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Magnetospinography visualizes 
electrophysiological activity in the 
cervical spinal cord
Satoshi Sumiya1, Shigenori Kawabata1,2, Yuko Hoshino2, Yoshiaki Adachi3, Kensuke 
Sekihara2, Shoji Tomizawa1, Masaki Tomori1, Senichi Ishii1, Kyohei Sakaki1, Dai Ukegawa1, 
Shuta Ushio   1, Taishi Watanabe4 & Atsushi Okawa1

Diagnosis of nervous system disease is greatly aided by functional assessments and imaging 
techniques that localize neural activity abnormalities. Electrophysiological methods are helpful 
but often insufficient to locate neural lesions precisely. One proposed noninvasive alternative is 
magnetoneurography (MNG); we have developed MNG of the spinal cord (magnetospinography, 
MSG). Using a 120-channel superconducting quantum interference device biomagnetometer system 
in a magnetically shielded room, cervical spinal cord evoked magnetic fields (SCEFs) were recorded 
after stimulation of the lower thoracic cord in healthy subjects and a patient with cervical spondylotic 
myelopathy and after median nerve stimulation in healthy subjects. Electrophysiological activities in 
the spinal cord were reconstructed from SCEFs and visualized by a spatial filter, a recursive null-steering 
beamformer. Here, we show for the first time that MSG with high spatial and temporal resolution can be 
used to map electrophysiological activities in the cervical spinal cord and spinal nerve.

Imaging techniques are unquestionably important for the diagnosis of nervous system disease, but no single 
modality is sufficient to evaluate all aspects of nervous system function. Functional assessment with high tempo-
ral and spatial resolution is vital for diagnosing and treating spinal cord dysfunction. For example, cervical spon-
dylotic myelopathy (CSM), in which the spinal canal narrows due to degenerative changes in the cervical spine, is 
one of the most common spinal cord disorders in the elderly1–3. Due to the mechanical and physiological pathol-
ogy induced by compression of the spinal cord4, 5, patients with CSM show weakness and numbness in the upper 
extremities, gait deficit, spasticity of the lower extremities and bowel and bladder dysfunction3. However, some 
patients are clinically asymptomatic, even when spinal cord compression is apparent on imaging studies such as 
magnetic resonance imaging (MRI)1, 6–12. Additionally, the natural history of CSM varies and is unpredictable13, 
and the severity and features of the symptoms are diverse, even when similar degrees of spinal cord compression 
are seen on radiographic examination5. Therefore, for the early prediction of progression to myelopathy and the 
determination of treatment options, it is essential to evaluate spinal cord function and accurately identify the 
lesions responsible. For such applications, MR techniques such as functional MRI, diffusion tensor imaging and 
MR spectroscopy have been studied14, 15. Because the spinal cord is a narrow component compared with the brain, 
the resolution of these imaging techniques requires improvement.

Electrophysiological recording is another method for assessing spinal cord function. It has been used not only 
for intraoperative monitoring, but also for preoperative assessment to diagnose spinal lesions responsible for 
myelopathy and to predict progression to myelopathy in asymptomatic cases16–21. However, electrophysiological 
activity recorded at the body surface is not particularly suitable for recording conductive activity in deep and 
complex structures such as the spinal cord, spinal nerve and brachial plexus. Because surface potentials have 
relatively small amplitudes and are affected by the conductivity of tissues surrounding the nerve, the conduction 
velocity is not stable or accurate22, 23.
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To record larger and clearer signals than surface potentials recorded from the body surface near the spine, spi-
nal cord evoked potentials (SCEPs) have been used. SCEPs can be recorded using an epidural catheter electrode 
directly on the spinal cord in response to spinal or transcranial stimulation. These SCEPs are helpful for detecting 
responsive segments of the spinal cord in CSM16, 24 and have been mainly used by spinal surgeons. However, 
the insertion of an electrode into a narrowed cervical epidural space risks injury to the cervical spinal cord and 
requires considerable skill. Therefore, noninvasive yet precise methods for functional assessment of spinal cord 
activity are required. Magnetospinography (MSG) is one such possible method.

When a nerve is electrically stimulated, intra-axonal currents generate neuromagnetic fields according to 
Ampère’s circuital law (Supplementary Fig. S1). Although nine orders of magnitude smaller than the geomagnetic 
field25, these weak magnetic fields from biological structures can be detected in magnetically shielded rooms 
using sensitive magnetic sensors. Each sensor detects magnetic fields orthogonal to its sensor coil, and simulta-
neous recording from multiple sensors can visualize spatial expansion of the evoked magnetic field as a magnetic 
contour map. In addition, temporal and spatial expansion of the evoked action currents can be computationally 
reconstructed and visualized as a current map. Therefore, without recording electrodes, images of propagating 
action currents can be obtained.

Currently, magnetoencephalography (MEG) and magnetocardiography (MCG) are available for clinical use, 
but spinal imaging (MSG) has not progressed to clinical applicability, partly due to signal localization difficul-
ties. The evoked magnetic fields are about one-tenth smaller than those of MEG and the evoked currents behave 
more intricately because of the structure of the spine. MEG instrumentation has helmet-shaped arrays of super-
conducting quantum interference device (SQUID) sensors and is most sensitive to cortical currents tangential 
to the skull26. Compared with MEG, MSG needs a higher sampling rate to record intra-axonal action currents 
propagating at higher velocity. Therefore, novel device and data analysis methods suitable for the spinal cord need 
to be developed.

Magnetoneurography (MNG), including MSG, has several advantages over electrophysiological recording 
for the assessment of nerve activity and dysfunction. First, MNG does not require large electrode arrays to scan 
a wide area. Conventional electrophysiological recording needs multiple recording points to reconstruct action 
currents. Second, action currents in nerves can be more accurately computationally reconstructed from evoked 
magnetic fields. As mentioned, evoked potentials recorded at the body surface are of greatly diminished ampli-
tude and appear to propagate at different velocities than when recorded directly because they are easily distorted 
by the conductivity and shape of the volume conductor. Therefore, it is difficult to precisely localize sites of con-
duction block in deeply seated nerves such as the spinal cord, spinal nerve root, brachial plexus, and lumbar 
plexus by surface electrophysiological recording. In contrast, the magnetic field is not affected by electric con-
ductivity, although it does attenuate with distance. Consequently, current sources, including intra-axonal action 
currents and volume currents, can be extrapolated from evoked magnetic fields. Importantly, action currents at 
any point in the scanned area can be reconstructed as if ‘virtual electrodes’ were in place, and the source recon-
struction can visualize the pattern of action currents in the nervous system as a current map.

Recording of evoked magnetic fields in peripheral nerves has advanced in recent decades. In 1980, Wikswo 
and colleagues reported evoked magnetic fields from a frog sciatic nerve27. When the isolated nerve was inserted 
into a toroid pickup coil and stimulated, large magnetic fields (peak 60 pT) were measured; however, this method 
requires exposure and isolation of the nerve to achieve such large responses. Subsequent efforts focused on non-
invasively recording nerve evoked magnetic fields at the body surface28–36. The development of magnetically 
shielded rooms and high-sensitivity SQUID sensors have made noninvasive recording possible by improving 
the signal-to-noise ratio. Additionally, noise reduction methods and source reconstruction techniques have 
improved.

In 1998, Mackert and colleagues32 reported magnetic fields around the lumbar spine in patients with lumbar 
disc hernia. The estimated conduction block positions were 2.5 cm caudal and 0.8–2.5 cm lateral to the site of 
nerve root compression. However, when reviewing the mechanism and early history of MNG, they pointed out 
that more sensitive measurement hardware and more accurate source reconstruction algorithms were required 
before MSG could be used in clinical practise.

Since 1999, our group has been working on MSG and MNG of peripheral nerves to noninvasively assess 
spinal cord and deep nerve dysfunction. To date, we have reported neuromagnetic fields in animals using MSG, 
propagation and conduction block of spinal cord evoked magnetic fields (SCEFs)37–39, magnetic fields evoked by 
synaptic activity in the lumbar spinal cord of the rabbit40, and the detailed characteristics of action currents and 
magnetic fields at the site of conduction block in isolated nerves41, 42. In addition, we have recorded neuromag-
netic fields from the lumbar canal of human subjects43. In the process, we have made various improvements to our 
measurement system: a SQUID biomagnetometer44 with a better signal-to-noise ratio and lower consumption of 
liquid helium; use of an X-ray system that enables more precise localization; an optimal nerve stimulation method 
for larger signals; and artefact reduction and optimal signal processing for signal localization.

Noise reduction methods, including dual signal subspace projection (DSSP)45 and common-mode subspace 
projection (CSP)46, have allowed us to resolve magnetic fields that are small and/or buried in noise. In our early 
studies, we made assumptions about action currents and volume conductors for source localization41, 42 that 
proved useful for relatively simple systems, such as an isolated peripheral nerve, but were not satisfactory when 
applied to the spinal cord. In the present study, we used a spatial filter called a recursive null-steering (RENS) 
beamformer47, 48 that does not assume any volume conductor. The use of the RENS beamformer enabled us to 
more accurately reconstruct action currents in the spinal cord and the spinal nerve root. It should be emphasized 
that MSG can visualize the distribution of currents in the spinal cord. Conventional electrophysiological exam-
inations rely on electric potential recording, because recording of action currents is difficult in vivo. Therefore, 
observation of action currents by MSG could help in neuroscientific research.
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We report here for the first time that MSG can visualize propagating evoked currents in the cervical spinal 
cord of a CSM patient and healthy subjects, demonstrating that MSG has great potential for the noninvasive clin-
ical assessment of the spinal cord.

Results
SCEFs and SCEPs in response to stimulation of the lower thoracic spinal cord.  Cervical SCEFs in 
response to stimulation of the lower thoracic cord were recorded from three healthy subjects. The magnetic fields 
had two to four phasic waveforms and propagated in the caudal to cranial direction (Fig. 1). The evoked currents 
reconstructed by the RENS beamformer and converted to a psuedocolour map are superimposed on an X-ray 
image of the cervical spine (Fig. 2a, Supplementary Video S2). Starting 4.3 ms after the stimulation, leading and 
trailing components of the intra-axonal currents appeared at the caudal-most recording site and propagated along 
the spinal canal (large red arrow). In addition, two other components appeared on either side of the spinal cord 
and flowed perpendicularly between the leading and trailing components (large blue arrows). These inflows also 
propagated cranially along with the intra-axonal currents. The waveforms of reconstructed currents at the mid-
line of the cervical spinal canal (red) and 2-cm lateral (blue) are shown in Fig. 2b. The red traces are currents par-
allel (upwards is the caudal to cranial direction) and the blue traces indicate currents perpendicular (upwards is 
towards the spinal canal) to the spinal cord. The first wave in red is equivalent to the leading component in Fig. 2a 
(indicated by the upwards-pointing red arrow). The conduction velocity (CV) of the reconstructed currents was 
calculated from the peak of the first wave in red (mean of 64.3 m/s in the healthy subjects).

MRI of the CSM patient revealed substantial spinal cord compression at the C4/5 disc level and milder com-
pression at the C5/6 disc level (Fig. 3). The ascending SCEPs in response to stimulation of the lower thoracic 
cord showed propagation block at the C4/5 disc level (Fig. 4b, left). The reconstructed current map (Fig. 4a, 
Supplementary Video S3) revealed current distribution patterns caudal to C4/5 similar to those recorded in 
healthy subjects. However, the leading component is not illustrated because it was much smaller than that of 
other currents. When the perpendicular components stopped and disappeared before C4/5, the trailing com-
ponent simultaneously disappeared before C5/6. The red traces in Fig. 4b show that the leading component (the 
first wave) attenuated as it passed through C4–6 and the trailing component (the second wave) disappeared at 
C5/6. The perpendicular inflow components were also largely attenuated at C4/5 (the second wave in blue, Fig. 4b 
right). The latency and waveform changes of the reconstructed currents corresponded to those of the SCEPs 
(Fig. 4b), with very similar CVs below C6 (53.3 m/s for the reconstructed currents and 55.6 m/s for the SCEPs).

Cervical SCEFs in response to median nerve stimulation at the elbow.  Cervical SCEFs were 
recorded in response to stimulation of the median nerve in ten subjects (20 nerves). The first peak appeared at 
about 5.5 ms post-stimulus and the magnetic fields consisted of two to four distinct phases (Fig. 5). The recon-
structed evoked currents appeared more dispersed than after stimulation of the lower thoracic cord.

In a representative case, the currents flowed into the spinal canal from the stimulated side and propagated 
cranially (5.6–6.4 ms). Subsequently, rotated currents were observed (6.6–7.6 ms) and trailing currents propa-
gated cranially (7.8–8.4 ms) (Fig. 6a, Supplementary Video S4). The first peak of the reconstructed currents at 
the midline of the cervical spinal canal did not propagate, but subsequent currents did (left graph in Fig. 6b). The 

Figure 1.  Spinal cord evoked magnetic fields (SCEFs) of a healthy subject measured after stimulation of the 
lower thoracic spinal cord. (a) Positions of the sensors superimposed on an X-ray image of a subject. (b) The 
three-directional magnetic fields recorded by each sensor. Black traces are magnetic fields in the ventral–dorsal 
direction relative to the cervical spinal cord (dorsal is upwards in the graphs). Red traces are magnetic fields 
in the left–right direction (right is upwards). Blue traces are magnetic fields parallel to the spinal cord (cranial 
is upwards). Some malfunctioning pickup coils show a flat line. The red signals, mainly generated from intra-
axonal currents, are highest above the spinal cord. The polarity of the black and blue signals is reversed on each 
side of the spinal cord.
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reconstructed currents at adjacent points of the intervertebral foramina (C3/4 to Th1/2) are shown in the right 
graph in Fig. 6b. The currents flowing into the intervertebral foramina were larger at C5/6 to C7/Th1.

The CVs calculated from the peak latency at the C5–6 level ranged from 53.3 to 120 m/s (n = 20; mean, 
73.0 ± 15.8 m/s). Individual variations in peak currents flowing into the intervertebral foramina are shown graph-
ically in Fig. 7. The magnitude of current inflow differed among the subjects, but the maximal currents flowed 
through C6/7 or C7/Th1 in most subjects.

Figure 2.  Reconstructed currents of a healthy subject measured after stimulation of the lower thoracic 
spinal cord. (a) Reconstructed current map. Currents at the level of the spinal canal were reconstructed by a 
recursive null-steering (RENS) beamformer and superimposed on an X-ray image. Current intensity is shown 
by a colour scale (red is higher). Small white arrows indicate current vectors. The leading component of the 
currents (large upwards-pointing red arrow) appeared 4.3 ms after stimulation and propagated cranially along 
the spinal canal. At 5.8 ms, the trailing component (downwards-pointing red arrow) appeared from the caudal 
side. Perpendicular currents (blue arrows) flowing towards the spine between the leading and the trailing 
components are also observed on both sides. (b) Waveforms of reconstructed currents at the “virtual electrodes”. 
Red traces are currents at the midline of the cervical spinal canal (the caudal to cranial direction is upwards). 
Blue traces are currents 20 mm lateral from the midline (upwards is towards the spinal canal).

Figure 3.  Preoperative MR image of a patient with cervical spondylotic myelopathy showing spinal stenosis. 
The patient was a 67-year-old male with C4/5 disc herniation and a small indentation of the C5/6 disc. The 
patient exhibited clumsiness of bilateral hands and gait disturbance.



www.nature.com/scientificreports/

5Scientific Reports | 7: 2192  | DOI:10.1038/s41598-017-02406-8

Discussion
Noninvasive surface MSG visualized propagating spinal excitation in response to thoracic spinal cord and median 
nerve stimulation with high spatial and temporal resolution. The signal propagation pattern and velocity were 
consistent with known innervation pathways and electrophysiological properties, respectively. Most significantly, 
MSG allowed for the visualization of conduction block at the site of spinal stenosis in a CSM patient. These results 
demonstrate that MSG is a useful method for the diagnosis and treatment evaluation of peripheral nerve and spi-
nal cord diseases. Given that conventional electrophysiological examinations depend on the recording of electric 
potentials, observation of action currents reconstructed by MSG could expand the possibilities for neuroscientific 
research.

Figure 4.  Reconstructed currents of the cervical spondylotic myelopathy patient. Currents are illustrated in 
a similar manner to Fig. 2. The current map is in the anterior–posterior direction, and the X-ray image of the 
lateral view shows the corresponding levels of the cervical spine. (a) In the reconstructed current map, the 
leading component is not illustrated because its intensity is much lower than that of other currents. When the 
perpendicular components stopped and disappeared caudal to C4/5, the trailing component simultaneously 
disappeared caudal to C5/6. (b) The left graphs are the ascending spinal cord evoked potentials (SCEPs) by 
stimulation of the lower thoracic cord showing conduction block at the C4/5 disc level. The right graphs are 
the reconstructed currents at the midline of the cervical spinal canal (red) and 2 cm lateral (blue). The leading 
component (the first waveform in red) attenuated and disappeared through C4–6, and the trailing component 
(the second waveform in red) disappeared at C5/6. The perpendicular inflow components greatly attenuated at 
C4/5 (the second waveform in blue).

Figure 5.  Spinal cord evoked magnetic fields (SCEFs) in response to stimulation of the median nerve at the 
elbow. (a) Positions of the sensors. (b) SCEFs illustrated in a manner similar to Fig. 1. SCEFs were mainly 
recorded from the right side of the spinal cord.
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In the first series of experiments, cervical SCEFs propagating along the spinal canal were measured in healthy 
subjects. The reconstructed currents contained leading and trailing components that represented intra-axonal 
currents in the spinal cord, and two perpendicular inflowing components that represented volume currents flow-
ing towards the centre of depolarization (Fig. 2a, Supplementary Video S2).

For the CSM patient, the reconstructed current map showed that the leading component was blocked around 
C4/5 and, when the perpendicular inflow currents became attenuated at C4/5, the trailing component simulta-
neously disappeared at C5/6 (Fig. 4a, Supplementary Video S3). Because the perpendicular inflow currents cor-
respond to volume currents flowing into depolarization sites, attenuation of the perpendicular currents at C4/5 
indicates conduction block around C4/5. As we previously reported, the trailing component also disappeared 
when the perpendicular inflow currents disappeared41, 42, because it too was generated by the depolarization site.

In the second series of experiments, propagating action currents in the spinal canal were reconstructed from 
cervical SCEFs in response to stimulation of the median nerve. As shown in Fig. 6b, the first wave at the midline 
of the cervical spinal canal did not propagate cranially or caudally. Considering its latency, this wave appeared 

Figure 6.  Reconstructed currents after stimulation of the right median nerve at the elbow. (a) Reconstructed 
current map. The currents flowed into the spinal canal from the right side and propagated cranially 5.6–6.4 ms 
post-stimulus. Rotated currents were observed 6.6–7.6 ms post-stimulus. Trailing currents propagated cranially 
7.8–8.4 ms post-stimulus. (b) Reconstructed currents at the midline of the cervical spinal canal (C3 to C7) 
and at the adjacent intervertebral foramina (C3/4 to Th1/2). The first peak of the reconstructed currents at 
the midline of the cervical spinal canal did not propagate, but subsequent currents did (left graphs). Currents 
flowing into the intervertebral foramina were larger at C5/6 to C7/Th1 (right graphs).

http://S2
http://S3


www.nature.com/scientificreports/

7Scientific Reports | 7: 2192  | DOI:10.1038/s41598-017-02406-8

to be derived from conductivity changes as the depolarization propagated along the spinal nerve through the 
intervertebral foramen to the spinal cord in the spinal canal and cerebrospinal fluid. Further research, including 
simultaneous recording of SCEFs and SCEPs in a larger number of subjects, is needed to elucidate the mechanism 
involved. However, the subsequent waves did propagate along the spinal cord. From 6.6 to 7.6 ms post-stimulus, 
the reconstructed currents appeared to rotate in the spinal canal (Fig. 6a, Supplementary Video S4). In our previ-
ous studies, similar rotating magnetic fields were recorded around the intervertebral foramina40, 43. These rotating 
currents may reflect the summation of synaptic activity and currents from the dorsal column pathway. However, 
considering the complexity of the entry zone of the spinal nerve root into the spinal cord49–51, further investiga-
tion is needed.

MSG also allowed for visualization of propagating activity through the intervertebral foramina and into the 
spinal cord following surface median nerve stimulation. Anatomically, the median nerve is usually innervated 
from C6–Th1 but less often by C552. Consistent with the typical innervation pattern, the currents were largest at 
the C6/7 intervertebral foramen (outlet of root C7) or the C7/Th1 intervertebral foramen (outlet of root C8) in 
most subjects while currents passing through the C4/5 intervertebral foramen (outlet of root C5) were observed 
in two of the ten subjects, a 27-year-old man and a 44-year-old man (Fig. 7).

In pioneering work, Curio and colleagues29 recorded magnetic fields around the brachial plexus and neck 
using a single SQUID sensor. In particular, as described in a review by Mackert53, the conduction block positions 
were localized down to the centimetre scale in patients with lumbar disc herniation. While these studies con-
tributed to the development of MNG, greater accuracy was thought necessary for clinical application. Limited 
accuracy in these early reports stemmed from mechanical restriction of the SQUID sensor and inadequate 
source reconstruction techniques. Specifically, previous reconstruction techniques using dipole estimation and 
assuming some volume conductor reduced the accuracy of current source localization. Although we also previ-
ously recorded SCEFs from humans, the combined efforts of a multidisciplinary team were needed for clinical 

Figure 7.  Individual variations in the peak currents flowing into the intervertebral foramina. In most subjects, 
the largest currents flowed through C6/7 or C7/Th1. Currents passing through the C4/5 intervertebral foramen 
(outlet of root C5) were observed in two of the ten subjects, a 27-year-old man (upper one) and a 44-year-old 
man.
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application. In summary, the following advances have been made: a SQUID biomagnetometer suitable for the 
cervical spine with a better signal-to-noise ratio and lower consumption of liquid helium; an X-ray system for 
better localization; a nerve stimulation method that enables a larger response and the ability to subsequently min-
imize artefacts; and signal analysis techniques optimal for MSG. In this study, we used a more advanced recon-
struction technique that does not restrict the number or direction of currents47, 48, as well as the latest SQUID 
sensor with design improvements for MSG44. This report demonstrates the feasibility of MSG for high temporal 
and spatial resolution imaging of spinal activity and for the localization of conduction block.

However, there are some limitations to this study. Further research should involve a greater number of subjects 
to enable precise localization of the conductive block in the spinal cord and to elucidate detailed electrophysiolog-
ical activities at the entry point of the spinal nerve root into the spinal cord. Additionally, the instrumentation of 
MSG is still experimental and there is a need to stimulate global research to accumulate knowledge about SCEFs.

In summary, we have shown for the first time that MSG can visualize with high spatial and temporal resolu-
tion propagating spinal excitation in response to stimulation of the thoracic spinal cord and median nerve. MSG 
may be a clinically useful modality not only for the detection of spinal tract dysfunctions such as CSM, but also 
for the detection of spinal root and dorsal horn dysfunction, considering recent electrophysiological studies of 
radiculopathy and brachial plexus injury54, 55. A combination of MSG and peripheral nerve stimulation could be 
used in the noninvasive assessment of spinal cord function for basic research and clinical diagnosis.

Methods
Two series of MSG recordings were performed. In the first series, the lower thoracic spinal cord was electrically 
stimulated and the magnetic fields of the cervical spinal cord were recorded. In the second series, magnetic fields 
of the cervical spinal cord were recorded in response to stimulation of the median nerve at the elbow.

MSG system.  All recordings were performed in a magnetically shielded room using a 120-channel SQUID 
biomagnetometer system developed by the Applied Electronics Laboratory, Kanazawa Institute of Technology44 
(Fig. 8). The device has two main distinguishing features: an array of vector-type SQUID sensors and a uniquely 
designed cryostat especially optimized for recording SCEFs in the cervical and lumbar regions.

The sensor array is composed of 40 SQUID magnetic flux sensors arranged in an eight-by-five matrix-like 
configuration at 20-mm intervals (Fig. 8a). Each sensor is a vector-type gradiometer56, which has three pickup 
coils oriented orthogonally to one another to simultaneously detect three-dimensional magnetic fields. The base-
line length of the gradiometric pickup coils is extended to 68 mm considering the deep magnetic sources in the 
spinal cord. The typical noise level of the SQUID sensors was less than 4 fT/Hz1/2.

The cryostat, used to maintain the superconducting state of the SQUID sensors, is a cylindrical plastic vessel 
holding liquid helium, characterized by a horizontal protrusion from its side surface. The sensor array is arranged 
in the protrusion in the upwards direction along its upper inwall. Subjects in the supine position put their neck 
on the protrusion, which is mildly curved to fit the posterior surface of the neck (Fig. 8b,c). The cool-to-warm 
separation at the upper surface of the protrusion is less than 7 mm, whereas that of the conventional MEG system 
is around 20 mm. This structure of the cryostat allows the SQUID sensors to be closer to the magnetic sources in 
the spinal cord and obtain a better signal-to-noise ratio.

Signal processing.  The position and intensity of the current sources were reconstructed from the evoked 
magnetic fields, and the current waveforms in the spinal canal and the intervertebral foramen were retrieved as if 
they were recorded using virtual recording electrodes. For positional information, magnetic signals from marker 
coils on the surface of the subject’s neck were recorded, and X-ray images of the subject and the SQUID sensor 
were obtained.

The measured data of SCEFs were first processed to remove stimulus-induced artefacts. For this purpose, the 
dual signal subspace projection (DSSP) algorithm45 was applied to obtain the artefact-removed data. The DSSP 
algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain 
signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two 
matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the 
subspace that is orthogonal to this interference subspace to remove the interference. The DSSP algorithm there-
fore does not require separate artefact measurements. The algorithm was detailed in a previous report45.

To record cervical SCEFs after stimulation of the median nerve at the elbow, we used another noise reduction 
method named common-mode subspace projection (CSP)46. This algorithm requires separate artefact measure-
ments and estimates the intersection of row spans between the signal and artefact data matrices as the interfer-
ence subspace. The CSP algorithm is effective even when artefact sources are located in the vicinity of the signal 
source space, although the total measurement time for the CSP algorithm is twice that of the DSSP algorithm. We 
used the CSP algorithm in our earlier experiments and switched to the DSSP algorithm in later ones to reduce 
the recording time.

The source analysis was then applied to the artefact-removed data. In the source analysis, using the obtained 
X-ray images of the subject and the SQUID sensor, the location of the spinal cord with respect to the sensors is 
estimated and a curved plane containing the spinal cord is determined as the reconstructed region. The spinal 
cord source activity is then reconstructed on this plane. Here, a spatial filter algorithm, the RENS beamformer47, 48, 
was applied. The RENS beamformer is derived based on the beam response optimization, and its weight is derived 
by a recursive procedure. The advantage of the RENS beamformer is its applicability to a single-time sample data. 
Its spatial resolution is much higher than that of the existing source imaging algorithms that may be applied to 
single-time samples, such as the minimum-norm method. In practice, the dynamics of the source activity was 
reconstructed in a time-point-by-time-point manner by applying the RENS beamformer to single-time sample 
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data. The resultant source image was overlaid onto the patient’s X-ray image to obtain a movie showing the recon-
structed electrophysiological activity of the spinal cord.

All procedures in this study were approved by the Ethics Committee of Tokyo Medical and Dental University 
and were performed in accordance with the Declaration of Helsinki. We obtained written informed consent and 
releases for images and photographs from all participants.

Cervical SCEF and SCEP in response to lower thoracic spinal cord stimulation.  The subjects were 
three healthy volunteers (36, 41 and 45 years of age; 178, 174 and 174 cm in height) without nervous system dis-
ease and one 67-year-old male patient with CSM scheduled for surgery. Before recording, a catheter electrode 
for spinal cord stimulation was transcutaneously inserted into the epidural space at the 11th thoracic spine level. 
The subject was in the supine position on a table in a magnetically shielded room with the posterior neck on the 
SQUID sensor (Fig. 8c). The thoracic spinal cord was electrically stimulated by the epidural electrode (17 Hz; 
monophasic square waves; 0.3-ms width; 3.5–6.6 mA constant current) and the evoked magnetic fields were 
recorded from 40 sensors at the surface of the posterior neck. Evoked responses were acquired at a sampling rate 
of 40 kHz with 100 Hz to 5 kHz analogue bandpass filtering. The averaged records of 4,000 individual responses 
were analysed. DSSP45 was then applied to reduce artefacts from the electrical stimulation and the electric devices.

The evoked currents were reconstructed by the RENS beamformer47, 48 and superimposed on the X-ray image 
to visualize their distribution, intensity and velocity. The current waveforms were retrieved from the virtual 
recording electrodes at each vertebral level at the midline of the cervical spinal canal and the 2-cm lateral line.

Another catheter electrode (five-polar; 15-mm intervals; Unique Medical Japan) was inserted transcutane-
ously into the cervical epidural space of the patient with CSM to record preoperative SCEPs. The lower thoracic 
spinal cord was electrically stimulated with an epidural electrode at the 11th thoracic spine level, as described 

Figure 8.  The 120-channel superconducting quantum interference device (SQUID) biomagnetometer system 
used for the magnetospinography. (a) Individual SQUID sensors are arranged in an eight-by-five configuration 
at 20-mm intervals. Each sensor has three perpendicular pickup coils to detect magnetic fields in three 
orthogonal directions. (b) Overhead view of the sensor and subject as shown in Figs 1 and 5. (c) Cross-sectional 
image of the cryostat protrusion. The central grey area indicates the sensor array shown in (a). The sensors are 
arranged in the vertical direction and positioned in close contact with the upper inwall of the protrusion. The 
subject was in the supine position on a table with the posterior neck on the protrusion holding the SQUID 
sensor array inside. The upper surface of the protrusion is curved to fit the lordosis of the cervical spine. (d) 
Both median nerves were alternatively stimulated at the anterior of the elbow joint. Volar splints to suppress 
evoked movements are not shown here.
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above. The SCEPs at five points on the cervical spinal cord were recorded with reference to the earlobe and com-
pared to the evoked magnetic fields and the reconstructed action currents.

Cervical SCEFs after stimulation of the median nerve at the elbow.  The subjects were ten healthy 
right-handed volunteers, 24–45 years of age (mean, 33.7 years), 156–175 cm in height (mean, 167.8 cm). In our 
earlier studies, we found that a larger neural signal is necessary to evaluate SCEFs and reconstruct currents at 
this time. Therefore, we stimulated the median nerve at a more proximal level than usual. The median nerve was 
stimulated at the anterior of the elbow joint (3 Hz; duration, 0.3 ms) at 1.5 times the motor threshold (intensity, 
4.6–9.0 mA). The arm to be stimulated was fixed with a volar splint to suppress evoked movements. The right and 
left nerves were alternately stimulated and evoked magnetic fields were recorded from 40 sensors at the surface of 
the posterior neck (Fig. 8d). Two-thousand recordings of evoked magnetic fields were averaged from both sides. 
To measure magnetic fields from the stimulation artefact, the skin at the elbow 2–3 cm from the median nerve 
was electrically stimulated and 1,500 recordings were averaged. CSP46 was applied to the averaged data for arte-
fact removal. The evoked currents were reconstructed by the RENS beamformer47, 48 using the data after artefact 
reduction and visualized as in the other recording conditions.

Data availability.  The data that support the findings of this study are available from the corresponding 
author upon reasonable request.
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