virus 

capsids are chiral in some way suggests that this approach can be readily applied to virtually 
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any capsid. In other words, using chiral assembly scaffolds such as the pentagonal 

hexecontahedron and pentagonal units as structural references instead of achiral scaffolds 

and triangular units could lead to more accurate and complete structural information of any 

virus, since the latter approaches ignore this important feature of capsid structure.

Concluding Remarks

The chiral pentagonal polyhedral framework described here is able to address many of the 

gaps that remain in the current triangulation number theory. It can be applied to specific 

exceptions to the theory to offer new, simple solutions, and also has the potential for more 

general applications due to its ability to capture intrinsic capsid chirality. This framework, in 

conjunction with the existing theories, can be used to offer a more complete description of 

capsid substructure assemblies and inter-subunit interfaces, since many of the pentagonal 

unit edges fall along important such interfaces. Instead of solely relying on triangular 

subunits, pentagonal subunits along with the appropriate polyhedral scaffolds may be used 

as references to solve complete three-dimensional capsid structures and could therefore yield 

different relative atomic coordinates between subunits (see Outstanding Questions). A 

deeper understanding of viral structural information will be invaluable for the development 

of new antiviral approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Outstanding Questions

• Will structure-solving methods that rely on a pentagonal rather than triangular 

framework yield different solutions that will have biological relevance?

• How can this chiral pentagonal framework be implemented in order to solve 

viral capsid structures using electron cryo-microscopy?

• What are the implications of this chiral pentagonal framework when applied 

to all virus capsids, or even all caged proteins?
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Trends Box

• A detailed understanding of virus capsid structure, especially the relative 

orientations of viral subunits in the assembly, continues to be critical for 

effective antiviral and vaccine design.

• Though the traditional triangulation number theory used to characterize virus 

capsid structures is elegant and useful, notable exceptions to these rules still 

exist.

• The triangulation number alone does not account for all capsid features, such 

as interface and inter-subunit geometries, which motivates the development of 

additional frameworks for characterizing virus capsid structures.
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Figure 1. The Chiral Nature of the L-A Virus Capsid
A visualization of the actual crystal structure data is shown on the right (PDB ID: 1M1C). 

An artificial mirror image (“enantiomorph”) is shown on the left. The orientation of the two 

units outlined in red shows that the capsid assembly scaffold (indicated by the green colored 

subunits) possesses a definite handedness.
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Figure 2. Pentagonal vs. Triangular Tilings
Both images show projections of the L-A virus crystal structure viewed along a three-fold 

symmetry axis. The appropriate right-handed pentagonal tiling is shown on the left outlined 

in red, with the dashed line connecting the adjacent five-fold axes. A triangular tiling 

subdivided into deltoids is shown on the right, which does not capture the chiral twist of the 

viral subunits about the three-fold axis. The pentagonal tiling also places the two-fold axes 

along edges instead of at vertices, which affects the orientation of the interface at that 

position. The calculated dimensions of the appropriate pentagons are given in Supp. Figure 

5.
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Key Figure, Figure 3. Chiral Pentagonal Frameworks Describe the L-A Virus and Polyomavirus 
Capsids
The top images show how the pentagonal hexecontahedron is able to accurately capture the 

geometry of the L-A virus capsid (PDB ID: 1M1C) by superimposing two appropriate 

pentagons (outlined in red) around a two-fold axis of the assembly. Similarly, the bottom 

images show two units of the asymmetric pentagonal hexecontahedron superimposed on the 

polyomavirus capsid (PDB ID: 1SIE). In both cases, the pentagons capture the chirality and 

outline key viral protein subunit interfaces, thereby providing a more fitting description than 

triangles. The calculated dimensions of the appropriate pentagons are given in Supp. Figures 

5 and 8.
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Figure 4. An Asymmetric Pentagon Describes the Polyomavirus Capsid
(a) A pentagonal asymmetric unit with dots representing the locations of monomer viral 

protein units. Vertices are labeled O, A, B, C, and D to distinguish the different types of 

decorations observed (one, two, or zero monomer units). (b) The asymmetric pentagonal 

assembly superimposed on the 7d icosahedral lattice (adapted from Rayment et. al. [31]) 

along with polyomavirus capsomers (not to scale) in the appropriate orientations. The white 

pentamers fall on the true five-fold axes, while the colored ones fall on the pseudo five-fold 

axes. Other symmetry axes are denoted by orange symbols. The calculated dimensions of 

the appropriate pentagons are given in Supp. Figure 8.
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