
Tinnitus and Hyperacusis: Contributions of Paraflocculus, 
Reticular Formation and Stress

Yu-Chen Chen1,2, Guang-Di Chen2,*, Ben Auerbach2, Senthilvelan Manoha2, Kelly 
Radziwon2, and Richard Salvi2

1Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, 
China

2Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA

Abstract

Tinnitus and hyperacusis are common and potentially serious hearing disorders associated with 

noise-, age- or drug-induced hearing loss. Accumulating evidence suggests that tinnitus and 

hyperacusis are linked to excessive neural activity in a distributed brain network that not only 

includes the central auditory pathway, but also brain regions involved in arousal, emotion, stress 

and motor control. Here we examine electrophysiological changes in two novel non-auditory areas 

implicated in tinnitus and hyperacusis: the caudal pontine reticular nucleus (PnC), involved in 

arousal, and the paraflocculus lobe of the cerebellum (PFL), implicated in head-eye coordination 

and gating tinnitus and we measure the changes in corticosterone stress hormone levels. Using the 

salicylate-induced model of tinnitus and hyperacusis, we found that long-latency (>10 ms) sound-

evoked response components in both the brain regions were significantly enhanced after salicylate 

administration, while the short-latency responses were reduced, likely reflecting cochlear hearing 

loss. These results are consistent with the central gain model of tinnitus and hyperacusis, which 

proposes that these disorders arise from the amplification of neural activity in central auditory 

pathway plus other regions linked to arousal, emotion, tinnitus gating and motor control. Finally, 

we demonstrate that salicylate results in an increase in corticosterone level in a dose-dependent 

manner consistent with the notion that stress may interact with hearing loss in tinnitus and 

hyperacusis development. This increased stress response has the potential to have wide-ranging 

effects on the central nervous system and may therefore contribute to brain-wide changes in neural 

activity.
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Introduction

Military personnel, mostly those in combat, often develop noise-induced hearing loss 

(NIHL) (Cave et al., 2007; Helfer et al., 2011), a condition exacerbated in some individuals 

by tinnitus (a phantom buzzing or ringing sensation) and hyperacusis (sounds perceived as 

intolerably loud or even painful) (Gilles et al., 2012; Henry et al., 2014; Sun, 2011). Recent 

evidence suggests that tinnitus and hyperacusis arise from maladaptive neuroplastic changes 

in a distributed neural network that involves portions of the central auditory pathway plus 

direct and indirect neural connections with other brain regions associated with arousal, 

stress, anxiety and attention (Auerbach et al., 2014; Baguley et al., 2013; Dornhoffer et al., 

2006; Leaver et al., 2016; Lockwood et al., 1999; Moller, 2003). A common feature of 

intense noise or ototoxic drug exposure is that they reduce the neural output from the 

cochlea (hypoactivity). To adapt to this altered acoustic input homeostatic mechanisms in the 

central nervous system “kick in” and increase the gain at successively higher levels of the 

auditory pathway (Auerbach et al., 2014; Turrigiano, 1999). By the time the neural activity 

reaches the medial geniculate body (MGB) and auditory cortex (AC) sound-evoked 

responses are generally larger than normal, a phenomenon referred to as enhanced central 

gain (Brotherton et al., 2015; Chambers et al., 2016; Chen et al., 2016; Qiu et al., 2000; 

Salvi et al., 1990). In the case of salicylate-induced hearing loss where there is consistent 

evidence of tinnitus and hyperacusis, our functional magnetic resonance imaging (fMRI) 

studies revealed neural hyperactivity in an auditory network consisting of AC, MGB and 

inferior colliculus (IC) (Figure 1A) plus an emotional center, the amygdala (AMY), that is 

linked to the AC (Antunes and Moita, 2010; Chen et al., 2015; Newton et al., 2004) (Figure 

1). Unexpectedly, salicylate-induced hyperactivity was also observed in the reticular 

formation (RF), an area of the brain involved in arousal and sleep, and the paraflocculus 

(PFL), a part of the cerebellum involved in head-eye motor control and which receives some 

auditory inputs (Azizi and Woodward, 1990; Horikawa and Suga, 1986). When a functional 

connectivity analysis was performed on our fMRI data, the AC was found to be strongly 

coupled to both the RF and PFL.
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Paraflocculus and Reticular Formation

Although the PFL is best known for its role in coordinating eye and head movements 

(Nagao, 1992; Rambold et al., 2002), some neurons in this region respond to sound through 

direct and indirect connections with neurons in the cochlear nucleus (CN), IC and AC 

(Aitkin and Boyd, 1978; Azizi et al., 1990; Azizi et al., 1985; Azizi et al., 1981; Horikawa et 

al., 1986; Huang and Liu, 1990; Huang et al., 1982; Kawamura, 1975; Lockwood et al., 

1999; Misrahy et al., 1961; Morest et al., 1997; Snider, 1950; Snider, 1948). The cerebellum 

in turn can influence the auditory system (Rossi et al., 1967; Velluti and Crispino, 1979). 

Importantly, recent studies suggest that the PFL is involved in gating or regulating tinnitus 

and hyperacusis (Bauer et al., 2013; Chen et al., 2015). In the case of chronic noise-induced 

tinnitus, manganese enhanced magnetic resonance imaging (MEMRI) revealed enhanced 

spontaneous activity in the PFL. Moreover, behavioral evidence of chronic noise-induced 

tinnitus was abolished by lesioning or inactivating the PFL (Bauer et al., 2013; Brozoski et 

al., 2007; Brozoski et al., 2013). Collectively, the imaging and behavioral results suggest that 

the PFL is involved in gating or modulating tinnitus and hyperacusis. In the case of 

salicylate-induced tinnitus, fMRI revealed enhanced spontaneous activity in the PFL and 

stronger functional coupling between the PFL and the AC as well (Chen et al., 2015) (Figure 

1B). Salicylate also enhances spontaneous activity in the RF and increased the functional 

coupling between the RF and the AC (Figure 1B). The RF plays an important role in 

generating the acoustic startle reflex, a strong reflex movement of the head, neck and eyes 

elicited by brief sound at intensities above ~75 dB SPL. Acoustic signals for eliciting the 

startle reflex are routed through the cochlear nerve root and the PnC to facial and spinal cord 

motor neurons that produce abrupt motor responses linked to the acoustic startle reflex 

(Davis et al., 1982; Lee et al., 1996). Interestingly, high doses of sodium salicylate (SS) 

greatly enhance the amplitude of the acoustic startle reflex (Lu et al., 2011). Recent research 

suggests that the preceding effects could be mediated locally or modulated by descending 

effects from the IC, AC or AMY (Bowen et al., 2003; Chen et al., 2012; Du et al., 2011; 

Yeomans et al., 2006).

Altogether, the composite results reviewed above suggest that the perceptual features or 

salience of SS-induced tinnitus may arise from enhanced spontaneous activity, decreased 

inhibition, increased excitation and/or increased functional connectivity in a distributed 

network involving the AC, AMY, RF and PFL. While both MEMRI and fMRI imaging 

techniques revealed enhanced activity in the PFL and RF in animals with noise-induced and 

salicylate-induced tinnitus, these imaging techniques cannot identify the exact nature of the 

electrophysiological changes such as distinguishing between hyperactivities resulting from 

decreased inhibition or increased excitation. To provide relevant physiological 

measurements relevant to these imaging studies, we carried out electrophysiological 

recordings from the PFL and the PnC in rats before and after treatment with a high-dose of 

salicylate where hyperactivity was observed by fMRI measurement. The rationale for 

recording from the PnC is based on the fact that giant neurons in this region play a critical 

role in generating the acoustic startle reflex (Lingenhohl and Friauf, 1992), which has been 

shown to become hyperactive after high-dose SS (Lu et al., 2011). While hearing loss may 

be a prerequisite for developing tinnitus and hyperacusis, it may be necessary but not a 

sufficient condition for developing these disorders because many individuals with hearing 
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loss do not develop tinnitus or hyperacusis. A number of studies suggest that stress 

combined with auditory impairment may interact synergistically to promote the development 

of tinnitus and/or hyperacusis or alternatively to contribute to the severity of these conditions 

such as becoming more bothersome (Alpini and Cesarani, 2006; Hasson et al., 2011; Kim et 

al., 2012; Mazurek et al., 2012). Stress increases corticosterone stress hormones and 

enhances sound-evoked activity in the auditory cortex (Ma et al., 2015). High doses of 

salicylate also increased c-fos expression (a transcription factor that regulates gene 

expression) in areas of the brain associated with stress (Wallhausser-Franke, 1997; 

Wallhausser-Franke et al., 2003). Salicylate also induces cochlear hearing loss and enhances 

sound evoked activity in the central auditory system; the combination of these effects may 

help to explain why salicylate reliably induces tinnitus and hyperacusis. To determine if 

salicylate-induced tinnitus and hyperacusis are correlated and linked to stress, we treated rats 

with different doses of SS and measured serum corticosterone stress hormone levels at 

various times following the salicylate treatment.

Methods

Experiment 1: Electrophysiology of PFL and PnC

Subjects—MaleSprague–Dawley rats (Charles River Laboratories Inc.) 2–3 months of age 

were used for the electrophysiological studies. Rats were given free access to food and water 

and maintained at 22 °C on a 12 light/dark cycle.

Sodium salicylate—SS (Sigma-Aldrich) was dissolved in sterile saline (50 mg/ml). Rats 

were treated with 250 mg/kg (S.C.) during the electrophysiological experiment.

Electrophysiology—Most of the experimental methods have been described in detail in 

earlier publications (Chen et al., 2016; Chen et al., 2013). Briefly, rats were deeply 

anesthetized with ketamine (50 mg/kg, I.M.) and xylazine (6 mg/kg, I.M.) and placed in a 

stereotaxic apparatus with two ear bars. The dorsal surface of the skull was exposed and 

cleaned; a small screw was inserted into the right parietal bone and a head bar holder 

attached to the head screw using dental cement. Then the right ear bar was removed to allow 

the right ear to be acoustically stimulated free-field using a loudspeaker (FT28D, Fostex) 

located 10 cm in front of the right ear. Since our imaging data suggested that the PFL 

responds to sounds presented to the contralateral ear, an opening was made on the lateral 

part of occipital bone covering the left PFL and a 16-channel linear silicon microelectrode 

(A-1×16–10mm 100–177, NeuroNexus Technologies) was inserted into the PFL (Lockwood 

et al., 1999). Recording electrodes were also inserted into the left PnC using stereotaxic 

coordinates (Watson and Paxinos, 2004). Tone bursts and broadband noise bursts (50 ms 

duration, 1 ms rise/fall time, cosine2-gating) were generated using TDT hardware (TDT 

RX6-2, ~100 kHz sampling rate) and presented with an interstimulus interval (ISI) of 500 

ms unless stated otherwise. The sound levels of the tones and broadband noise at the 

location of the right ear was calibrated by using a sound level meter (Larson Davis, model 

2221) with a ¼″ microphone (Larson Davis, model 2520). The biological signals picked by 

the electrode were sampled with a resolution of 40.96 μs using a RA16PA preamplifier and 

RX5 base station (Tucker-Davis Technologies System-3, Alachua, FL) using custom-written 
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data acquisition and analysis software (MATLAB R2007b, MathWorks) as previously 

described (Chen et al., 2012; Chen et al., 2014; Stolzberg et al., 2011). The neural signals 

were filtered (300–3500 Hz) for collection of spikes from multiunit clusters (MUC), the 

threshold for detecting spikes was set manually. To record the local field potentials (LFP) 

from each electrode, the neural signals were low-pass filtered (2–300 Hz) and down-sampled 

online with a resolution of 1.64 ms. LFPs were evoked with noise-bursts (see above, 100 

presentations) and tone-bursts (see above, 1.0, 1.5, 2.3, 3.5, 5.3, 8.0, 12.1, 18.3, 27.7, and 

42.0 kHz, 50 presentations) presented in pseudo random order from 0 to 100 dB in 10 dB 

steps.

Experiment 2: Salicylate and Corticosterone

Subjects—Thirty-two male Sprague-Dawley rats (Charles River Laboratories Inc.) 2–3 

months of age and weighing between 250 and 350 g were used in experiment 2. Twenty-four 

rats were used for the salicylate dose-response study and eight rats were used for the 

salicylate time-course study. Prior to starting the experiment, all animals were handled by 

the same experimenter for 5 days to acclimate the animals to handling and the environment 

and minimize baseline stress levels.

SS Treatments—SS (Sigma-Aldrich) was dissolved in saline (50 mg/ml) and 

administered by intraperitoneal injection. The 24 rats used for the salicylate dose-response 

study were divided into four groups (n = 6/group) and treated with 0, 50, 150 or 250 mg/kg 

of SS. The injections were given 8:00 AM. Afterwards, the rats were left undisturbed for 2 h 

in their home cages in a room in which they had been previously acclimated. At 10:00 AM 

the animals were euthanized with CO2, decapitated and trunk blood collected from each 

animal. This whole process was completed within 3 minutes after removing the rat from its 

cage. The serum was isolated from trunk blood for analysis of blood salicylate 

concentrations using the Trinder method and blood corticosterone levels measured with a 

commercial ELISA kit. The eight rats used for the within-subject, time-course study were 

injected with 250 mg/kg salicylate or saline at 8:00 AM. Saphenous vein blood sampling 

occurred at 2, 24, and 48 h post-injection. In order to obtain a baseline estimate of 

corticosterone, a blood sample was collected from each animal 2 h after saline injection (0 

mg/kg salicylate). Baseline blood samples were obtained 48 h prior to salicylate injections. 

All blood samples were collected at 10:00 AM to avoid variations due to circadian rhythms 

(Atkinson and Waddell, 1997). Following injections, the animals were left undisturbed in 

their home cages as above. Blood samples were obtained from the saphenous vein after 

shaving off the overlying hair. Prior to sampling, the area was wiped with 70% ethanol and 

allowed to dry. Then a thin layer of petroleum jelly was applied to the shaved area. The 

animal was held with pressure applied to the saphenous vein downstream of the shaved area. 

Then a small puncture was made in the saphenous vein with an 18 gauge needle after which 

a small droplet of blood formed on the petroleum jelly on the shaved skin; the blood droplets 

was drawn into a microcentrifuge tube.

Corticosterone and Salicylate Quantification—Within 30 minutes following 

collection, blood samples were centrifuged at 1000 RCF for 20 minutes and serum collected 

for analysis. The isolated serum was stored at − 20 °C. A competitive corticosterone enzyme 
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immunoassay (EIA) kit was used to quantify the corticosterone concentration in serum 

samples per the manufacturer’s instructions (Enzo Life Sciences, Corticosterone EIA Kit, 

ADI-900-097). A modified Trinder Method (Trinder, 1954) was used to quantify serum 

salicylate levels. The Trinder reagent (4% Ferric Nitrate (Sigma Chemical Co.) in 0.12 N 

HCl) was mixed with the serum samples at a ratio of 1 part serum to 5 parts Trinder reagent. 

The samples were centrifuged at 1000 RCF for 3 minutes and the absorbance values were 

read at a wavelength of 540 nm. The average salicylate values from the control group (no 

salicylate) were subtracted from the salicylate values obtained from animals injected with 

salicylate (250, 150, 50 mg/kg) to obtain the final salicylate concentration for each sample.

Statistical analysis—GraphPad Prism (version 5) was used for the statistical analyses 

and graphical presentation as described below.

All the procedures used in this project were approved by the Institutional Animal Care and 

Use Committee (IACUC-HER05080Y) at the University at Buffalo and carried out in 

accordance with NIH guidelines.

Results

Experiment 1: Electrophysiological Changes

PFL LFPs—In normal controls, noise bursts evoked distinct LFPs in ~60% (86/144) of the 

recording sites in the PFL. This percentage increased to ~70% (102/144) after SS treatment. 

Figure 2A presents the mean LFP in response to 100 dB noise bursts; the data were obtained 

from the 102 recording sites that generated a response after SS treatment. The mean LFP 

consists of 4 positive peaks at ~10, 50, 100, and 200 ms following stimulus onset, the 

positive peaks hereafter referred to as P10, P50, P100, and P200 respectively. Nearly all of 

the individual LFP waveforms contained P50 and P10, but P100 and P200 were only present 

in ~80–90% of the samples. After SS treatment, the sound-evoked LFPs were enhanced 

mainly during the late phase of the response. Figure 2B presents mean LFPs of 52 of the 102 

recordings which showed large SS-induced increases in the 15–100 ms interval after 

stimulation onset, but not in the early period (<15 ms) or late period (>150 ms). Figure 2C 

presents mean LFPs of the remaining 50 recordings. The pre-SS LFPs were slightly larger 

than in Figure 1B and the post-SS amplitude enhancement was not as pronounced as in 

Figure 2B. In these cases, the SS-enhancement was most pronounced in the negative peak at 

15–30 ms (Figure 2C, star), but the early response at P10 was reduced (Figure 2C, arrow).

Because the SS-induced changes in LFP amplitude occurred mainly during the first 100 ms, 

the root mean squares (RMS) of the LFP was computed from 0–100 ms and plotted as a 

function of intensity. Figure 3A presents the mean (+/−SEM) LFP amplitude as a function of 

intensity pre-and 2 h post-SS for all 102 LFP recordings. There was a clear overall increase 

in PFL amplitude 2 h post-SS at stimulation levels higher than 70 dB SPL. A two way, 

repeated measures ANOVA revealed a significant effect of SS treatment (F = 6.482, 1, 1000, 

DF, p=0.0124) and Bonferroni post-tests revealed significant differences at 80, 90 and 100 

dB SPL (p<0.05). Figure 3B shows the LFP input/output function from the 52 recordings 

where SS caused a pronounced effect (See Figure 2B). The pre-SS input/output function 

increased slowly with intensity and the maximum pre-SS response was roughly 8.8 μV at 
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100 dB SPL. At 2 h post-SS, the response amplitude at 100 dB SPL was nearly 20 μV, 

roughly twice as large as the pre-SS value. A two way, repeated measures ANOVA revealed 

a significant pre-post difference (F=23.57, 1, 1020 DF, p<0.0001) and Bonferroni post-tests 

revealed significant post-SS amplitude increases from 70 dB to 100 dB SPL (p<0.01). Figure 

3C shows the mean (+/− SEM) input/output function from the 50 recordings where SS had 

little effect on LFP from the PFL. In this subpopulation, SS has no effect on the LFP input/

output function. Figure 3D shows the LFP amplitude measured at 100 dB SPL across pre- 

and post-recording times from the 52 recordings where SS had an effect. LFP amplitudes 

remained stable during the 2 h pre-treatment and immediately after the SS-injection (0 h). 

LFP amplitude increased from 1 to 2 h, doubling from its baseline amplitude and then 

decreased between 2 and 4 h post-SS. A one way, repeated measure ANOVA showed a 

significant change in LFP amplitudes across time (F=27.68, 6 and 325 DF, p<0.0001). A 

Newman-Keuls Multiple Comparison Test showed that LFP amplitude Post-1 h (p<0.01), 

Post-2 h (p<0.001), Post-3 h (p<0.001) and Post-4 h (p<0.001) were significantly greater 

than Pre-1 h amplitudes.

PFL Multiunit Firing Patterns—From the 144 recordings, approximately 20% (n=29) 

produced an increase in firing rate to noise burst or tone burst. Most of the MUC (22/29) 

responded to both noise bursts and tone bursts; however, three responded exclusively to 

noise while four responded only to tones. Figure 4 shows the peristimulus time histograms 

(PSTHs) of a MUC to 50 ms noise-bursts presented at 100 dB SPL pre- and 1 to 4 h post-

SS. The peak firing rate in the PSTH occurred 25–30 ms after noise burst onset. SS yielded a 

robust increase in firing rate that reached a maximum at 2–3 h post-SS (Figure 4D–E). Ten 

MUC produced PSTH similar to those shown in Figure 4. The PSTHs from these 10 MUC 

were averaged to form a mean PSTH pre- and 2 h post-SS (Figure 5A, pre = blue line, red = 

2 h post SS). The PSTH 2 h post-SS showed a clear increase in firing rate during the noise 

bursts (Figure 5A). A two way ANOVA was performed on the first 50 ms of mean PSTH 

showing a significant increase in firing rate 2 h post-SS compared to pre-SS (F = 45.54, 1, 

450 DF, p<0.0001). Eight MUC did not show a clear increase in discharge rate in response 

to 100 dB noise-burst pre-SS; however, after SS treatment their firing rates increased. The 

PSTHs from these weakly activated MUC were averaged together pre- and 2 h post-SS 

(Figure 5B, pre = blue, red = 2 h post-SS). After SS treatment, the mean PSTHs showed a 

large increase in firing rate, the mean firing rate gradually increased reaching a peak around 

70 ms that was followed by a gradual decline toward baseline around 100 ms. A two way 

ANOVA performed on the first 100 ms of mean PSTHs revealed a significant increase in 

firing rate 2 h post-SS compared to pre-SS (F=140.2, 1, 700 df, p<0.0001). Figure 5C 

presents the mean PSTH of 7 MUC to 100 dB noise bursts. The pre-SS PSTH contained a 

short-latency (~3 ms) (pre = blue line) onset response followed by later peaks in the PSTH. 

The short latency onset response was vanished 2 h post-SS, whereas the later responses 

remained largely unchanged. The mean discharge rate in the 100 ms time window did not 

change significantly post- SS.

The 10 MUC that responded to 100 dB SPL noise bursts with a long latency (Figure 6A, 

bottom row) responded most robustly to low and mid-frequency tone bursts. To illustrate this 

overall trend, a mean PSTH was computed for tone bursts ranging from 1 to 27.7 kHz. 
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Figure 6A shows the mean PSTHs obtained with 100 dB SPL tone bursts (50 ms duration) 

pre- (blue line) and 2 h post-SS (red line). The pre-treatment PSTHs showed clear increases 

in firing rate at 1.0, 2.3, 3.5, 5.3, and 8.0 kHz and much weaker responses from 12.1–27.7 

kHz (Figure 6A, all rows except bottom). The maximum firing rate in the PSTHs occurred 

10–15 ms after stimulus onset. At 2 h post-SS, there was a clear increase in firing rate at all 

frequencies, even at the three highest frequencies where baseline responses were weak or 

absent. The post-SS responses were significantly greater than the pre-SS responses at all 

frequencies (Two-way, repeated measures ANOVA performed on the first 50 ms of each 

mean PSTH,1, 450 DF, p<0.0001; F-levels presented in the figure). Mean tone burst PSTHs 

were computed for another 16 MUC that responded weakly or not at all to noise bursts 

(Figure 6B, bottom panel). Most of these MUC only responded to low-frequency tone bursts 

(1.0–3.5 kHz) before SS-treatment and their discharge rates at these frequencies increased 

significantly 2 h post-SS (Figure 6B, all row except bottom, Two-way, repeated measure 

ANOVA performed on the first 50 ms of each mean PSTH, 1, 750 DF, p<0.0001, F values 

shown in figure). SS not only increased the maximum discharge rate but also prolonged the 

duration of the tone burst evoked response (e.g., 1 kHz, Figure 6B).

PnC Multiunit Firing Patterns—MUC in the PnC contralateral to the stimulated ear 

responded most robustly to noise bursts (50 ms) with a short onset latency of ~4 ms followed 

by a gradual decrease in firing rate as illustrated by the PSTH in figure 7A. When the 

intensity of the noise burst increased, the discharge rate of the MUC increased 

monotonically (Figure 7B). PnC MUCs responded to tone bursts in a frequency dependent 

manner as illustrated by the matrix of PSTH in figure 7C. At 100 dB SPL, robust PSTH 

responses occurred over a broad frequency range, but at 70 dB, the largest PSTH responses 

were present within 1–1.5 kHz and smaller PSTH responses were still present at 5.3 and 

12.1 kHz (red arrows). The general impression gleaned from Figure 7C is that PnC MUC 

have relatively high thresholds and are broadly tuned. This interpretation is reinforced by the 

frequency-threshold tuning curves from 8 MUC shown in Figure 7D. Most PnC MUC only 

responded to tone bursts at 60 dB SPL or higher and the frequency-threshold turning curves 

of all 8 MUC were fairly broad.

Figure 8A presents mean discharge rate-intensity function to 50 ms noise-burst recorded 

from 8 PnC MUC in one rat. Firing rates in 50 ms time window remained consistent 1 to 3 h 

prior to SS treatment. After SS treatment, the response threshold increased ~30 dB; however, 

the firing rate evoked by suprathreshold stimuli (>70 dB) increased dramatically. Figure 8B 

shows the discharge rates at 50 dB (near threshold) and 100 dB (suprathreshold) plotted as a 

function of time pre- and post-SS. The discharge rates at 50 dB SPL decreased between 0 

and 2 h post-SS due to the increase in threshold. In contrast, the firing rates at 100 dB SPL 

gradually increased from 0 to 3 h post-SS. The firing rate 3 h post-SS was roughly 70% 

higher than pre-treatment value, but then declined somewhat at 4 h post-SS. Figure 8C 

shows the mean discharge rate-intensity function for noise bursts obtained from 41 PnC 

MUC measured in four rats. The function was shifted to the right roughly 20 dB at low 

intensities, but firing rates at suprathreshold levels were slightly higher 2 hours poss-SS.

The preceding results were obtained with an interstimulus interval or ISI of 500 ms. 

However, because neurons in the reticular formation habituate to acoustic stimuli presented 

Chen et al. Page 8

Hear Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at high repetition rates, the firing patterns of PnC neurons were evaluated with different ISI 

(0.25 to 10 s) before and after SS treatment (Lingenhohl and Friauf, 1994). The firing rates 

and firing patterns of PnC MUC were highly sensitive to ISI and to SS. In general, firing 

rates were much greater at long versus short ISI. In addition, the effects of SS on PSTH 

firing profiles were time dependent and ISI dependent as illustrated by the mean PSTH from 

65 PnC MUC obtained with 100 dB noise bursts presented with an ISI of 0.25 s (Figure 9A) 

and 10 s (Figure 9B). SS enhanced the late component (> 15 ms) of PSTH profile at both 

short (Figure 9A) and long ISIs (Figure 9B). In addition, SS increased the latency and 

reduced the amplitude of the large onset peak of the PSTH.

To quantify the changes in discharge rate due to ISI and SS, mean discharge rates were 

computed in four time windows of the mean PSTH (3–6, 7–10, 11–20 and 21–54 ms) and 

plotted as a function of ISI pre- and post-SS. Firing rates in all four time windows increased 

monotonically as ISI increased from 0.25 s to 10 s. SS caused a decrease in firing rate in the 

3–6 ms early response window at all ISI; this decrease is likely due to the SS-induced 

increase in latency of the PSTH peak (see Figure 9A–B). There was a significant effect of 

ISI (two way repeated measure ANOVA, F = 4.84, 3, 38 DF, p < 0.01), but no significant 

effect of SS or interaction between SS and ISI (Figure 9C). SS caused an increase in firing 

rate in the 7–10 ms time window (Figure 9D). There was a significant effect of ISI (two way 

repeated measure ANOVA, F = 60.17, 3, 38 DF, p< 0.0001) and ISI by treatment interaction 

(F = 5.530, 3, 38 DF, p < 0.01), but the effect of SS was not significant. SS caused a large 

increase in discharge rate in the 11–20 ms response window (Figure 9E). The effect of ISI 

(two way repeated measure ANOVA, F = 117.5, 3, 98 DF, p < 0.0001), SS treatment (F = 

11.51, 1, 98 DF, p <0.001) and ISI by treatment interaction (F =22.32, 3, 98 DF, p < 0.0001) 

were significant. The largest SS-induced increase in firing rate occurred in the 51–54 ms 

window. The effect of ISI (two way repeated measure ANOVA, F = 610.3, 3, 66 DF, p < 

0.0001), SS treatment (F= 329.7, 1, 66 DF, p < 0.0001) and ISI by treatment interaction (F = 

7.2, 3, 66 DF, p < 0.0001) were significant. As noted above (Figure 6), PnC MUC tended to 

respond more robustly to low frequencies than to high frequencies pre- and post-SS. Figure 

10 presents mean PSTHs of 54 MUC to low-frequency tones <10 kHz (A) and high-

frequency tones >10 kHz (B) at 100 dB SPL. Interestingly, the SS-enhancement was 

observed for the responses to the low frequencies but not for the responses to the high 

frequencies.

Experiment 2: SS-Induced Corticosterone Increases

Dose-Response—To determine if SS induced a stress response we measured 

corticosterone in serum after administration of SS. Two h after intraperitoneal injection with 

0, 50, 150 or 250 mg/kg of SS, mean (+/− SEM, n=4) serum SS levels were 0, 194, 462 and 

638 μg/ml respectively (Figure 11A, right ordinate). Serum salicylate concentrations were 

significantly greater than saline control levels for the 50, 150, and 250 mg/kg doses of 

salicylate (Newman-Keuls post hoc analysis, p < 0.05). The mean plasma corticosterone 

values were 40.9, 32.8, 351.0 and 772.5 ng/ml in the groups treated with 0, 50, 150 and 250 

mg/kg of SS (Figure 11A, left ordinate). There was a significant effect of SS dose (F = 

27.88, 3, 19 DF, p < 0.001). Serum corticosterone concentrations in the 50 mg/kg group 

were similar to the control group whereas serum corticosterone concentrations in the 250 

Chen et al. Page 9

Hear Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mg/kg group were significantly greater than the control group (Newman-Keuls post-hoc 

analysis, p < 0.05, $). Although serum corticosterone concentrations in the 150 mg/kg group 

were higher than controls, the difference did not reach statistical significance.

Time-Course—SS-induced ototoxicity, tinnitus and hyperacusis typically disappear a day 

or two days post-treatment. To determine how long it would take for serum SS and 

corticosterone to recover, serial blood samples were first collected from each rat 2 h after 

saline treatment and then again 2, 24 and 48 h after treatment with 250 mg/kg salicylate. The 

mean (n = 8, +/− SEM) salicylate values at 2, 24, and 48 h post-SS were 579.3, 155.7, and 

7.00 μg SS/ml serum respectively versus 0.2 μg for the saline control (Figure 11B, right 

ordinate). The mean (n =8, +/− SEM) serum SS concentrations at 2 h and 24 h post-SS were 

significantly greater than the saline control (one-way ANOVA, treatment effect, p<0.0001, 

F= 68, 3, 22 DF, Tukey’s Multiple comparison, p<0.05). The SS injections resulted in a 

large increase in serum corticosterone 2 h post-SS that decreased at later time points (Figure 

11B, left ordinate). The average corticosterone concentration in the saline group was 17.44 

ng/ml serum vs. 334.1, 49.8 and 26.9 ng/ml serum in the SS group at 2, 24 and 48 h post-

treatment (Figure 11B); only the corticosterone level at 2 h post-SS was significantly higher 

than the saline control (one-way ANOVA, treatment effect p < 0.0001, F= 15.83, 3, 28 DF, 

Tukey’s multiple comparison, p<0.05).

Salicylate-Corticosterone Correlation—Figure 11C shows the relationship between 

the corticosterone levels and the serum salicylate concentrations for all the three salicylate 

doses at 2 h post-treatment. A Richard’s five-parameter dose-response sigmoidal function 

was fit to the serum salicylate-corticosterone response function (R2: 0.7649, 18 DF). The 

maximum corticosterone concentration found following saline injections was 114.2 ng/ml of 

serum. The serum SS concentrations lower than ~400 μg/ml serum evoked no corticosterone 

response while the higher SS concentrations produced a large increase in corticosterone. The 

salicylate serum concentration (Log EC50) needed to evoke a half-maximum corticosterone 

response was 543.4 mg/ml (99% confidence interval: 427.2 – 659.5).

Discussion

Previous studies have shown that SS causes hyperactivity in selected regions of the central 

auditory pathway and the AMY (Figure 1) (Chambers et al., 2016; Chen et al., 2013; Lu et 

al., 2011; Norena et al., 2010; Qiu et al., 2000; Stolzberg et al., 2011; Syka and Rybalko, 

2000; Zhang et al., 2011). Our more recent fMRI studies identified two additional areas 

outside the classical auditory pathway where SS induced hyperactivity, named the PFL and 

RF (Chen et al., 2015). To confirm and characterize the electrophysiological changes that 

occur in these non-auditory regions, we recorded LFP and MUC firing patterns from the 

PFL and PnC before and after SS treatment and measured the changes in serum 

corticosterone to evaluate the potential contribution of this stress hormone. The three new 

findings of the current study are that: (1) high-dose SS causes a subset of neurons in the PFL 

and PnC to become hyperactive to suprathreshold acoustic stimuli, (2) the firing rate and SS-

induced hyperactivity in the PnC increases significantly with increasing ISI and (3) high 

doses of SS (≥ 150 mg/kg) known to induce tinnitus and hyperacusis cause a large increase 

in corticosterone stress hormone levels. Our results suggest that SS-induced hyperactivity 
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observed in selected parts of the central nervous system may be linked to the upregulation of 

circulating corticosterone stress hormone or the receptors to which it binds (Ma et al., 2015).

Auditory PFL

Several parts of the cerebellum respond to auditory stimulation including the PFL (Altman 

et al., 1976; Azizi et al., 1990; Azizi et al., 1985; Azizi et al., 1981; Buser and Franchel, 

1960; Huang and Liu, 1985; Huang and Burkard, 1986; Huang and Liu, 1991; Lockwood et 

al., 1999; Lorenzo et al., 1977; Mihailoff et al., 1981; Misrahy et al., 1961; Petacchi et al., 

2005; Snider and Stowell, 1944; Snider et al., 1964; Stowell, 1942; Wolfe, 1972; Woody et 

al., 1999). Noise bursts evoked distinct LFPs in ~60% (86/144) of our recording sites in the 

PFL (Figure 2). The latency of the LFPs evoked by 100 dB noise burst presented to the 

contralateral ear and the onset response of most PSTH MUC were relatively long on the 

order of 10 ms; these results are consistent with the long latency responses seen in the 

paraflocculus of the mustache bat (Horikawa et al., 1986). The long-latency PFL-responses 

may reflect a long signaling pathway through high auditory levels like the AC, which 

showed SS-enhancing effect, whereas the short-latency PFL-responses (Fig. 5C) may reflect 

a short signaling pathway through lower levels of the auditory pathway such as IC and even 

more peripheral parts of the auditory pathway showing no SS-enhancing effect. In addition, 

the PSTH profiles and the peaks in the LFP waveforms were relatively broad. Taken 

together, these results suggest that the inputs to the contralateral PFL were relayed to it from 

one or more higher auditory centers such as the IC or AC (Azizi et al., 1985; Brodal, 1968). 

Moreover, relatively high intensity noise bursts (>60 dB) were needed to elicit a robust LFP 

(Figure 3). PFL MUC were most responsive to low frequency tone bursts and their tuning 

was relatively broad (1–8 kHz, see Figure 6), consistent with results from mustache bat 

(Horikawa et al., 1986).

LFP amplitudes and MUC discharge rates increased significantly after SS treatment. The 

nature of the SS-effects was linked to the latency of the response. The early response (<15 

ms) was typically reduced whereas the late response was enhanced post-SS (Figure 2C, 5C, 

9A and B, 10A). The early PFL-response may reflect direct input from the cochlea and/or 

cochlear nucleus, regions where the sound-evoked responses are reduced post-SS. The 

increased responsivity of the late component post-SS could be due to diminished inhibition 

or increased excitation within the PFL itself or to the AC or IC that relay information to the 

PFL. It has to be noted that this facilitative effect occurred only in half of the recordings. 

Because SS induces robust hyperactivity in the AC, it is possible that the ensuing 

hyperactivity in the PFL is influenced by the AC neuronal activity. However, this 

interpretation is tempered by the fact that electrical stimulation of the AC and IC produces a 

mixture of excitatory and inhibitory responses in the PFL (Azizi et al., 1985). In the AC and 

AMY, SS-treatment caused the frequency receptive fields of low frequency neurons to shift 

upward toward the mid-frequencies (Chen et al., 2012; Lobarinas, 2006; Stolzberg et al., 

2011; Yamamoto et al., 2007). However, there was little evidence of an upward shift in the 

PFL (Figure 6).

At a systems level, the PFL receives multiple types of sensory information, including inputs 

from vestibular and auditory centers. The prevailing view is that this information is 
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integrated and processed in order to fine tune head and eye movements such as those used to 

direct the head and eyes toward or away from a sound source, such as the echo orientation 

system in bats (Horikawa et al., 1986). Interestingly, some vestibular schwannoma patients 

develop gaze-evoked tinnitus, a condition in which deviation of the eyes from straight ahead 

alters the loudness or pitch of tinnitus (Cacace et al., 1996; Coad et al., 2001; Lockwood et 

al., 2001; van Gendt et al., 2012). Eye movements have also been shown to modulate 

tinnitus in non-tumor patients (Simmons et al., 2008). Taken together, these results suggest 

that the eye-movement circuitry of the PFL may be involved in modulating tinnitus.

One consequence of the SS-induced hyperactivity in the PFL is that it could speed up and/or 

facilitate such motor activity. Consistent with this view, we have found using an operant-

conditioning paradigm that assesses loudness growth, that SS induces a reduction in 

subjects’ reaction times (shorter latency) in response to sounds of moderate to high intensity 

(Chen et al., 2015). Functional imaging studies have also suggested that the PFL is involved 

in gating or modulating tinnitus (Brozoski et al., 2007; Chen et al., 2015). This interpretation 

was supported by behavioral studies showing that tinnitus was suppressed or enhanced by 

inactivating or activating the PFL (Bauer et al., 2013; Brozoski et al., 2007; Brozoski et al., 

2013). Noise-induced spontaneous hyperactivity in the IC, considered a neural correlate of 

tinnitus, is enhanced by removal of the PFL whereas PFL removal had no effect on 

spontaneous activity in normal animals (Vogler et al., 2016). If spontaneous hyperactivity in 

the IC is a neural indicator of tinnitus (Manzoor et al., 2013), then these results suggest that 

PFL removal would enhance tinnitus, an interpretation at odds with behavioral data showing 

that PFL inactivation suppresses tinnitus (Bauer et al., 2013).

PnC Hyperactivity

A loud, abrupt and unexpected sound induces the acoustic startle reflex. The acoustic startle 

circuit consists of cochlear root neurons, neurons in the PnC, and motor neurons. Repetitive 

sound stimuli induce startle reflexes with long ISI, but not short ISI. This gating effect 

appeared to result from the PnC response which increases with increase of ISI (see Fig. 9). 

In addition, only high level sounds above 70 dB SPL induce startle reflexes. This is 

consistent with the high thresholds (>65–70 dB SPL) observed in our PnC responses (Fig. 

7). High doses of SS significantly enhance the amplitude of the acoustic startle reflex (Chen 

et al., 2014; Du et al., 2011). Since SS greatly reduces the neural output of the cochlea at 

suprathreshold levels, the mechanisms for enhancing acoustic startle amplitudes must occur 

beyond the cochlear nerve root either in the PnC or the facial and spinal motor neurons that 

drive the musculature responsible for the startle reflex (Davis et al., 1982; Lee et al., 1996). 

Our results show that SS significantly increased the discharge rate of PnC MUC to high-

intensity noise bursts (Figure 8A–B), intensities that are typically needed to induce the 

startle reflex. SS shifted the low-intensity portion of our discharge rate-intensity functions to 

the right 20–30 dB. This threshold shift is consistent with and likely due to the cochlear 

hearing loss induced by SS (Chen et al., 2013; Stolzberg et al., 2011). Since we are unaware 

of any evidence indicating that SS enhances motor neuron output, our results suggest that 

the SS-induced increase in startle amplitude has its origins in the PnC or hyperactivity from 

descending inputs to the PnC from the AC, AMY or IC (Chen et al., 2015). This 

interpretation is consistent with several features of PnC discharge patterns. First, the neural 
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output of the PnC and the amplitude of the startle reflex continue to increase with ISI 

extending out tens of seconds or more (Hoffman and Fleshler, 1963; Ison and Hammond, 

1971). Second, PnC MUC responded most robustly to tone bursts below 10 kHz (Figure 10) 

consistent with large startle responses to lower frequency tone bursts (Blaszczyk and 

Tajchert, 1997). Because SS mainly enhanced the discharge to tone bursts below 10 kHz, 

one might expect that SS would selectively increase startle amplitude to low (<10 kHz), but 

not to high frequency tone bursts. The effects of SS on PnC firing patterns were duration 

dependent. SS mainly enhanced PnC firing during the late portion of the PSTH and this 

effect was ISI dependent. Based on these results, SS would presumably cause the greatest 

increase in startle amplitude at long ISI and long duration noise bursts. The effects of SS on 

startle amplitude would likely be minimal for short duration noise bursts and short ISIs 

(Figure 9).

Corticosterone Upsurge

Because high doses of SS produced strong c-fos immunolabeling in brain areas associated 

with stress, anxiety and pain (Wallhausser-Franke, 1997; Wallhausser-Franke et al., 2003), 

we hypothesized that SS would significantly increase corticosterone levels. Our results are 

generally consistent with these predictions. High doses of SS sufficient to induce tinnitus 

(Guitton et al., 2003; Jastreboff et al., 1988; Lobarinas et al., 2004; Ruttiger et al., 2003) 

caused a large increase in serum corticosterone levels whereas low doses incapable of 

inducing tinnitus had almost no effect on corticosterone levels. The 250 mg/kg SS dose 

caused ~18-fold increase in corticosterone over baseline (Figure 11) whereas 150 mg/kg 

induced ~8 fold increase. The large variability associated with the 150 mg/kg dose of SS 

may be related to the fact that this dose lies near the threshold for inducing tinnitus 

(Lobarinas et al., 2004). Twenty-four hours after the cessation of salicylate, corticosterone 

levels decreased to near control levels consistent with previous behavioral studies showing 

the disappearance of tinnitus one day after discontinuing SS (Guitton et al., 2003; Lobarinas 

et al., 2004). Corticosterone levels in response to a stressor normally have a half-life of 25–

60 minutes (Haemisch et al., 1999; Vachon and Moreau, 2001); however, our results show 

that corticosterone levels did not approach baseline levels until 24 h post-treatment. These 

results indicate that high doses of salicylate can disrupt the hypothalamic-pituitary-adrenal 

(HPA) system for a prolonged period of time resulting in abnormally high corticosterone 

levels. Corticosterone is normally bound to carrier proteins and is inactive as it is transported 

through the circulatory system. Corticosterone binding globulin (CBG), the dominant carrier 

protein, binds approximately 90% of circulating corticosterone. When corticosterone is 

released from CBG it can bind to glucocorticoid receptors and exert numerous biological 

effects (Ekins, 1992). Interestingly, in fluorometric assays, salicylate is used to free 

corticosterone from CBG (Erkens et al., 1998; Kane, 1979; Shrivastav, 2004). This raises the 

possibility that high levels of serum SS promotes the release of corticosterone from CBG 

resulting in a large unbound pool of serum corticosterone consistent with our results (Figure 

11A–B). The SS-induced increases in corticosterone may also contribute to sound-induced 

hyperactivity in the AC, MGB and AMY (Chen et al., 2013; Lu et al., 2011; Yang et al., 

2007), the same regions where SS increased c-fos expression (Wallhausser-Franke, 1997). 

Interestingly, rodent repellent stressors that increase serum corticosterone significantly 

increased the amplitude of auditory evoked responses (Mazurek et al., 2010). Moreover, 
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exogenous corticosterone enhances auditory evoked potential amplitudes (Maxwell et al., 

2006). Taken together, these results suggest that the hyper or altered activity is due to 

increases in corticosterone levels.
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Highlights

• Salicylate enhanced auditory response of the cerebellar paraflocculus

• Salicylate enhanced auditory response of the reticular formation

• While the late response component was enhanced the early response was 

reduced

• Salicylate enhanced serum corticosterone level

• The physiological changes and the stress hormone increase may be involved 

in tinnitus and hyperacusis
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Figure 1. 
Model of Tinnitus-Hyperacusis network: (A) High-dose SS induces hyperactivity and 

increases functional connectivity in an auditory network consisting of AC, MGB and IC 

(thin dashed line) and emotional network linking the amygdala (AMY) with the AC (thick 

dashed line). The hyperactivity and enhanced functional connectivity are also occurred in the 

PFL and RF, areas outside the classical auditory pathway but connected to the AC. (B) SS 

increases the functional coupling between the AC and the two regions outside the classical 

auditory pathway, the PFL and RF (PnC).
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Figure 2. 
LFP from PFL evoked by noise bursts pre- and post-SS. (A) Mean (+/− SEM) LFP from 102 

recordings before SS treatment; note four positive peaks at 10, 50, 100, and 200 ms after 

onset of the noise burst (50 ms, 100 dB SPL). (B) Mean LFP from 52 of the 102 recordings 

with relatively small pre-SS responses (blue) which were enhanced 2 h post-SS (red). (C) 

Mean LFP of 50 of 102 recordings with relatively large pre-SS responses (blue). SS 

suppressed the early onset peak at ~10 ms (down red arrow), but enhanced the negative peak 

(green star) at ~20 ms.
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Figure 3. 
Pre- and Post-SS LFP amplitude-intensity functions from PFL. RMS of LFP computed from 

0–100 ms. (A) Mean (+/− SEM) of all 102 PFL recordings; note significant (*) LFP 

enhancement from 80–100 dB SPL 2 h post-SS. (B) Mean (+/− SEM) LFP input/output 

function from 52 of the 102 recordings with small LFPs pre-SS; note significant (*) LFP 

amplitude enhancement from 70–100 dB SPL 2 h post-SS. (C): Mean (+/− SEM) LFP input/

output function from 50 of the 102 recordings with large LFPs pre-SS. LFP input/output 

function largely unchanged 2 h post-SS. (D) Mean (+/− SEM) LFP amplitude at 100 dB SPL 

pre-SS (−2, −1 h), immediately after SS treatment (0 h) and 1–4 h post-SS. Note significant 

(*) increases in LFP amplitude 1–4 h post-SS.
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Figure 4. 
MUC in PFL show increased firing rates to noise bursts. PSTH from a MUC in the PFL 

showed strong response to noise bursts (100 dB SPL, 50 ms). (A) PSTHs pre-SS (blue) and 

(B–F) 0–4 h post-SS (red). Note large increase in firing rate post-SS.
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Figure 5. 
Effects of SS on discharges of neurons in the PFL to noise bursts. Grand mean PSTHs to 

100 dB noise bursts (50 ms) pre- (blue line) and 2 h post-SS (red). (A) Mean PSTHs from 10 

MUC in PFL that produced strong response pre- and post-SS. Discharge rate during first 100 

ms of PSTH increased significantly post-SS. (B) Mean PSTH from 8 MUC that responded 

weakly to noise bursts pre-SS. Note large increase in firing rate and broad PSTH 2 h post-

SS. (C) Mean PSTHs from 7 MUC with a short-latency (~3 ms) peak in the PSTH pre-SS. 
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Short-latency, onset response disappeared 2 h post-SS and firing rate was largely unaffected 

by SS.
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Figure 6. 
Tone evoked PSTHs from PFL MUC. (A) Mean PSTHs evoked by 100 dB, 50 ms tone 

bursts (top 9 rows) from the 10 MUC that responded to noise-burst with long latency 

(bottom row). Tone bursts from 1–8 kHz evoked distinct PSTH responses pre-SS (blue line); 

the peak response in the PSTH occurred 15–20 ms after stimulus onset. PSTH response 

amplitudes were significantly larger 2 h post-SS than before treatment (F values shown in 

each panel). (B) Mean tone burst evoked PSTH from 16 MUC that responded weakly or not 

at all to noise bursts. Tone bursts mainly evoked responses from 1–3.5 kHz prior to the SS 

treatment. PSTH response amplitudes in the 1–3.5 kHz range increased significantly 2 h 

post-SS (F values shown in figure). ** p<0.01, *** p<0.001.
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Figure 7. 
Response properties of PnC MUC. (A) Representative PSTH from a PnC MUC stimulated 

with 100 dB noise burst. Note short latency (~ 4 ms) onset response. (B) Mean (n=8, +/− 

SEM) discharge rate-intensity function of 8 PnC MUC. (C) Frequency-intensity matrix of 

PSTH obtained with 50 ms tone bursts. Sounds at 70 dB SPL or higher evoked PSTH 

responses. At 70 dB SPL, responses occurred over a broad frequency range (red arrows). (D) 

Frequency receptive field of 8 PnC MUC; note broad tuning and high intensities needed to 

elicit responses.
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Figure 8. 
SS enhances firing rate of PnC MUC. (A) Noise burst, discharge rate-intensity functions 

from 9 PnC MUC recorded from one rat. Measurements shown for 1 and 3 h pre-SS and 1, 

2, 3 and 4 h post-SS. SS increased threshold ~30 dB (horizontal arrow). Note large increase 

in suprathreshold (>70 dB SPL) firing rates particularly at 3 and 4 h post-SS. (B) Discharge 

rate at 50 dB and 100 dB SPL plotted as a function of time from the 9 MUC in panel A. 

Blue symbols show pre-SS and red symbols show post-SS data. Note decrease in firing rate 

at 50 dB SPL and increase in firing rate at 100 dB SPL during the post-SS period. (C) Mean 

(n=41 MUC from 4 rats, +/− SEM) discharge rate intensity function for noise bursts from all 

PnC MUC. Note threshold increase of ~20 dB and slight increase in firing rate at 

suprathreshold intensities.
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Figure 9. 
ISI and SS alter PnC PSTH profiles and discharge rate: (A) Mean PSTH from 65 PnC MUC 

in response to 100 dB noise bursts presented with an ISI of 0.25 s. Mean PSTH shown pre-

SS (blue) and 2 h post-SS (red). Peak of PSTH reduced (down red arrow), latency of PSTH 

peak prolonged (horizontal red arrow) and late response of PST enhanced (red up arrow) 2 h 

post SS. (B) Same as panel A except that data collected with ISI of 10 s. Peak of PSTH 

reduced slightly, latency of PSTH peak increased and late response of PSTH greatly 

enhanced. (C) Mean (+/−SEM) discharge rates in 3–6 ms (early response) segment of the 

mean PSTH pre-SS (blue) and 2 h post-SS (red) as a function of ISI. SS caused a large 

decrease in firing rate at all ISIs (down arrow). (D) Mean (+/−SEM) discharge rates in 7–10 

ms segment of the mean PSTH pre-SS (blue) and 2 h post-SS (red) as a function of ISI. SS 

increased firing rates at ISIs between 0.5 and 10 s (up arrow). SS-induced increases in firing 

rate increased with increasing ISI. (E) Mean (+/−SEM) discharge rates in 11–20 ms segment 

of the mean PSTH pre-SS (blue) and 2 h post-SS (red) as a function of ISI. SS increased 

firing rates at all ISIs. SS-induced increases in firing rate increased with increasing ISI (up 

arrow). (F) Mean (+/−SEM) discharge rates in 21–54 ms (late response) segment of the 
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mean PSTH pre-SS (blue) and 2 h post-SS (red) as a function of ISI. SS caused a large 

increase in firing rates at all ISIs (up arrow).
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Figure 10. 
SS altered low frequency PnC PSTH: (A) Mean (n = 54 MUC from 5 rats) PSTH evoked by 

100 dB SPL tone bursts (1–8 kHz, 50 ms, 0.5 s ISI) pre-(blue) and post-SS (red). Discharge 

rate in the late segment increased significantly after SS treatment. (B) Same as in panel A 

except tone burst stimuli were 12.1–27.7 kHz. PSTH post-SS (red) nearly identical to pre-SS 

(blue).
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Figure 11. 
SS increases serum corticosterone. (A) Histogram showing mean (n = 4) serum salicylate 

concentration (right ordinate) and mean (n = 4) serum corticosterone concentration (left 

ordinate) 2 h after intraperitoneal injection of different doses of SS (mg/kg). Serum 

salicylate concentrations increased with doses; serum salicylate concentrations from 50 to 

250 mg/kg were significantly greater (#, p < 0.05) than the control (0 mg/kg). Serum 

corticosterone concentrations increased after the 150 and 250 mg/kg dose of SS. Serum 

corticosterone concentration was significantly greater than control at 250 mg/kg dose ($, p < 

0.05). (B) Histogram showing mean (n = 8) serum salicylate concentration (right ordinate) 

and mean (n = 4) serum corticosterone concentration pre-SS (saline control) and 2, 4 or 48 h 

after intraperitoneal injection of 250 mg/kg SS. Serum salicylate concentrations were 

significantly greater than control at 2 and 24 h post-SS (#, p < 0.05). Serum corticosterone 

concentration was significantly greater than the control at 2 h post-SS ($, p < 0.05). (C) 

Scatterplot showing the relationship between serum salicylate concentration and serum 

corticosterone concentration for different intraperitoneal doses of SS. Dashed line sigmoidal 

function fit to the data (r2 = 0.7649, Log EC50 = 543.4 mg/ml corticosterone).
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