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Differential expression of VEGFR2 
protein in HER2 positive primary human breast 
cancer: potential relevance to anti‑angiogenic 
therapies
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Abstract 

Background:  Clinically relevant predictive biomarkers to tailor anti-angiogenic therapies to breast cancer (BRC) 
patient subpopulations are an unmet need.

Methods:  We analyzed tumor vascular density and VEGFR2 protein expression in various subsets of primary 
human BRCs (186 females; Mean age: 59 years; range 33–88 years), using a tissue microarray. Discrete VEGFR2+ and 
CD34+ tumor vessels were manually scored in invasive ductal, lobular, mixed ductal-lobular and colloid (N = 139, 22, 
18, 7) BRC cores.

Results:  The observed CD34+ and VEGFR2+ tumor vascular counts in individual cases were heterogeneous. Mean 
CD34+ and VEGFR2+ tumor vessel counts were 11 and 3.4 per tumor TMA core respectively. Eighty-nine of 186 
(48%) cases had >10 CD34+ tumor vessels, while 97/186 (52%) had fewer CD34+ vessels in each TMA core. Of 
169 analyzable cores in the VEGFR2 stained TMA, 90 (53%) showed 1–5 VEGFR2+ tumor vessels/TMA core, while 
42/169 (25%) cores had no detectable VEGFR2+ tumor vessels. Thirteen of 169 (8%) cases also showed tumor cell 
(cytoplasmic/membrane) expression of VEGFR2. Triple-negative breast cancers (TNBCs) appeared to be less vascular 
(Mean VD = 9.8, range 0–34) than other breast cancer subtypes. Overall, VEGFR2+ tumor vessel counts were sig-
nificantly higher in HER2+ as compared to HR+ (p = 0.04) and TNBC (p = 0.02) tissues. Compared to HER2− cases, 
HER2+ breast cancers had higher VEGFR2+ tumor vessel counts (p = 0.007).

Conclusion:  Characterization of pathologic angiogenesis in HER2+ breast cancer provides scientific rationale for 
future investigation of clinical activity of agents targeting the VEGF/VEGFR2 axis in this clinically aggressive breast 
cancer subtype.
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Background
Breast cancer is a heterogeneous disease with distinct 
histopathologic, epidemiologic, clinical, biologic and 
molecular characteristics. Compared to other solid 
tumors, human breast cancers exhibit very different clin-
ico-pathologic characteristics and increasingly defined 

patterns of therapeutic sensitivity and resistance to vari-
ous targeted therapies. Individualized treatment strate-
gies consider the patient age, performance status, prior 
therapies and disease stage, but rely primarily on HER2 
and hormone receptor status [1].

The proto-oncogene, c-erbB2 encodes the human epi-
dermal growth factor receptor 2 (HER2), which is overex-
pressed and/or amplified in several human malignancies, 
including 25–30% of breast cancers [2, 3]. Trastuzumab, 
a monoclonal antibody directed against the extracel-
lular domain of HER2, is approved for the treatment of 
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HER2-positive breast cancer and improves overall sur-
vival [4]. Despite initial efficacy, drug resistance ulti-
mately develops and most tumors progress within 1 year 
[5]. There is, therefore, still an unmet clinical need to 
improve patient outcome in trastuzumab-treated BRC 
patients.

The introduction of anti-angiogenic (AA) therapies 
represents a major advancement in treating human can-
cers. Despite favorable clinical trial results and several 
regulatory approvals (Table 1), majority of patients who 
initially respond to anti-angiogenic therapies eventually 
develop progressive disease [6]. Furthermore, the dura-
tion of improved patient survival remains modest and 
needs to be improved. De novo or acquired resistance 
to anti-angiogenic therapies is another major clinical 
challenge.

A role of vascular endothelial growth factor (VEGF) 
in breast cancer progression is supported by clinical 
studies showing elevated serum VEGF levels in invasive 
breast cancers [7]. However, the aggregate outcomes of 
a number of positive randomized phase III clinical trials 
evaluating the VEGF-pathway inhibitor (bevacizumab) 
or the antiangiogenic tyrosine kinase inhibitors (TKIs), 
with or without concurrent chemotherapy, in metastatic 
breast cancer patients have been disappointingly modest 
or negative [8, 9]. More recently, therapeutic blockade of 
VEGFR2 with the human anti-VEGFR2 monoclonal anti-
body (ramucirumab), which, based on successful phase 
III trials [10–12], was approved by the FDA for gastric, 
non-small cell lung and colon cancers, but did not mean-
ingfully improve important clinical outcomes in a rand-
omized placebo-controlled phase III trial evaluating the 
addition of ramucirumab to first-line docetaxel chemo-
therapy in metastatic breast cancer [13].

In order to address the important clinical challenges 
with the antiangiogenic therapies in breast cancer 
patients, there is an urgent need to develop clinically 
applicable predictive biomarkers to tailor various AA 
therapies to the most relevant BRC patient subpopula-
tions. Other strategies to improve efficacy of AA thera-
pies in BRC patients would include evaluation of various 
BRC subtypes for expression of pertinent biomarkers of 
pathologic angiogenesis (disease state characterization) 
and combining AA-agents with other established (hor-
monal, anti-HER2) or emerging targeted therapies.

With the ultimate objective to de-convolute the bio-
logic complexity underlying some of the clinical chal-
lenges with the AA therapies outlined above, we have 
developed and standardized technically robust immu-
nohistochemical assays to evaluate VEGF receptor path-
way markers in archival human cancer tissues. In recent 
years, these methodologies have been utilized to charac-
terize the heterogeneity of tumor angiogenesis programs 
in various histologic and clinical subtypes of human can-
cers [14–19]. Previously, we demonstrated immunohis-
tochemical expression of VEGFR2 protein and vascular 
phenotypes in human breast carcinomas [15]. The aim of 
this study was to characterize the patterns of pathologic 
angiogenesis in various therapeutically relevant molecu-
lar breast cancer subtypes (HR+, HER2+, TNBC) by 
evaluation of vascular density and immunohistochemical 
expression of VEGFR2 protein in a retrospective series of 
primary human breast cancer tissues.

Methods
In line with the original REMARK guidelines [20] to 
standardize reporting of tumor marker studies, the study 
patients, tissue specimens, methodologies, including 

Table 1  FDA approved drugs targeting VEGF/VEGFR pathways

Name Company Type Main target(s) Approved for

Bevacizumab (Avastin) Genentech/Roche Humanized monoclonal 
antibody

VEGF-A Metastatic colorectal carcinoma, 
non-small cell lung carcinoma, 
advanced glioblastoma, meta-
static renal cell carcinoma

Sorafenib (Nexavar) Bayer/Onyx Small molecule TK inhibitor VEGFR, PDGFR, Raf, cKit, FLT3 Advanced renal cell and hepato-
cellular carcinomas

Axitinib (Inlyta) Pfizer Small molecule TK inhibitor VEGFR, PDGFR, cKit Renal cell carcinoma

Pazopanib (Votrient) GSK Small molecule TK inhibitor VEGFR, PDGFR, cKit Advanced renal cell carcinoma, 
soft tissue sarcoma

Vandetanib (Caprelsa) AstraZeneca Small molecule TK inhibitor VEGFR, EGFR, RET Medullary thyroid cancer

Zaltrap (VEGF trap) Regeneron/Sanofi-
aventis

Fusion protein of Fc with 
VEGFR1 and R2 domains

VEGF, PlGF Metastatic colorectal cancer

Ramucirumab (Cyramza) Lilly/Imclone Human monoclonal antibody VEGFR2 Gastric/gastroesophageal junc-
tion adenocarcinoma, colorec-
tal carcinoma, non-small cell 
lung carcinoma
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reagents, controls and various other parameters are being 
summarized.

Patients
The study population included a retrospective series of 
186 female patients, including 171 Caucasian, 11 Afri-
can American and 4 others with node-positive primary 
breast cancers (89 left, 90 right and 5 bilateral). Mean 
patient age was 59  years (range 33–88  years). Most of 
these patients received local radiation and chemotherapy, 
including Adriamycin, Cytoxan and 5-FU, as previously 
described [21]. Clinico-pathologic data were collated 
from the Yale Tumor Registry in accordance with the 
guidelines of the Yale Human Investigations Committee.

Human Tissue specimens and tissue microarray
Mean primary breast cancer size was 3.4  cm (range 
0.15–14.5  cm). Primary human breast carcinoma tis-
sues (N = 186) were classified into invasive ductal, lob-
ular, mixed ductal-lobular and mucinous carcinomas 
(N =  139, 22, 18, 7 respectively), based on the original 
pathologic evaluation at Yale University. Using the Not-
tingham Modification of the Scarff-Bloom-Richardson 
grading system, also known as the Nottingham Grad-
ing System (NGS) [22], the invasive carcinoma tissues 
(N = 186) were categorized into grade 1 (N = 8), grade 
2 (N = 109), grade 3 (N = 69). Representative formalin-
fixed, paraffin-embedded (FFPE) tumor tissue from each 
case was sampled as a single 0.6 mm core in a recipient 
tissue microarray block (Yale BRCA, YTMA 10), on a 
tissue-arraying instrument (Beecher Instruments, Silver 
Springs, MD). Sampling of human tissues in the Yale BRC 
TMA was based on the required institutional policies and 
approvals, including the patient consent to allow usage 
of tissue for research. Using the latest criteria proposed 
by the World Health Organization for Histologic Typing 
of Breast Tumors [23], all original pathologic diagnoses 
were confirmed on Hematoxylin & Eosin stained section 
of the Yale BRCA TMA (YTMA 10) by an experienced 
American Board-certified study pathologist (AN) with 
subspecialty expertise in breast pathology.

Immunohistochemical assays for VEGFR2 and CD34
Five micron thick FFPE TMA sections were cut from the 
Yale Breast Cancer TMA above, stored in nitrogen cham-
ber to prevent loss of antigenicity until immunostained 
for VEGFR2 and CD34, a sensitive IHC marker for tumor 
vasculature. For VEGFR2 protein we used a technically 
robust, sensitive, specific and selective immunohisto-
chemical (IHC) assay developed and optimized by our 
laboratory (13) that had showed optimal performance on 
several different human tumor cohorts, including multi-
ple human tissue and cell lines controls (14–17, 19). The 

IHC assay protocol, using one of the most specific com-
mercially available monoclonal anti-VEGFR2 antibody 
(55B11) [24], optimization experiments and quality con-
trol procedures were previously described in detail [14]. 
For CD34, we used a technically validated IHC assay 
offered by a leading reference laboratory (Clarient, Aliso 
Viejo, CA, USA), including satisfactory positive and neg-
ative controls.

VEGFR2 IHC assay controls
Unequivocal, crisp VEGFR2 immunoreactivity was 
demonstrated in the vascular endothelium but not in 
trophoblastic cells in the conventional sections of human 
placenta and also in the microvasculature of the invasive 
cervical squamous cell carcinoma favoring these tissues 
as optimal positive and negative tissue controls. Optimal 
reagent negative controls were run by replacing the pri-
mary antibody with control immunoglobulin.

VEGFR2 IHC assay performance
As part of the analytical validation of the VEGFR2 IHC 
assay, the coefficients of variation (CVs) of immuno-
pathological VEGFR2 scores for intra-run repeatability, 
inter-run reproducibility, and inter-observer reproduc-
ibility were less than 7% (data on file).

Interpretation and scoring of VEGFR2+ and CD34+ tumor 
vessels
After immuno-pathologic review, each immuno-stained 
BRC TMA section was evaluated by the sub-specialty 
pathologist (AN), who was blinded to the BRC sub-
types or other relevant clinico-pathologic or breast 
marker data. In each analyzable TMA core, the discrete 
VEGFR2+  and CD34+  tumor vessels were manually 
counted in the invasive tumor stroma. In order to qual-
ify for a vascular structure, it had to have the histomor-
phologic appearance of a vessel with or without lumen. 
Scattered individual cells in the invasive cancer tissue 
stroma not conforming to the strict definition of a vessel 
above were excluded from VEGFR2+ and CD34+ vessel 
counts. Any suboptimal/inadequate TMA cores (cores 
with complete or major [>50%] tissue loss/fragmentation; 
those without well-preserved, viable tumor cells or those 
with any areas of tumor necrosis) were also excluded 
from scoring/analysis. After such exclusions, a total of 
186 and 169 TMA cores were found to be adequate for 
manual assessment of CD34+  and VEGFR2+  vessels in 
the stromal component of the primary invasive carci-
noma tissues sampled (Table 2).

Photomicrography
Photomicrographic images representing the differential 
levels of immunohistochemical expression of VEGFR2 
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in tumor stromal vasculature in HR+, HER2+  and tri-
ple-negative BRCs were captured from high-resolution 
digital scans of the stained TMA slides (Scanscope XT; 
Aperio Technologies, Vista, CA).

Relevant immunohistochemical markers: ER, PR, HER2
Based on the breast marker IHC panel results (ER, PR 
and HER2) from the contributing institution (Yale Uni-
versity, New Haven, CT, USA), as used in the standard 
management of breast cancer patients, each case was 
grouped into one of the three BRC subsets, i.e., hormone 
receptor+ (HR+), HER2+ and triple-negative (TNBC).

Statistical methods
Counts of VEGFR2+  tumor vessels from 3 breast can-
cer subtypes (HR+, HER2+, and TNBC) were compared 
for all pairs using Tukey–Kramer HSD procedure (JMP 
12.1.0, SAS Institute Inc.). Because the distribution of 
the data was heavy-tailed to the right, various transfor-
mations were tried to normalize the data. However, none 
of the transformations normalized the data satisfacto-
rily. Hence, zero-inflated Poisson regression was used to 
account for excessive zeroes in the data [25, 26]. Counts 
of VEGFR2+  tumor vessels from 2 aggregated breast 
cancer subtypes (HER2+  vs. HER2−) were compared 
using t test and zero-inflated Poisson regression.

Results
After exclusion of suboptimal/inadequate cores from the 
stained TMA sections as outlined above, a total of 164 
cases had both CD34+  and VEGFR2+  tumor stromal 

vessel counts from the same TMA cores for compari-
son. Among those, 98 (60%) were HR+, 20 (12%) were 
HER2+ and 46 (28%) were triple-negative.

Immunohistochemical localization of CD34+ and 
VEGFR2+ vessels in breast cancer stroma
The observed CD34+  and VEGFR2+  tumor vascular 
counts in individual breast cancer cases were heterogene-
ous. Overall, the BRC cases analyzed had larger numbers 
of CD34+  tumor stromal vessels per TMA core (mean 
11; range 0–45) as compared to VEGFR2+  tumor stro-
mal vessels per TMA core (mean 3.4; range 0–20). Also, 
89 of 186 evaluable TMA cores exhibited more than 10 
CD34+ vessels/core, while only 8 of 169 evaluable TMA 
cores had more than 10 VEGFR2+ vessels/core (Table 2), 
implying that only a proportion of CD34+ tumor stromal 
vessels co-expressed VEGFR2 protein in their endothelial 
lining.

Vascular expression of VEGFR2 in various breast cancer 
subtypes
Overall, the levels of vascular expression of VEGFR2 were 
relatively low in histologically characterized breast can-
cer tissues. Of 164 breast cancer cases including all his-
tologic types, 127 (77.4%) had a few (<5) or no VEGFR2 
positive tumor vessels in the tissue sampled in the TMA 
cores (Table  3), while 37 (22.4%) showed intermediate 
or high vascular expression of VEGFR2. among the vari-
ous molecular BRC subtypes, however, VEGFR2+ tumor 
stromal vessel counts were significantly higher in 
HER2+  (mean 6.1 [sd 5.5], median 6) as compared to 

Table 2  Distribution of  frequency of  CD34+  and VEGFR2+  vessels in  human breast cancer stroma (all histologic sub-
types)

About half of the evaluable TMA cores exhibited more than 10 CD34+ vessels in the tumor stroma. About half the evaluable TMA cores had lower number (1–5) of 
VEGFR2+ vessels/TMA core, while about a quarter of cases had no VEGFR2 expressing vessels in the tumor stroma

No. of marker+ tumor stromal vessels/TMA core 0 1–5 6–10 >10 Mean # vessels/TMA core (range) Total number of evaluable cores

CD34+ tumor vessels 9 36 52 89 11 (0–45) 186

VEGFR2+ tumor vessels 42 90 29 8 3.4 (0–20) 169

Table 3  Immunohistochemical expression of  VEGFR2 protein in  stromal vessels among  various histologic subtypes 
of human breast cancer

Histology Cases (#) VEGFR2+ tumor vessels/
TMA core

VEGFR2+ tumor vessels/
TMA core

VEGFR2-neg to low VEGFR2-intermediate VEGFR2-high

Mean (sd) Median No. of cases (%) No. of cases (%) No. of cases (%)

Ductal 120 3.5 (3.8) 3 93 (77.5) 21 (17.5) 6 (5)

Lobular 20 3.5 (3.4) 2.5 15 (75.0) 5 (25.0) 0

Mixed 18 4.3 (5.1) 2.5 14 (77.8) 1 (5.5) 3 (16.7)

Mucinous 6 1.5 (2.4) 0.5 5 (83.3) 1 (16.7) 0

Total 164 127 (77.4) 28 (17.0) 9 (5.4)
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HR+  (mean 3.2 [3.3], median 3, p  =  0.04) and triple 
negative BRCs (mean 3.0 [3.6], median 2, p =  0.02) tis-
sues (Figs.  1, 2, 3, 4, 5). There was no significant differ-
ence between VEGFR2+  tumor stromal vessel counts 
between HR+  and triple negative BRCs (p =  0.69). As 
compared to HER2+  breast cancer cases illustrated in 
Fig. 4, in which many of the tumor stromal vessels local-
ized by CD34 immunoreactivity (a–d; right panels) 
were also VEGFR2+  (a–d; left panels), the HR+ breast 
cancers illustrated in Fig.  3, despite showing frequent 
localization of CD34+ tumor stromal vessels (a–d; right 
panels), only showed an occasional VEGFR2+  vessel in 
the tumor stroma (a–d; left panels, black arrows). Simi-
larly, compared to HER2+ breast cancer cases illustrated 
in Fig.  4, in which many of the tumor stromal vessels 
localized by CD34 immunoreactivity (a–d; right panels) 
were also VEGFR2+ (a–d; left panels), the TNBCs illus-
trated in Fig. 5, despite showing frequent localization of 
CD34+  tumor stromal vessels (a, b; right panels), only 
showed an occasional VEGFR2+  vessel in the tumor 
stroma (a, b; left panels, black arrows).     

Based on CD34+  and VEGFR2+  vascular counts 
in various human breast cancer subtypes, cases were 
ranked from negative to low (1–5) to intermediate 
(6–10) to high (>10) VEGFR2+  vessel counts (Fig.  2). 
Compared to HR+  BRCs and TNBCs, a greater pro-
portion of HER2+  BRC cores had higher numbers of 
VEGFR2+  tumor vessels (Fig. 2a–c). Also, compared to 
HER2-negative BRCs, HER2+  BRCs had significantly 
higher VEGFR2+  tumor vessels count (p  =  0.007). In 
mucinous carcinoma, weak VEGFR2 staining was found 
in an occasional tumor stromal vessel.

Tumor cell expression of VEGFR2 protein
Thirteen of 169 (8%) cases also showed tumor cell (cyto-
plasmic and/or membrane) expression of VEGFR2 
protein.

Discussion
Most clinical trials of AA-agents in BRC have reported 
improved response rate and PFS but no increase in OS 
compared to chemotherapy alone [9]. In metastatic breast 
cancer patients, clinical outcomes of a number of positive 
randomized phase III clinical trials evaluating the VEGF-
pathway targeted therapies, with or without concurrent 
chemotherapy, have been disappointingly modest [8]. 
Furthermore, in the last few years, the reported associa-
tion of HER2+ BRC and angiogenesis has been leveraged 
in a number of clinical trials, in which various combina-
tions of trastuzumab, lapatinib, and bevacizumab have 
shown increased efficacy and that combined anti-HER2 
and anti-VEGF treatment may overcome resistance to 
anti-HER2 monotherapy [27–29]. In a phase III trial [30], 
combination of bevacizumab, docetaxel and trastuzumab 
failed to improve progression‐free survival in locally 
recurrent/metastatic BRC patients.

An association between HER2 signaling and angio-
genesis is suggested by several lines of evidence: (1) 
overexpression of HER2 in human tumor cells is closely 
associated with increased angiogenesis and expression 
of VEGF [3, 31]; (2) ErbB2 increases VEGF protein syn-
thesis via activation of mTOR/p70S6K pathway leading 
to increased angiogenesis and spontaneous metastasis of 
human breast cancer cells [32]; (3) expression of VEGF-
A, VEGF-C and VEGF-D was significantly and positively 
correlated with ErbB2 expression in human BRC [33]; 
(4) The positive association between HER-2 and VEGF 
expression implicates VEGF in the aggressive phenotype 
exhibited by HER-2 overexpression, and supports the use 
of combination therapies directed against both HER-2 and 
VEGF for HER2 overexpressing BRCs [34]; (5) in experi-
mental models, combined trastuzumab plus paclitaxel 
treatment inhibited HER2-mediated angiogenesis along 
with tumoricidal effects via the reduction of phospho-Akt 

Fig. 1  Scatter dot plot showing individual BRC cases (grey sym-
bols) representing the number of tumor stromal vessels showing 
unequivocal immunoreactivity for CD34 and VEGFR2 in various BRC 
subsets. Means and SD are represented by black lines both for CD34 
and VEGFR2. Comparisons between VEGFR2 positive vessel counts 
in HER2+ vs. HR+ BRCs and HER2+ BRCs vs. TNBCs are shown with 
statistically significant results marked with an asterisk (T test)
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[35]; (6) HER2 signaling increases the rate of hypoxia-
inducible factor 1alpha (HIF-1alpha) synthesis, which in 
turn mediates VEGF expression [36]; (7) HER2 signaling 
modulates the equilibrium between pro- and antiangio-
genic factors via distinct pathways with potential implica-
tions for HER2-targeted antibody therapy [37]. Therefore, 
novel therapeutic approaches to overcome primary and 
secondary resistance to trastuzumab include inhibition of 
angiogenesis and other signaling pathways (PI3K/mTOR, 
IGF1-R, HSP90) involved in breast cancer growth [5]. 
These are further supported by preclinical studies that 
suggest potential for increased efficacy with combined 
inhibition of HER2 and VEGF pathways [28, 38–40].

The introduction of AA therapies represents a major 
advancement in treating human cancers. Despite favora-
ble clinical trial results and several regulatory approvals, 
a majority of patients who initially respond to anti-angi-
ogenic therapies, eventually develop progressive disease. 
Furthermore, the duration of improved patient survival 
remains modest and needs to be improved. De novo 
or acquired resistance to anti-angiogenic therapies is 
another major clinical challenge.

While scientific rationale to treat HER2‐overexpress-
ing BRC with anti‐angiogenic therapy exists, treating 
unselected HER2+  BRC patient populations with anti‐
angiogenic therapies without reliable predictive biomark-
ers continues to be a major clinical challenge. In order to 
investigate this important challenge, we used a techni-
cally sound IHC assay for VEGFR2 protein developed in 
our lab [14], and analyzed a large well-characterized pri-
mary breast cancer tissue cohort including various BRC 
subtypes (HR+, HER2+, TNBC). For each case, immu-
nohistochemical expression of VEGFR2 protein was 
evaluated in the tumor vasculature outlined by vascular 
endothelial immunoreactivity for CD34.

Taking all histologic/molecular subtypes of BRCs 
together, the observed levels of vascular expression of 
VEGFR2 were relatively low. The majority of HR+ BRCs 
and TNBC tissues analyzed had only a few or no VEGFR2 
positive tumor stromal vessels in the respective TMA 
cores. Since VEGFR2 is the main receptor that medi-
ates VEGF/VEGFR2 signaling, sporadic vascular expres-
sion of VEGFR2 in the majority of BRC tissues analyzed 
along with the failure of clinical trials of anti-angiogenic 

Fig. 2  a–c CD34+ and VEGFR2+ vascular counts in various human breast cancer subtypes. Within each BRC subtype, cases were arranged from 
negative to low (1–5) to intermediate (6–10) to high (>10) VEGFR2+ vessel counts. As compared to hormone receptor positive (a) and triple nega-
tive (c) BRCs, a greater proportion of HER2+ (b) BRCs exhibited higher numbers of VEGFR2+ vessels in the tumor stroma (orange boxes)
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VEGFR2 CD34
Hormone Receptor + BRCs

a

b

c

d

Fig. 3  a–d Invasive carcinomas of the breast (hormone receptor+) representative of the majority of cases in Fig. 2a (orange box). While there are 
a number of CD34+ stromal vessels in each case (right panels), only an occasional tumor stromal vessel shows immunoreactivity for VEGFR2 (left 
panels). a Invasive lobular carcinoma without obvious VEGFR2+ vessels in tumor stroma. b Invasive ductal carcinoma. c Mucinous carcinoma with 
a mixture of VEGFR2+ (black arrow) and VEGFR2− vessels in the tumor stroma. d Invasive lobular carcinoma with an occasional VEGFR2+ vessel in 
the tumor stroma. Original magnification ×200
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agents [13, 41, 42] to show clinical benefit in unselected 
BRC patient populations, underscores the need to tailor 
AA-therapies to respective BRC patient sub-populations. 
This may require administration of biologically relevant 

AA-therapeutic combinations to achieve higher levels of 
success in future clinical trials.

Interestingly, among the various BRC subtypes ana-
lyzed, we found significantly higher expression of 

VEGFR2 CD34
 HER2+ BRCs

a

b

c

d

Fig. 4  a–d Invasive carcinomas of the breast (HER2+) representative of the significant proportion of cases in Fig. 2b (orange box). Overall, these 
cases show significantly higher numbers of VEGFR2+ tumor vessel counts and crisp brown staining for VEGFR2 protein in majority of the tumor 
stromal vessels (left panels, black arrows), despite variable numbers of CD34+ tumor stromal vascular counts (right panels). a Invasive ductal carci-
noma. b Invasive breast carcinoma with lobular features. c Invasive ductal carcinoma. d Invasive lobular carcinoma. Original magnification ×200
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VEGFR2 protein in the tumor stromal vasculature in 
HER2+  BRCs as compared to HR+  and TNBCs. Simi-
larly, compared to HER2-negative BRCs, HER2+  BRCs 
had significantly higher expression of VEGFR2 pro-
tein in tumor vasculature. Despite higher levels of vas-
cular VEGFR2 expression in tumor vasculature in 
HER2+  BRCs, overall, only a smaller proportion (8%) 
of BRC tissues in this analysis showed cytoplasmic and/
or membrane expression of VEGFR2 protein in invasive 
carcinoma cells. Predominance of vascular expression 
of VEGFR2 in the present study is in line with some ear-
lier studies [43, 44], but in contrast to others [45–47], in 
which frequent expression of VEGFR2 has been reported 
in infiltrating BRC cells. This is also in contrast to a prior 
study from our laboratory on non-small cell lung carci-
noma tissues, in which VEGFR2 expression was a more 
frequent finding both in pulmonary adenocarcinomas 
and squamous cell carcinomas [14] and far more frequent 
tumor cell expression of VEGFR2 protein in squamous 
cell carcinomas from other sites like cervix and head 
and neck (unpublished observations). Considering the 
major role of VEGFR2 in VEGF-induced angiogenesis in 
human cancer, the finding of high VEGFR2 expression in 
HER2+ BRC provides scientific rationale to study clinical 

activity of therapeutic blockade of VEGFR2 in this clini-
cally aggressive breast cancer subtype.

In invasive BRCs, VEGFR2 (Flk-1/KDR) expression 
shows significant correlation with proliferation indices 
like Ki-67 and topoisomerase-II alpha, implying that 
VEGF may exert a growth factor activity on BRC cells 
through its receptor (VEGFR2) [48]. Recently, cyclin D1/
CDK4 is shown to mediate targeted therapy resistance 
in HER2+  breast cancer [49], while CDK4/6 inhibition 
reduces TSC2 phosphorylation, mTORC1 activity and 
cell proliferation, increases tumor cell dependence on 
EGFR family kinase signaling [50] and provides a potent 
adjunct to HER2-targeted therapies in preclinical breast 
cancer models [51]. Since CDK4/6 inhibitors re-sensitize 
PDX tumors to HER2-targeted therapies and delay tumor 
recurrence in vivo, CDK4/6 inhibitors may also re-sensi-
tize resistant HER2+ human BRCs to EGFR/HER2 inhi-
bition [50].

Although our analyses were carried out on a well-
characterized BRC cohort using technically robust 
IHC assays with optimal controls, relative limitations 
of this study include available sample size and the use 
of BRC tissue microarray rather than whole tumor tis-
sue sections. While the use of TMA technology is well 

VEGFR2 CD34TNBCs
a

b

Fig. 5  a, b Invasive carcinomas of the breast, triple-negative (TNBCs), representative of the majority of cases in Fig. 2c (orange box). Invasive ductal 
(a) and invasive lobular (b) carcinomas of the breast, featuring fairly high CD34+ tumor vessel counts (right panels). In both cases only a rare tumor 
stromal vessel shows immunoreactivity for VEGFR2 (black arrows, left panels). Original magnification ×200
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established in evaluation of novel tissue biomarkers as 
an efficient and cost-effective approach, it can poten-
tially contribute to overestimation or underestimation of 
biomarker expression as well. Given that the overall IHC 
expression of VEGFR2 in the BRCs tissues analyzed in 
the present study was relatively low, the observed differ-
ences in VEGFR2 expression in HER2+ and other BRC 
subsets may in part be due to heterogeneity of VEGFR2 
expression in the TMA cores evaluated. However, in the 
context of multiple lines of scientific evidence summa-
rized above, supporting increased tumor angiogenesis 
in HER2+  BRC, the observed differences in vascular 
VEGFR2 expression in various BRC subtypes are sugges-
tive of underlying biology. Some of the sampling related 
questions may be addressed by further evaluation and 
verification of these observations in independent analy-
ses of larger series of well-characterized HER2+  and 
other subsets of human breast cancer tissues, using 
conventional tumor sections and other molecular 
methodologies.

Since therapeutic targeting of HER2 or VEGF alone 
does not provide adequate tumor control in many of the 
treated patients [52, 53], evaluation of newer targeted 
approaches with or without other anti-HER2 therapies 
may be relevant to inhibit pathologic angiogenesis in 
HER2+ breast cancer.

Conclusion
Using a technically robust immunohistochemical assay 
developed in our laboratory, our disease state characteri-
zation analyses have demonstrated significantly higher 
expression of VEGFR2 protein in HER2+  breast cancer 
compared to other BRC subtypes. Based on these find-
ings, we hypothesize that compared to hormone receptor 
positive or triple negative subsets, HER2+ human breast 
cancers with high VEGFR2 expression may respond dif-
ferently to anti-angiogenic therapies. While these data 
are provocative in providing biologic insight into the 
pathologic angiogenesis program in human HER2+ BRC, 
these findings merit further investigation and independ-
ent validation.
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