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Abstract

of potential large-scale utilization.

“Carbon-based material” has demonstrated a great potential on water purification due to its strong physical
adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of
the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica
(KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous
CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction
(XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was
observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained
after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore,
an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion
membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot
electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration

Background

Maintaining a constant supply of clean water has become
a vital issue in this decade because of the increasing num-
ber of contaminants produced from industrial wastes
worldwide. Various organic contaminants such as dioxin,
ethylbenzene, and polycyclic aromatic hydrocarbons are
frequently found in wastewater and are substantially
harmful to human health and ecological security [1, 2].
Therefore, development of efficient methods for decon-
tamination and disinfection of water, particularly of
drinking water sources, is urgently required. Several
approaches have been adopted for removing organic
pollutants from water. For example, reverse osmosis
[3], ion exchange process [4], biochemical processes
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[5], and physical adsorption [6, 7] are generally used for
water purification. Of these technologies, physical ad-
sorption is the most commonly used because of its low
cost and easy operation. Carbon-based materials [8, 9]
such as activated carbon and carbon nanotubes are
promising candidates for water purification because of
their exceptional capabilities of adsorbing various or-
ganic contaminants through numerous bonding types,
such as electrostatic interactions, m—mn bonding, hydro-
gen bonding, and hydrophobic interactions [10, 11].
Organic water pollutants can also be photocatalytically
decomposed with semiconductor materials that exploit
the electron-hole pairs (excitons) from the conversion
of incident photons. These high-energy electrons and
holes react with aqueous solutions at solid and solution
interfaces to generate «OH and O, ", triggering the
decomposition of organic pollutants in wastewater [12].
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Scheme 1 illustrates a possible explanation for the
enhanced mechanism and reaction route in an Ag/
CMK-8-Nafion system. Under photon irradiation at
254 nm, hot electrons and holes are excited from the
surfaces of silver nanoparticles (NPs) to produce super-
oxide radical anions (O,°") and hydroxyl radicals
(+OH), respectively; the primary oxidizing species cor-
respond to photocatalytic oxidation processes [13—15].

In addition to activated carbon and carbon nano-
tubes, ordered mesoporous carbon is another ef-
fective material used for removing pollutants from
wastewater [16-19]. Ordered mesoporous carbon has
been receiving much attention because of its high
surface area, high conductivity, and highly uniform
and regular pore sizes, which facilitate mass transport
[20-23]. Moreover, ordered mesoporous carbon has
been successfully employed in energy storage devices
such as fuel cells [24-26] and supercapacitors [27].
Different structures, sizes, and shapes of ordered mesopo-
rous carbon can be explicitly synthesized by varying
fabrication parameters and surfactant concentrations
[28, 29]. In this study, we propose the application of
a free-standing CMK-8-Nafion composite membrane
in the photo-induced decomposition of methyl orange
(MO). Mesoporous carbon CMK-8 can not only adsorb
MO [30] but can also effectively absorb photons due to
their blackbody property [31, 32], contributing to the add-
itional photo-induced decomposition of MO [16]. This
unique dual mechanism consisting of physical adsorption
and photocatalytic decomposition is discussed under dif-
ferent experimental conditions. Finally, we also layered sil-
ver plasmonic NPs [33, 34] onto this free-standing
mesoporous CMK-8-Nafion composite membrane to fur-
ther enhance the removal of organic water pollutants.
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Methods

High-quality samples of mesoporous silica KIT-6 and
the corresponding mesoporous carbon CMK-8 were pre-
pared using a process similar to that used in previous
studies [35]. CMK-8 has a reversed cubic structure,
which was then replicated using KIT-6 as a hard tem-
plate. A dilute HySO4(.q) solution was added to sucrose
solution with weight ratios of 1 g KIT-6/1.25 g sucrose/
5 g H0/0.14 g H,SO,. The colloid mixture was dried at
333 K for 6 h and dehydrated at 433 K for 6 h. The
aforementioned steps were repeated again with a mix-
ture of 0.8 g sucrose/3.2 g H,0/0.09 g H,SO,. The re-
sultant dark brown powders were carbonized under
argon atmosphere at 1173 K for 1 h. The silica template
was removed with 1 M hydrofluoric acid in a solution of
50% ethanol and 50% H,O, and CMK-8 was finally col-
lected. For the fabrication of CMK-8-Nafion composite
membranes, designated amounts of CMK-8 were mixed
with Nafion solution at a solid-content ratio of 30%, and
this CMK-8-Nafion precursor was ultrasonically agitated
for 10 min before the casting step. Each mesoporous
CMK-8-Nafion membrane was formed by pouring CMK-
8-Nafion precursor solution in a 4-in. petri dish and was
then solidified at 323 K for 40 min. In addition, for the
deposition of the silver NP layer, a precursor composed of
silver acetylacetonate weighing 0.035 g [Ag(acac); 98%,
Acros] was dissolved in 30 mL deionized water mixed
with 5 mL 99.5% alcohol and the prepared mesoporous
CMK-8-Nafion membrane was then immersed in the
solution for 15 h [36]. After examination of several
samples, the average thickness of the Ag/CMK-8-
Nafion membrane was 0.3-0.4 mm. The microstruc-
tures and morphologies of KIT-6 and CMK-8 were
examined using a scanning electron microscope (SEM;
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FE-SEM; HITACHI S-4800) and a transmission electron
microscope (JEOL JEM-2100F). The pore sizes and specific
surface areas were analyzed using N, adsorption/desorption
analysis under 77 K (Micromeritics; ASAP2020). The
mesostructures of KIT-6 and CMK-8 were confirmed by
small-angle (20 of 0.5°-8°) powdered X-ray diffraction
(XRD) by using Cu Ka radiation (A = 0.154 nm; scan rate of
1°/min). The chemical states of silver NPs were examined
using an X-ray photoelectron spectroscope (XPS; ULVAC-
PHI Versa-probe) with Al Ka X-rays and a 45° pho-
toelectron takeoff angle. A 1-eV flooding electron source
and 7-eV Ar" was applied for charge compensation during
spectrum acquisition. Finally, a UV-Vis integrating sphere
was used to evaluate the performance of organic pollutant
decomposition by the free-standing mesoporous CMK-8-
Nafion membranes under UV irradiation at 254 nm.

Results and Discussion
Figure la, b presents high-resolution TEM images of
mesoporous microstructures of silica KIT-6, and the
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corresponding three-dimensional (3D) structures of or-
dered mesoporous carbon CMK-8 exhibited a well-
ordered honeycomb structure with a uniform pore size.
As depicted in Fig. 1c, d, long-range ordering porosity
of KIT-6 and CMK-8 can be observed from XRD pat-
terns in the low-angle range; this finding is in agree-
ment with the result of HRTEM. Because of the high
surface area of 3D cubic CMK-8, fast mass transfer
kinetics become possible, which is not ably beneficial
for organic molecule adsorption. The N, adsorption/de-
sorption isotherms (77 K) were measured for examining
the specific surface area of CMK-8. The N, adsorption/
desorption isotherms (77 K) of CMK-8 exhibited an
essentially type-IV isotherm (according to the IUPAC
classification) with a broad hysteresis loop, which had
the typical characteristics of capillary condensation in
mesoporous channels (Fig. 1e). In addition, according
to the Brunauer—Emmett—Teller method, CMK-8 pos-
sessed a specific surface area of 840.67 m*> g"'. The Bar-
rett—Joyner—Halenda analysis of the desorption branch
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of the isotherm indicated that the pores had an average
diameter of approximately 4 nm. CMK-8 is expected to
provide a substantial number of active sites for physical
adsorption of organic pollutants because of its high
specific surface area and porous nature. To fabricate an
Ag/CMK-8-Nafion membrane, these CMK-8 powders
were mixed with Nafion solution, followed by a chem-
ical reduction process for the deposition of Ag NPs.
The morphology of the Ag/CMK-8-Nafion membrane
was examined using an SEM, and the results are pre-
sented in Fig. 1f. The corresponding energy-dispersive
X-ray spectroscopy mapping of C and Ag elements
was also performed; the Ag NP distributions on the
surfaces of CMK-8-Nafion membranes were clearly
observable (Fig. 1g).

To obtain substantial hot electron generation from a
plasmonic resonance process, it is essential to preserve
the neutrality of silver NPs because neutral silver NPs
provide a more severe plasmon resonant condition than
oxidized silver NPs do; therefore, characterizing the sur-
face chemical state of silver NPs is crucial. XPS spectros-
copy was used for examining the Ag/CMK-8-Nafion
system. The elemental survey spectrum of the Ag/CMK-
8-Nafion membrane was measured, and the four main
elements, namely Ag, C, F, and O, were identified
(Fig. 2a). On the basis of this typical survey, the atomic
percentage of Ag was estimated to be approximately
5.0%. The high-resolution spectrum of Cls was obtained
and is presented in Fig. 2b. The nonsymmetrical peak
shape indicated that multiple chemical states of carbon
were present in the Ag/CMK-8-Nafion sample; hence,
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deconvolution was performed to identify each compo-
nent. The most pronounced peak, located at 284.3 eV,
was attributed to the C—C graphitic bonding of CMK-8,
indicating that no chemical reactions occurred between
silver NPs and CMK-8. The peak at 285.9 eV can be
assigned to the carbon bonded to C'H,CFH,, and the
peak at 288.0 eV can be attributed to CH,C'FH,,. An-
other broad peak at 290.8 eV can be considered as the
superposition of signals from —-CF,—, —-OCF-, and —
OCF,— groups. As presented in Fig. 2c, a symmetrical
Ag3d5 peak was obtained in the high-resolution scan,
indicating that Ag NPs were successfully reduced on the
surface of the CMK-8-Nafion membrane through a
physical adsorption approach without any other chem-
ical bonding. Furthermore, because of the binding en-
ergy of Ag, Ag oxides and Ag fluorides differed by only
a few tenths of an eV. Thus, determining the oxidation
of Ag only by using the Ag3d5 peak position is difficult.
For more accurate characterization, Ag MNN auger elec-
trons were also examined. A cross-comparison of simul-
taneous measurements of the Ag3d binding energy and
Ag MNN kinetic energy (KE) peak can determine the
chemical state and prevent the confusion of shifts. The Ag
MNNKE is given as follows:
KE(eV) = Photon Energy-Binding Energy (1)
According to the Al Ka X-ray photon energy (1486.6 €V),
the AgM5sN5sN5 binding energy was calculated as 1133.8 eV.
As presented in Fig. 2d, the KE of AgMNN was 358.8 eV
(6.0 eV added to the KE data on MsN;N; to obtain the KE
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of MyN;sN;) [37, 38]. The auger interpretation of the bind-
ing energy (367.39 eV; Fig. 2c¢) and the KE of AgMNN
(358.8 eV) indicate the existence of metallic silver NPs in
our sample, suggesting that the sample has active plasmon
resonance and substantial hot electron generation.

To investigate the efficiency and mechanism of MO
decomposition, we performed three experimental setups
for testing the removal rates of MO: (i) UV irradiation at
254 nm with no membrane, (ii) a CMK-8-Nafion mem-
brane only in darkness, and (iii) a CMK-8-Nafion under

UV irradiation at 254 nm. Figure 2a—c illustrates the evo-
lution of the UV-Vis spectra of the MO solution under
these three decomposition conditions. The absorption
peak of MO at 463 nm was obtained from the conjugated
structure constructed through an azo bond. A decrease in
the peak intensity indicated the decomposition of MO
and decoloration of the solution. MO demonstrated a very
slight self-degradation under UV irradiation at 254 nm
after 120 min (Fig. 3a). When the CMK-8-Nafion mem-
brane was examined in darkness, it exhibited a strong
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physical adsorption ability for MO even without UV
irradiation. A noticeable decrease at an absorption peak of
463 nm was observed with the passage of time (Fig. 3b).
Photo-induced decomposition of MO was examined by
placing a CMK-8-Nafion membrane under irradiation at
254 nm (Fig. 3c). The MO decomposition efficiency of this
photo-enhanced process was nine times higher than that
of CMK-8 in darkness, suggesting that the photo-induced
decomposition process was achieved by incident pho-
tons with preadsorbed MO molecules on the CMK-8-
Nafion surface. In addition, we examined the recycling
stability of the CMK-8-Nafion membrane (Fig. 3d). The
results demonstrated that the CMK-8-Nafion membrane
still retained 92% of its original efficiency after four con-
secutive 120-min decomposition cycles.

We fabricated a 4-in. free-standing CMK-8-Nafion mem-
brane to demonstrate the potential practical use of these
mechanisms. A similar evaluation process was performed
on this 4-in. CMK-8-Nafion membrane. Figure 4a presents
the UV-Vis spectrum evolution of MO decomposition
under UV irradiation at 254 nm. After 150 min of ir-
radiation, more than 80% of organic MO was suc-
cessfully removed from the solution. Figure 4b depicts
the corresponding photographs of the decoloration of
the MO solution with an increase in irradiation time.
The 4-in. CMK-8-Nafion membrane had a robust frame-
work of CMK-8 and Nafion, which did not leave any
unnecessary legacy products in the cleaned water even
after several recycling tests, eliminating the additional
effort of removing photocatalytic filter detritus.

To further improve the MO decomposition process, we
introduced a layer of plasmonic silver NPs onto the
surface of the CMK-8-Nafion membrane to achieve add-
itional MO decomposition efficiency by the generation of
hot electrons from plasmon-resonance NPs. Silver NPs
were prepared using a previously reported chemical
reduction process. Figure 5a presents the absorption
spectrum of CMK-8-Nafion and Ag/CMK-8-Nafion
membranes. The CMK-8-Nafion membrane exhibited a
typical broad photon absorption from 350 to 800 nm
because of the blackbody characteristics of CMK-8. In
the Ag/CMK-8-Nafion membrane sample, an additional
pronounced silver plasmonic absorption peak [39] was
observed at approximately 310 nm, presenting a slight
blueshift caused by the low dielectric constant of CMK-
8. With the integration of silver NPs, more than 98%
MO decomposition was achieved within 120 min under
UV irradiation at 254 nm (Fig. 5b). This decomposition
enhancement of approximately 20% is attributable to
hot electrons generated on the surfaces of silver NPs by
the plasmon decay process, substantially raising the
population of active radicals in the solution and provid-
ing an additional reaction route for the MO decompos-
ition process. Notably, because the excellent molecule
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adsorption ability of the CMK-8 also provides a perfect
reaction ground for these active oxidizing species with
preadsorbed MO molecules, the whole decomposition
reaction proceeds with the positive feedback of an
avalanche. Finally, we compared the decomposition
efficiency of CMK-8-Nafion in darkness and under UV
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irradiation and the efficiency of Ag/CMK-8-Nafion
under UV irradiation (Fig. 5c). As expected, the Ag/CMK-
8-Nafion sample exhibited the highest MO decomposition
efficiency because of additional hot electrons and holes
generated from silver NPs.

Conclusions

Free-standing CMK-8-Nafion membranes were fabricated
for improving MO decomposition in wastewater. The basic
membrane removed pollutants with an efficiency level of
more than 80% after 120 min of UV irradiation at 254 nm.
A reliability test indicated that the basic CMK-8-Nafion
membrane still retained 92% of its original efficiency
after four consecutive MO decomposition processes.
Furthermore, with the integration of a silver NP layer,
98% MO decomposition efficiency was achieved, which
was approximately 20% higher than that of the basic CMK-
8-Nafion membrane. Finally, we demonstrated the feasibil-
ity of fabricating a 4-in. free-standing CMK-8-Nafion mem-
brane for high-throughput wastewater treatment.
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