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Abstract

Multiple myeloma (MM) is a hematological malignancy that remains incurable, with relapse rates 

greater than 90%. The main limiting factor for the effective use of chemotherapies in MM is the 

serious side effects caused by these drugs. The emphasis in cancer treatment has shifted from 

cytotoxic, non-specific chemotherapies to molecularly targeted and rationally designed therapies 

showing greater efficacy and fewer side effects. Traditional chemotherapy has shown several 

disadvantages such as lack of targeting capabilities, systemic toxicity and side effects; low 

therapeutic index, as well as, most anticancer drugs have poor water solubility. Nanoparticle 

delivery systems (NPs) are capable of targeting large doses of chemotherapies into the target area 

while sparing healthy tissues, overcoming the limitations of traditional chemotherapy.

Here, we review the current state-of-the-art in nanoparticle-based strategies designed to treat 

multiple myeloma. Many nanoparticle delivery systems have been studied for myeloma using non-

targeted NPs (liposomes, polymeric NPs, and inorganic NPs), triggered NPs, as well as targeted 

NPs (VLA-4, ABC drug transporters, bone microenvironment targeting). The results in preclinical 

and clinical studies are promising; however, there remains much to be learned in the emerging 

field of nanomedicine in myeloma.
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1. INTRODUCTION

Multiple myeloma (MM) is a hematological malignancy of plasma cells localized in the 

bone marrow. Despite recent advances in therapy, MM remains incurable with relapse rates 

greater than 90% (1, 2). The main limiting factor for the effective use of chemotherapies in 
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MM is the serious side effects caused by these drugs. The development of specific and 

targeted therapies based on nanoparticle delivery systems in MM is under investigation.

Over the last decades, a large number of nanoparticle delivery systems have been designed 

for cancer therapy. The emphasis in cancer treatment has shifted from cytotoxic, non-

specific chemotherapies to molecularly targeted and rationally designed therapies showing 

greater efficacy and fewer side effects (3). Many drugs are hydrophobic and poorly water-

soluble; properties which help them to penetrate the cell membrane and reach intracellular 

targets, however, its therapeutic application is associated with poor absorption and low 

bioavailability (4-7). Therefore, NPs mainly aim to minimize drug degradation upon 

administration, prevent undesirable side effects, and increase drug bioavailability in the 

pathological area (8-10).

This review will provide an insight into the advances in nanoparticle delivery systems 

focused on oncology therapeutics and in particular in MM.

2. NANOPARTICLE DELIVERY SYSTEMS IN CANCER

Current treatment for cancer relies on chemotherapy as a major strategy. Traditional 

chemotherapy has shown several disadvantages such as lack of targeting capabilities, 

affecting normal healthy tissues; non-specific distribution, producing systemic toxicity and 

side effects; low therapeutic index, and most anticancer drugs have poor water solubility 

(11-13). Nanoparticle delivery systems are aimed to target higher doses of active agents into 

the tumor areas while sparing healthy tissues, overcoming the limitations of traditional 

chemotherapy (9, 10). The delivery of anticancer drugs through a nanoparticle delivery 

system offers multiple attractive opportunities (Table 1), including: 1) improved stability and 

delivery of poorly soluble in water drugs, permitting re-evaluation of drugs with poor 

pharmacokinetics, high cytotoxicity or poor cellular uptake (14); 2) controlled release in a 

specific location triggered by an specific stimuli, protection of the drug from harsh 

environment (acidic environment, proteases, or lysosomes of cells) extending half-life of the 

drug in the circulation, and controlled release over time to achieve a drug dose within a 

therapeutic window (10, 15-18); 3) targeting properties can be enhanced to deliver drugs 

specifically to a cell or tissue, reducing systemic side effects, increasing the concentration of 

the drug in the target area, and increasing therapeutic index for the chemotherapeutic agent 

(19); and 4) nanoparticle delivery systems offer a multifunctional approach to deliver 

combination therapy of drugs, as well as, imaging agents to improve detection, imaging, and 

treatment of cancer (20, 21).

Nanoparticle delivery systems are very diverse in function of shapes, sizes, and surface-

properties (Figure 1): Liposomes: are vesicles made of a bilayer of amphiphilic lipids 

enclosing a hydrophilic core, which can carry hydrophilic drugs within the aqueous core 

area while hydrophobic drugs within the hydrophobic region of the bilayer(22) (Figure 1a). 

Polymeric NPs: are particles prepared from polymers, they can be biodegradable or non-

biodegradable, synthetic or natural and the drug is dissolved, entrapped, encapsulated or 

attached to the matrix (23) (Figure 1b). Micelles: are artificial vesicles similar to liposomes 

but made of a monolayer of amphiphilic lipids enclosing a hydrophobic core, which can 
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carry hydrophobic anticancer agents (Figure 1c). Dendrimers: are repetitively branched 

molecules consisting of radially symmetric molecules of tree-like arms or branches (Figure 

1d). Polymersomes: are artificial vesicles made of a bilayer of synthetic amphiphilic block 

copolymers enclosing a hydrophilic core, which can carry hydrophilic drugs within the 

aqueous core, therefore presenting a similar structure to liposomes (Figure 1e). Inorganic 
NPs are particles formed by the crystallization of inorganic salts, forming a three-

dimensional arrangement with linked atoms (24) (Figure 1f).

The delivery of anticancer drugs through nanoparticle delivery systems can be achieved in 

three ways: take advantage of pathophysiological conditions of the tumors (passive 

targeting) (Figure 2), induction of drug release once in the tumor through triggered or 

inducible approaches (triggered targeting) (Figure 3), or addition of high-affinity ligands to 

target the tumor to the surface of nanoparticle delivery systems (active targeting) (Figure 4).

Passive targeting

Non-targeted NPs exploits passive targeting approaches taking advantage of 

pathophysiological conditions of the tumor microenvironment for specific delivery, such as 

enhanced permeation and retention (EPR) effect: most solid tumors have blood vessels with 

aberrant architecture and extensive production of vascular permeability factors stimulating 

extravasation within tumor tissues, in addition to lack of lymphatic drainage. Therefore, 

tumors exhibit enhanced vascular permeability, which will ensure a sufficient supply of 

nutrients and oxygen to tumor tissues for rapid growth (25-27). The tumor vasculature is 

formed by poorly aligned defective endothelial cells with wide fenestrations (up to 4 μm), 

leading to EPR effect, which facilitates transport of macromolecules (>40 kDa) and small-

sized NPs (10 - 400 nm) into tumors (28-30). EPR is the gold-standard technique for drug 

delivery systems for cancer treatment (Figure 2). However, large tumors do not exhibit the 

EPR effect and show less accumulation of macromolecules in central areas (31).

Triggered targeting

A selective and controlled delivery of drugs in the tumors is still a challenge. The 

introduction of stimuli-responsive mechanisms to drug delivery systems help to provide 

better solutions for tumor drug targeting strategies. NPs can be induced to release the drugs 

once in the tumor through triggered or inducible approaches (32, 33). Several factors (such 

as pH (34-37), temperature (38-41), magnetic field (42, 43), ultrasound (44, 45) or light 

exposure (46, 47)) have been shown to increase the accumulation of NPs and/or enhance the 

release of the drugs from the NPs in the tumor (Figure 3).

Active targeting

The EPR effect and PEG-stealth have improved biodistribution and circulation of 

nanoparticle delivery systems. Stimuli-triggered NPs also have improved controlled release 

in the tumor tissue. However, better methods are required to increase the number of NPs that 

accumulate in the target tissue and reduce the amount of NPs that are concentrated in organs 

such as liver, spleen, and bone marrow due to clearance by mononuclear phagocytic system 

(MPS). The main approach in the active targeting consists of ligand-based targeting, these 

ligands facilitate binding to a marker or receptor overexpressed in the targeted tumor cells, 
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triggering receptor-mediated endocytosis, or targeting tumor microenvironment extracellular 

matrix or surface receptors on tumor blood vessel endothelial cells (48-54) (Figure 4).

Even though nanoparticles have shown very promising results in cancer, there are two main 

disadvantages of NPs, which need to be overcome for successful usage: 1) Clearance: while 

NPs smaller than 6 nm are rapidly cleared by the kidneys, larger NPs either accumulate in a 

lesion or are cleared by the mononuclear phagocytic system (MPS) accumulating in lymph 

nodes, spleen, and liver (55, 56). A strategy to improve circulation half-life consist on the 

conjugation of hydrophilic polymers such as polyethylene glycol (PEG) to the NPs surface, 

which confers them long-circulation due to stealth properties by reducing opsonization (57, 

58). 2) Toxicity: Nanoparticles toxicity depends not only on their chemical composition, but 

also on the composition of any chemicals adsorbed onto their surfaces (59). As a solution, 

the surfaces of nanoparticles can be modified to make them less harmful.

3. NANOPARTICLE DELIVERY SYSTEMS FOR MYELOMA

Multiple myeloma (MM) is an incurable disease characterized by the proliferation of plasma 

cells in the bone marrow (60), and represents approximately 20% of deaths from 

hematological malignancies (61). Several chemotherapeutic regimens have been used in the 

management of MM, including anthracycline antibiotics (doxorubicin), glucocorticoids 

(dexamethasone and prednisone), and nitrogen mustard alkylating agents (melphalan) 

(62-66). The introduction of novel agents, such as immunomodulatory drugs (IMiDs) 

thalidomide, lenalidomide, and pomalidomide; and the proteasome inhibitors (PIs) 

bortezomib and carfilzomib has significantly improved survival in MM (66-69). Despite the 

introduction of the previous novel therapies, more than 90% of MM patients relapse or 

become refractory to those treatments (1, 2).

The main limiting factor for the effective use of chemotherapies in MM is the serious side 

effects caused by these drugs. The use of the PIs bortezomib and carfilzomib has led to 

significant improvement of the survival of MM patients (66). However, treatment with 

bortezomib is limited by its neurotoxicity, especially in the peripheral nerves, which leads to 

sensory axonal neuropathy (70). Carfilzomib is a second generation proteasome inhibitor, 

but the safety data from a meta-analysis reported thrombocytopenia, anemia, fatigue, nausea, 

and diarrhea as the most common adverse events, with dose-limiting neutropenia or 

peripheral neuropathy (71). Immunomodulatory drugs are emerging promising therapies in 

MM which showed synergistic effects when they are added to current treatments (69). 

Nevertheless, one-fourth of patients discontinued thalidomide because of toxicity, including 

peripheral neuropathy, constipation, somnolence, and fatigue as common side-effects (72). 

Moreover, cutaneous adverse neutropenia, deep vein thrombosis, infection, and hematologic 

cancer were observed in patients treated with lenalidomide (73, 74). Dose limiting 

neutropenia, thrombocytopenia, neuropathy, and deep vein thrombosis were common 

adverse effects observed in patients treated with pomalidomide (75).

Nanoparticle delivery systems offer a new strategy to increase the efficacy of the treatment 

and reduce side effects in normal tissues by delivering drugs to the target tissue, in this case 

the bone marrow niche in which myeloma cells developed. Table 2 and 3 provides an insight 

de la Puente and Azab Page 4

Eur J Haematol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



into the preclinical and clinical advances in nanoparticle delivery systems used in multiple 

myeloma.

3. 1. Non-targeted therapies

Non-targeted approaches exploit passive targeting based on the pathophysiological 

conditions of the myeloma microenvironment for specific delivery of the drugs. Most of the 

nanoparticle delivery systems that have been studied for myeloma used non-targeted NPs.

a. Liposomes have been used to encapsulate bortezomib, a proteasome inhibitor 

with high neurotoxicity. Due to the poor water solubility of bortezomib, instead 

of loading the drug in the aqueous core (76), direct conjugation of bortezomib to 

the surface of liposomes via a reversible boronic ester linkage was used (77). 

Liposomal bortezomib NPs showed size ranges of 100 nm with high 

reproducibility and encapsulation efficiency of 80%. In vitro studies were 

performed to study proteasome inhibition, apoptosis, and cell viability. 

Liposomal bortezomib NPs inhibited proteasome activity, induced apoptosis and 

cytotoxicity on MM cells. In the in vivo studies SCID mice were injected 

subcutaneously with MM cells, treated with free drug or liposomal bortezomib 

NPs intravenously (i.v.) on days 1 and 4 at a dose of 1 mg/kg bortezomib 

equivalent, and analyzed for tumor progression and systemic toxicity. The results 

revealed that liposomal bortezomib NPs were efficacious in tumor growth 

inhibition, and reducing systemic side effects measured by body weight loss. 

Free drug group showed >20% weight loss and moribundity on day 7, which led 

to required sacrificed of the mice. In case of liposomal bortezomib NPs there was 

<10% loss in body mass during the 2 week study period (77) (Table 2). However, 

even though reduced side effects, distribution studies should have been done to 

verify the location of the NPs.

Liposomes have been also used for incorporation of anti-estrogens to prevent 

oral administration of an anti-estrogen being widely distributed to the whole 

body and reaching unwanted tissues. Liposomes size was around 100 nm and 

encapsulation efficiency of >90%. Loaded liposomes were administered i.v. at a 

dose of 12 mg anti-estrogen/kg/week in a MM xenograft model. Loaded 

liposomes induced the arrest of tumor growth in contrary to free anti-estrogen or 

to empty liposomes (78) (Table 2). Further studies of the drug delivery of anti-

estrogens in tumors which express estrogen receptors will be required, as well as, 

distribution of these NPs and systemic toxicities should be investigated.

The first nanoparticle delivery system approved by the FDA for clinical use in 

multiple myeloma was a PEGylated liposomal doxorubicin. It has been used use 

in combination with other anti-myeloma therapeutics (bortezomib, or vincristine 

and dexamethasone). Relapsed or refractory multiple myeloma patients received 

PEGylated liposomal doxorubicin (Tibotec Therapeutics) administered on day 4 

at 30 mg/m2 and bortezomib given on days 1, 4, 8, and 11 from 0.90 to 1.50 

mg/m2. Time to progression (TTP) was significantly prolonged in the 

combination arm (median TTP = 9.3 months) compared with bortezomib 
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monotherapy (median TTP = 6.5 months) (79-81) (Table 3). Newly diagnosed 

multiple myeloma patients received intravenous PEGylated liposomal 

doxorubicin (40 mg/m2), vincristine (2.0 mg, Day 1), and oral or intravenous 

dexamethasone (40 mg per day for 4 days) every 4 weeks for six or more cycles 

and/or for two cycles after the best response. The overall response rate was 88% 

with 12% complete remission. TPP was 23.1 months, with 2-year and 3-year 

progression-free survival rates of 42% and 23%, respectively (82) (Table 3). 

These results are very encouraging for clinical efficacy of NPs on MM, although 

further follow-up results need to be supplemented.

b. Polymeric NPs such as PLGA-PEG NPs have been developed to encapsulate 

thymoquinone, an anti-inflammatory and anti-cancer natural product derived 

from the medicinal spice black cumin, which has problems of bioavailability 

(83). PLGA-PEG NPs encapsulating thymoquinone showed size around 200 nm 

with homogeneous distribution and encapsulation efficiency of 94%. 

Thymoquinone PLGA-PEG NPs had anti-proliferative effect on MM cells and 

these NPs were more potent than free drug sensitizing leukemic cells to TNF-α 
and paclitaxel-induced apoptosis (84) (Table 2). However, this study is very 

preliminary, only in vitro studies were realized. In vivo studies to prove efficacy 

and distribution will demonstrate the potential of thymoquinone NPs in 

myeloma.

Other polymeric NPs are nanocolloids based on N,N,N-trimethyl chitosan have 

been developed to encapsulate camptothecin, a potent anticancer agent of plant 

origin, which is extremely water insoluble (85). In vitro cytotoxicity showed no 

statistical difference between loaded nanocolloids and free drug. However, 

loaded nanocolloids more effectively inhibited tumor growth and prolonged 

survival time than free drug in vivo. In this case the murine Balb/c myeloma 

model was treated with i.v. injections of loaded nanocolloids (2.5 mg/kg), free 

drug (2.5 mg/kg), or nanocolloids (25 mg/kg) every 3 days for 15 days (86) 

(Table 2). Further studies of distribution and systemic toxicities should be 

examined.

c. Micelles composed of biodegradable block copolymers of PEG and poly-

(caprolactone) (PCL) were developed to improve the metabolic stability of the 

proteasome inhibitor carfilzomib against enzyme-mediated degradation and 

delivering of this poorly water soluble drug in a controlled manner (87). Drug 

loading efficiency was around 2 – 4% and encapsulation efficiency around 20 – 

40%. Micelles showed improved stability profiles with at least 50% of the active 

carfilzomib remaining after 20 minutes of incubation in mouse liver 

homogenates. Micelles were tested in RPMI-8226 cell line and shown 

comparable anticancer effect compared with free carfilzomib (88) (Table 2). 

However, this study is very preliminary, only in vitro studies were realized. In 

vivo studies to confirm improved stability of carfilzomib, and efficacy and 

distribution of the micelles will demonstrate the potential of this approach in 

myeloma.
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d. Inorganic NPs have been developed for the treatment of myeloma. Silica NPs 

have been combined with snake venom from Walterinnesia aegyptia, a natural 

toxin with antitumor potential (89). The particle size was 300 nm and the 

combination of the silica NPs with the snake venom was tested on cells from 5 

myeloma patients and XG2 cell line. This combination decreased viability and 

induced apoptosis (90). In a follow-up publication enhanced anticancer efficacy 

was detected in a murine MM model with loaded NPs subcutaneously (s.c.) 

injected (1 μg/kg/day) in the tumor site compared to treatment with NPs or 

vehicle (91) (Table 2). Nevertheless, distribution of silica NPs combined with 

snake venom, systemic toxicities, and comparison to standard care of treatment 

in MM should be addressed in the future.

Moreover, iron oxide NPs have been investigated in MM. While paclitaxel is an 

effective anticancer drug with poor solubility in water, Abraxane® (Celgene, 

Summit, NJ, USA) is a water-soluble commercially available nanoparticle 

albumin-bound paclitaxel-loaded Fe3O4 nanoparticle (92), approved by the FDA 

for the treatment of metastatic breast cancer. Paclitaxel Fe3O4 NPs were used to 

treat CD138- CD34- tumor stem-like cells in multiple myeloma-bearing mice. 

The NPs size was 7 nm, with good stability and sustained-drug release. Tumor 

growth was more inhibited when treated with placitaxel Fe3O4 NPs (0.6 - 2 

mg/kg once a week for 2 weeks) compared to NPs alone or drug alone, as well as 

detection of induced apoptosis of tumor cells in treated mice (93) (Table 2). 

Nonetheless, distribution of these NPs, effect on CD138+ non-stem cell-like 

tumors, and systemic toxicities should be investigated.

The main disadvantages of non-targeted NPs are associated to problems in pharmacokinetic 

and pharmacodynamics, including their dependency on abnormal leakiness of blood vessels 

and lack of specificity. Therefore, new techniques are needed to improve the accumulation 

of NPs at the disease site.

3. 2. Triggered therapies

The combination of magnetic hyperthermia treatment through magnetic NPs and remote-

control drug release from the same NPs using heat as the trigger to release the drugs have 

been used in MM. Doxorubicin magnetically responsive NPs were injected intratumorally 

(i.t.) 5 mg/kg (0.13 mg/kg doxorubicin equivalent) into mice bearing subcutaneous xenograft 

tumors and then exposed to the magnetic field. Combination of chemotherapy and magnetic 

hyperthermia NPs decreased tumor volume gradually, until reaching zero tumor volume at 

day 45 without further recurrence (94) (Table 2). In addition, no significant toxicity was 

found. These results with i.t injection showed promising results, i.v injection as more 

general approach and related-distribution should be tested in the future. One limitation of 

this approach is the ability to treat only the tumor site with well-defined localization in case 

of further clinical evaluation.

3. 3. Targeted therapies

In general, targeted NPs used the same nanoparticle delivery systems of non-targeted 

therapies, but in this case NPs contain a targeted-ligand to help NPs to be directed towards 
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tumor cells, tumor blood vessel endothelial cells, or the tumor microenvironment. The 

strategies used in MM to date are the following:

a. Very Late Antigen-4 (VLA-4) is an integrin receptor expressed on cancer of 

hematopoietic origin, such as MM, and is a key adhesion molecule in MM 

associated with cell adhesion mediated drug-resistance (CAM-DR). Therefore, 

VLA-4 is a relevant surface receptor to target MM cells (95, 96). The use of 

VLA-4 targeted NPs has been explored to enhance the targeting of VLA-4 

expressing MM cells. VLA-4 antagonist peptide and pH-sensitive doxorubicin 

were incorporated in lipid NPs. These NPs had a size of 20 nm, induced 

cytotoxicity and apoptosis on MM cells in vitro, and overcame CAM-DR. In 

vivo, 6 mg/kg doxorubicin equivalent nanoparticles were injected on days 1, 3 

and 5 on mice with palpable tumors. Free drug group showed >15% weight loss 

and moribundity on day 7, which led to required sacrifice of the mice. In case of 

targeted NPs there was around 10% loss in body mass. Targeted NPs 

demonstrated enhancement in tumor growth inhibition compared to non-targeted 

NPs, as well as, significant higher accumulation in the tumor (97) (Table 2).

Another study has developed liposomal carfilzomib NPs, such as the ones 

previously described for bortezomib (77), enriched with a VLA-4 antagonist 

peptide. NPs were stable and reproducible with size 70 nm, and loading 

efficiency of 98%. In vitro studies showed that VLA-4 targeted liposomal 

carfilzomib NPs were cytotoxic for MM cells and induced apoptosis. In vivo, 

SCID mice with subcutaneously injected tumors were treated with i.v injection at 

a dose of 5 mg/kg of carfilzomib free or in NPs on days 1, 2, 8, and 9, and 

analyzed for tumor progression and systemic toxicity. The results revealed that 

targeted liposomal carfilzomib NPs were efficacious in tumor growth inhibition, 

and reducing systemic side effects measured by body weight loss. Free drug 

group showed >15% weight loss and moribundity on day 4, which led to 

required sacrificed of the mice. In case of liposomal carfilzomib NPs (targeted 

and non-targeted) there was <10% loss in body mass. Non-targeted NPs 

demonstrated less enhancement in tumor growth inhibition compared to targeted 

liposomal carfilzomib NPs, which had preferential accumulation at the MM 

tumor (98) (Table 2).

A recent publication in 2015 combined VLA-4 targeted NPs with an inhibitor of 

MYC-MAX dimerization (MYC transcription factor is an oncoprotein activated 

in MM), which had poor bioavailability and rapid metabolism (99). VLA-4 

targeted perfluorocarbon NPs and polysorbate micelles were developed with size 

of 200 and 20 nm, respectively. In a KaLwRij metastatic mouse model NPs were 

injected i.v on days 3, 5, 7, 10, 12, and 14 at an equivalent dose of 0.145 mg/ml 

of inhibitor. The smaller targeted NPs loaded with the inhibitor conferred 

survival benefits compared to free drug, larger targeted NPs, or non-targeted NPs 

(100) (Table 2).

The use of VLA-4 integrin targeting strategies has led to very promising results 

with several different drug combinations. However, VLA4-4 expression on 
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human myeloma cells is very heterogeneous, with even negligible expression in 

some MM cells, as well VLA-4 is expressed in many other non-myeloma cells 

(97, 100). Prescreening of myeloma cell surface biomarkers expression on a 

personalized medicine approach will be required in case of clinical approach.

b. ATP-binding cassette (ABC) drug transporters, such as ABCG2 (breast 

cancer resistance protein 1), enable cancer cells to not be affected by the 

cytotoxic effects of chemotherapy that kill most cells in a tumor (101). It has 

been shown that MM expresses ABC transporters (102-104). Previously 

described paclitaxel Fe3O4 NPs (93) were targeted to the ABCG2 transporter 

overexpressing MM cancer stem cells with monoclonal antibodies (mAbs). 

Multiple myeloma cancer stem cells (CSC) mouse model was locally treated 

once a week with equivalent of 10 μg mAb and 8 μg paclitaxel NPs for 4 weeks. 

Targeted NPs inhibited tumor growth, increased survival by inducing apoptotic 

pathways, and showed less toxic side effects in comparison with the single-agent 

treatments (105, 106) (Table 2). Targeted CSC therapy using mAb in 

combination with nanoparticle delivery systems is a promising strategy to target 

MM CSCs for refractory MM patients. This is because the therapeutic strategy 

has the specific action on the MM CSCs and the proven therapeutic efficacy at 

lower drug dosages as well as preventing the paclitaxel efflux from cells for 

generating the cytotoxic effects on the MM CSCs. Further investigation is 

required in this promising targeted approach.

c. Bone microenvironment targeting, aimed to target the bone mineral component 

of the bone marrow microenvironment instead myeloma cells directly. Seventy 

percent of the bone is made up of the inorganic mineral hydroxyapatite, which 

includes several types of calcium forms. Bisphosphonates-based drugs 

preferentially stick to calcium and bind to it upon systemic administration (107). 

Alendronate (a bisphosphonate) targeted PLGA-PEG NPs encapsulating 

bortezomib have been engineered to target selectively the bone material in the 

bone marrow. NPs were elaborated through nanoprecipitation and single 

emulsion with size 75 nm and 195 nm, and 5.4% and 24% encapsulation 

efficiency, respectively. In vitro, targeted NPs indicated good binding to 

hydroxyapatite and induction of apoptosis in same way that non-targeted NPs 

loaded with bortezomib. In vivo biodistribution after 24h of intraperitoneally 

(i.p) injection showed increase retention of targeted NPs in spleen, femurs and 

skull, with around 9-fold increase of targeted compared to non-targeted NPs in 

bone sections. SCID mice were injected with MM cells and after 21 days, 

treatment was injected i.p twice a week with 0.5 mg/kg bortezomib equivalent. 

Targeted and non-targeted NPs inhibited MM growth in vivo and increased 

survival in the same way that free drug. In addition, pre-treatment thrice a week 

for 21 days with 0.3 mg/kg bortezomib equivalent before injection of MM cells 

inhibited myeloma growth and increased survival compared to free drug (108) 

(Table 2). Nonetheless, non-significant differences were found between targeted 

and non-targeted NPs. The study showed that bortezomib, as a pretreatment 

regimen, modified the bone microenvironment, and loaded NPs enhanced 
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survival and decreased tumor burden. However, biodistribution studies in organs 

such as lung, liver and kidney should be tested, and the reduction of off-side 

effects provided.

4. FUTURE DIRECTIONS

The application of NPs to improve delivery of drugs is a revolutionary approach to advance 

the treatment of cancer and many other diseases. The emphasis of NPs focus on the delivery 

of drugs more efficiently to reduce side effects. Several liposomes and polymeric NPs have 

been approved by the FDA for clinical use in cancer, and many others are under 

investigation in several clinical trials, including indications such as solid tumors, and even 

hematological malignancies (acute myeloid leukemia) (12, 109). NPs offer the option to 

deliver therapeutics with improved pharmacokinetics, safety profiles, and biodistribution, 

allowing us to reconsider chemotherapies previously discarded due to lack of targeting 

capabilities, non-specific distribution, and side effects.

Contributions of NPs to Multiple Myeloma treatment

Nanoparticle delivery systems can improve MM treatment in two main ways: 1) increase the 

specificity of treatments based on improve potency and efficacy by hitting the right target, 

the bone marrow niche in which myeloma cells developed. 2) At the same time, NPs offer 

the advantage to reduce side effects in normal tissues by delivering drugs to the target tissue. 

This will be allowed through delivery of higher doses to the MM cells and lower the doses to 

other tissues. Therefore, the ability to improve potency or efficacy of drug treatments 

combined with the reduction of side effects may improve disease outcomes besides 

suppressing drug adverse effects.

Challenges of NPs for Multiple Myeloma treatment

The EPR effect is an important factor for delivery of nanoparticle systems in general, which 

has been confirmed mainly for solid tumors. Although encouraging results have been shown 

with liposomes, polymeric NPs, micelles, and inorganic NPs using non-targeted approaches 

(82, 86, 88, 93), MM is a hematological malignancy and it is still not clear that the EPR 

effect will have a role in how non-targeted NPs exploit passive targeting based on the 

pathophysiological conditions of the myeloma microenvironment.

Targeted approaches containing targeted-ligands against a marker or receptor overexpressed 

in the targeted tumor cells is challenging in MM. The characterization of MM by a single 

surface marker is being questioned over the last decade. CD138, the gold-standard surface 

marker to detect MM cells, is shown to be affected by drug exposure and hypoxia (110). 

Other secondary antibodies used in combinations such as CD38, CS1 and CD20 are highly 

expressed in many other cell types (111). Other markers such as VLA4-4 is expressed in 

several cell types and the expression in MM cells is very heterogeneous (97, 100). The lack 

of a constitutively expressed unique surface marker in MM limits the specific active 

targeting of NP systems.

In addition, myeloma is a complex disease involving multiple pathways and mutations. 

Inhibition of a pathway by a single drug may be insufficient to achieve therapeutic efficacy. 
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As a result, combination therapy will let to use drugs at lower doses, reducing cytotoxic 

effects but increasing efficacy due to the synergistic effect of several agents targeting 

different pathways (112). The effectivity of combination therapy by NPs will depend on the 

ability of NPs to carry multiple therapeutic agents with different physicochemical properties 

and pharmacological behaviors, which adds more challenges to the technical development of 

NPs in MM.

Strategies to improve NPs for MM treatment

NPs offer multifunctionality, combining both diagnostics and therapeutics, combination 

known as theranosis. For successful theranosis, the efficient delivery of imaging agents and 

drugs is critical to provide sufficient imaging signal or drug concentration in the targeted 

disease site (113, 114). This will allow for monitoring drug delivery and image-guided 

therapy of the target site. In addition, the investigation of new molecular targets will help the 

ability to improve delivery at the tumor level. These benefits could include advances in 

detection, imaging, and treatment of myeloma. On the other hand, NPs can be designed to 

target multiple antitumor moieties at the same time to maximize the accuracy of tumor 

targeting. In this case, further investigation of myeloma cell surface markers is required to 

identify alternative targets with adequate expression levels.

Another consideration will be to contemplate the disadvantages of current in vitro testing 

techniques to effectively evaluate the behavior of nanoparticle delivery systems. The 

discrepancy between preclinical and clinical outcomes can be attributed to the failure of 

classic two dimensional culture models to accurately recapitulate the complex biology of 

MM and drug responses observed in patients. Three-dimensional (3D) culture systems are 

gaining strength as in vitro systems to assess and predict drug sensitivity in myeloma 

(115-117). 3D in vitro systems could help to evaluate NPs as drug delivery systems and 

predict better the in vivo performance of NPs.

In summary, the promising results in myeloma preclinical studies will lead to further 

investigation, and in a short period of time nanoparticle-based therapies will undergo more 

clinical investigation. Safety of these devices will be an important consideration before 

moving forward. Therefore, there remains much to be learned in the emerging field of 

nanomedicine in myeloma.

5. CONCLUSIONS

The main limiting factor for the effective use of chemotherapies in MM is the serious side 

effects caused by these drugs. The development of specific and targeted therapies based on 

nanoparticle delivery systems in MM is under investigation offering a new strategy to 

increase the efficacy of the treatment and reduce side effects in normal tissues by delivering 

drugs to the target tissue. Many nanoparticle delivery systems have been studied for 

myeloma using non-targeted NPs (liposomes, polymeric NPs, and inorganic NPs), triggered 

NPs, as well as targeted NPs (VLA-4, ABC drug transporters, bone microenvironment 

targeting). The promising results in myeloma preclinical and clinical studies will lead to 

further investigation. Therefore, there remains much to be learned in the emerging field of 

nanomedicine in myeloma.
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Figure 1. A summary of nanoparticles for drug delivery in cancer
a) Liposomes are vesicles made of a hydrophobic bilayer of amphiphilic lipids (composed of 

a hydrophilic head group and a hydrophobic tail) enclosing a hydrophilic core, which can 

carry hydrophilic drugs within the aqueous core area while hydrophobic drugs within the 

hydrophobic region of the bilayer; b) Polymeric NPs are made of polymers and can 

encapsulate hydrophilic and hydrophobic molecules. c) Micelles are made of a hydrophobic 

monolayer of amphiphilic lipids enclosing a hydrophobic core, which can carry hydrophobic 

anticancer agents. d) Dendrimers are repetitively branched molecules consisting of radially 
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symmetric molecules of tree-like arms or branches, which can encapsulate hydrophilic and 

hydrophobic molecules. e) Polymersomes are artificial vesicles made of a bilayer of 

synthetic amphiphilic block copolymers enclosing a hydrophilic core, which can carry 

hydrophilic drugs within the aqueous core and hydrophobic drugs within the hydrophobic 

region of the bilayer. f) Inorganic NPs are particles formed by the crystallization of inorganic 

salts, forming a three-dimensional arrangement with linked atoms, which can encapsulate 

hydrophilic and hydrophobic molecules. All the previous nanoparticles can be modified to 

contain specific targeting moieties for active targeting strategies.
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Figure 2. Schematic of passive (non-targeted) nanoparticles in cancer
Normal tissues lack of gaps between adjacent endothelial cells discarding nanoparticles to 

extravasate from the vasculature. Tumor tissues present large gaps (100-400 nm) between 

the endothelial cells on the tumor vasculature. The enhanced permeability and retention 

(EPR) effect allows untargeted nanoparticles of appropriate size to bind, internalize and 

release drugs into cancer (brown) and non-cancer cells (orange) cells due to unspecific 

surface adsorption inside tumor tissues. A significant part of nanoparticles can be washed 

out back to the blood circulation, resulting in low tumor accumulation.
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Figure 3. Schematic of triggered (inducible) nanoparticles in cancer
Triggered nanoparticles extravasate from the vasculature accumulate in the tumors due to 

increase EPR effect by biological factors of the tumor microenvironment or external factors 

(pH, temperature, magnetic field, ultrasound, and light exposure). The release is triggered by 

those factors into cancer cells (brown).
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Figure 4. Schematic of active (targeted) nanoparticles in cancer
Nanoparticles extravasate from the vasculature due to EPR effect, then targeted 

nanoparticles bind and internalize into tumor tissues, the retention and uptake of these 

nanoparticles in cancer cells (brown) is augmented due to specific antigen-antibody/ ligand-

receptor interactions, and wash out of nanoparticles is reduced.
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Table 1

Comparison of traditional chemotherapy and nanoparticle delivery systems properties.

Property Traditional Chemotherapy Nanoparticle delivery systems

Drug solubility Poor; affecting pharmacokinetics Improved; increased stability

Controlled release None Controlled release time and location, and protection from 
environment

Targeting abilities Non-specific targeting; non-specific distribution; 
systemic side effects; low drug concentration in target 

area; low therapeutic index

Specific targeting; lower systemic side effects; improved drug 
concentration in target area; improved therapeutic index

Multi-functionality None Combination therapy for detection, imaging and treatment
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Table 3

Clinical nanoparticle delivery systems in MM

Type Phase Study design Results Ref.

Non-targeted. 
PEGylated 
liposomal 

doxorubicin

Phase I Advanced hematologic malignancies 
patients received PegLD (day 4 at 30 

mg/m2) in combination with bortezomib 
(days 1, 4, 8, and 11 from 0.90 to 1.50 mg/

m2).

Common toxicities were Grade 3 or 4. 
The MTD was 1.50 and 30 mg/m2 of 
bortezomib and PegLD, respectively. 
Antitumor activity was seen against 
multiple myeloma, 36% CR or near-

CR, and another 36% PR.

Orlowski, R.Z., et 
al., Blood, 2005. 

105(8): p. 
3058-65.

Phase III Relapsed or refractory multiple myeloma 
patients received either intravenous 

bortezomib 1.3 mg/m2 on days 1, 4, 8, and 
11 of an every-21-day cycle with PegLD 30 

mg/m2 on day 4 or bortezomib alone.

TTP was significantly prolonged in the 
combination arm (median TTP = 9.3 
months) compared with bortezomib 

monotherapy (median TTP = 6.5 
months)

Orlowski, R.Z., et 
al., J Clin Oncol, 
2007. 25(25): p. 

3892-901.

Phase II Newly diagnosed multiple myeloma patients 
received intravenous PegLD (40 mg/m2), 
vincristine (2.0 mg, Day 1), and oral or 

intravenous dexamethasone (40 mg per day 
for 4 days) every 4 weeks for six or more 
cycles and/or for two cycles after the best 

response.

The most common toxicities were 
Grade 3. The overall response rate was 
88%: 12% CR. TPP was 23.1 months, 

with 2-year and 3-year progression-free 
survival rates of 42% and 23%, 

respectively. The patient survival rate at 
3 years was 67%.

Hussein, M.A., et 
al., Cancer, 2002. 
95(10): p. 2160-8.

Legend: PegLD, PEGylated liposomal doxorubicin; MTD, maximum tolerated dose; CR, complete response; PR, partial response; TTP, time to 
progression
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