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Abstract

4-Hydroxy-2-nonenal (HNE), one of the major α, β-unsaturated aldehydes produced during lipid 

peroxidation, is a potent messenger in mediating signaling pathways. Lipid peroxidation and HNE 

production appear to increase with aging. Although the cause and effect relation remains arguable, 

aging is associated with significant changes in diverse signaling events, characterized by enhanced 

or diminished responses of specific signaling pathways. In this review we will discuss how HNE 

may contribute to aging-related alterations of signaling pathways.
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Introduction

4-hydroxy-2-nonenal (HNE) is a major α, β-unsaturated aldehyde derived from the 

decomposition of peroxidation products of omega-6 polyunsaturated fatty acids; i.e., 

arachidonic acid and linoleic acid [1–5]. As a consequence of the natural occurrence of lipid 

peroxidation in aerobic biologic systems, HNE is present, at low concentrations, in almost 

all cells and tissue fluids under physiological condition. A marked increase of HNE 
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concentration is usually observed during oxidative stress. By forming adducts with proteins, 

nucleic acids, and lipids, HNE causes dysfunction of targeted biological molecules and is 

implicated in various diseases, including Alzheimer disease [6–8], cancers [9], chronic 

obstructive pulmonary disease (COPD) [10], and cardiovascular diseases [11], etc. [12, 13]. 

Therefore, HNE is recognized as one of the key culprits in cell and tissue damage caused by 

oxidative stress.

In contrast, numerous studies have shown that at physiological or slightly greater 

concentrations, HNE acts as a potent mediator that regulates a variety of signaling pathways 

[14, 15] and cellular processes [12]. The signaling effect of HNE originates from its ability 

to form adducts with proteins involved in signal transduction and gene expression, including 

receptors, kinases, phosphatases, and transcription factors [16]. Since it was first proposed 

by Harman that oxidant (free radical) mediated damage of macromolecules causes aging 

[17], this idea has remained a major theme in aging research, although it has been strongly 

questioned in terms of its relative contribution to aging per se and is more likely a 

participant in age-related diseases. Certainly, increased accumulation of oxidatively 

modified macromolecules and chronic oxidative/elephophilic state in the elderly [18–22] has 

been well documented, but accumulation of damaged material may not equate with actual 

injury. Rather, the involvement of oxidants in aging is far more complex than simple 

accumulation of oxidized macromolecules [23] and more likely involves disruption of redox 

signaling and oxidative metabolism [21]. Based on a recent proposal for the dynamic 

regulation of redox homeostasis and maintenance of oxidant/antioxidant balance [24], we 

suggest that chronic oxidative stress in aging results in an new antioxidant/electrophile 

steady state and age-adjusted redox homeostasis that is oxidized compared with that of 

youth. The signaling mechanisms establishing this new more oxidized steady state poorly 

adjust to additional stress. Fitting the older paradigm of the free radical theory of Harmann, 

HNE derived from lipid peroxidation and HNE-modified proteins inevitably increase during 

aging and are frequently used as a marker of aging-related oxidative stress [22]. But, in 

regard to the newer proposal that redox signaling and homeostasis are abnormal in aging, the 

potential role of HNE as a signaling mediator in age-related signaling events has not been 

given much consideration. Therefore, while the involvement of HNE in age-related 

pathologies has been discussed by many excellent reviews [6–10, 25–28], here we will 

discuss the role that HNE may play in altering signaling pathways during aging.

Increased HNE concentration in aging

Under physiologic conditions, HNE is present at very low concentration in plasma, in the 

range of 0.28–0.68 μM [1, 3, 29], but its concentration in cells, where it is produced, is 

higher (≤ 5 μM) [5]. Under oxidative stress, HNE concentration can be markedly increased 

as much as by 100 times [3]. Although it has been well recognized that lipid peroxidation 

increases with aging [30, 31], data on the change in HNE concentration in aging are limited.

Studies on flies and animals suggest that HNE concentrations, either free HNE or as protein 

adducts, increase during aging. Zheng et al. measured HNE-adduct accumulation in aging in 

fruit flies using an ELISA method and found that HNE adduct concentrations remained 

relatively unchanged during the first half of adult life and then significantly increased by 
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about 2 fold. After reaching a peak, HNE adducts appeared to decrease later in life of flies 

[32]. The change in HNE in aging in mammals seems more consistent. Using a gas 

chromatography-mass spectrometry method, Asselin et al. assessed the change of protein-

bound HNE in the blood of aging rats (Wistar rats at 7, 15, 22, and 30 weeks of age) and 

found that the concentration of protein-bound HNE in the blood was significantly increased 

with aging [33]. In a similar study, Kim et al. showed that HNE adduction to serum proteins 

was significantly increased by 2–3 fold in old Fischer 344 rats, and free HNE was increased 

from about 0.3 μM to 0.7 μM (7 months vs 24 months) [34]. The increase of HNE-protein 

adducts in old animals is supported by others, as observed in the heart of rats (6 months vs 

30 months) [35, 36] and bone of mice (6 months vs 25 months) [37].

The change in HNE concentration in aging is less studied in humans. Gil et al. measured 

HNE and other oxidative stress markers in the blood and plasma of 194 healthy human of 

ages from 18 to 84 years and found that the concentrations of HNE and other oxidative 

markers were all increased during aging. Plasma HNE concentration was increased from 

68.9 ± 15.0 nmol/L in the young group (up to 30 yr old) to 107.4 ± 27.3 nmol/L in the 

elderly group (older than 70 yr) [38]. On the other hand, there are many studies on the 

increased lipid peroxidation with human aging. In these studies, the questionable 

thiobarbituric acid test, but also the more reliable measurement of protein carbonyls, have 

been used as indicators of lipid peroxidation. As a principle lipid peroxidation derivative, it 

is inferred that HNE concentration also increases with aging. Nonetheless, more direct 

determination of free HNE or its adduct concentration in elderly will help to further 

understanding the biological effects of HNE in aging.

Aging-related signaling pathways affected by HNE

Aging is characterized by the manifestation of a systematic decline in functions. As a 

fundamental mechanism underlying most cellular responses and functions, signal 

transduction also varies in aging. But, whether these changes in signaling are a cause or 

effect in the aging process remains uncertain. Here we provide several examples to show that 

HNE may play a potential role in these age-related signaling pathways.

NF-κB signaling

The immune system in the elderly becomes increasingly dysfunctional and the immune 

response to infectious pathogen and vaccine is blunted [39]. On the other hand, aging is 

usually accompanied by low-grade chronic inflammation characterized by elevated plasma 

concentrations of proinflammatory cytokines and acute phase proteins, such as TNFα, IL-6, 

and C-reactive protein [40–43]. In agreement with this, the expression and activity of the 

central key player in cytokine regulation and inflammatory response, NF-κB, is increased in 

cells/tissues from elderly adults [44]. Thus, so-called “inflammaging” is assumed to be the 

culprit in many age-associated diseases [45, 46].

The NF-κB signaling pathway can either be activated or inhibited by HNE, depending on 

concentration (Fig. 1). At low concentrations, HNE could activate NF-κB signaling pathway 

via activating IKK. Amma et al. reported that 0.1–1 μM HNE activated IKK and thus 

increased NF-κB activity via forming adducts with IKK and IκB in human fibroblast cells 
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but, 2.5 μM HNE inhibited IKKs [47]. Similarly at low concentration (1μM), HNE activated 

IKK and increased NF-κB activity in raw 246.7 cells [48] and vascular smooth muscle cells 

[49, 50]. In contrast, in studies using HNE concentrations higher than 5 μM (in the range of 

5–50 μM), IκBα degradation [51] and phosphorylation [52] were prevented, possibly 

through inhibition of IKKs [53, 54]. As a result, the basal and inducible NF-κB activity was 

inhibited [55–59]. Conjugation and inhibition of either IKKα [53] or IKKβ [55] was 

reported. However, there was controversial report that at high concentration (15 μM) HNE 

increased IKK phosphorylation and activation, and IkBα degradation, and thus increased 

NF-κB activation in rat prostate endothelial cells [60]. In summary, the ability of HNE to 

activate NF-κB signaling at concentration as low as that found in the plasma of elderly 

suggests a potential role of HNE in the age-related increase of NF-κB activity and 

proinflammatory cytokines.

Nrf2 signaling

Nrf2 is a transcription factor involved in the regulation of a large number of antioxidant and 

detoxification enzymes, and plays a key role in the adaptation response to oxidative stress 

and maintenance of cellular redox homeostasis. The regulation of Nrf2 signaling involves 

multiple signaling molecules including KEAP1, p21, p63, PKCs, MAPKs, etc., as discussed 

in a recent review [61]. Accumulating evidence suggests that the induction of Nrf2 signaling 

declines in aging, while its basal activity was increased in some animal tissues in aging [61]. 

Although being extensively studied, the underlying mechanism of aging-related variation of 

Nrf2 signaling remains elusive.

Studies have found that HNE can activate Nrf2 signaling at concentrations ≤ 0.3 μM [62–

64], through activating multiple signaling pathways including atypical protein kinase C iota 

(aPKCι) [65], phosphatidylinositol 3-kinase (PI3K) [63], and mitogen activated proteine 

kinases (MAPKs) [66, 67]. This suggests how HNE may be involved in the increase of basal 

Nrf2 signaling in the elderly but not in the decline of Nrf2 signaling response to stimuli in 

aging.

AKT/PKB signaling

AKT, which is also called protein kinase B (PKB), is a central player in processes 

downstream of activated growth factor receptor signaling such as insulin and epidermal 

growth factor receptors, and plays important roles in various processes including cell 

survival, cell growth, apoptosis, protein synthesis, energy metabolism, and oncogenesis [68, 

69]. In the canonical pathway, AKT activation occurs sequentially in the order of binding of 

growth factors to tyrosine kinase receptors, activation of PI3K, and increased 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-AKT activation. All three highly 

conserved AKT isoforms (AKT1, AKT2 and AKT3) are activated by the same mechanism. 

In addition, AKT can also be regulated through a redox-dependent mechanism [70]. In this 

non-canonical pathway, AKT signaling is regulated through oxidative modification of 

signaling molecules involved in AKT activation, including PI3K, PTEN, and AKT itself 

(Fig. 2).
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AKT plays critical roles in aging-related processes through phosphorylating and regulating 

the downstream substrates including mammalian target of rapamycin (mTOR) (activation), 

glycogen synthase kinase beta (GSK3β) (inactivation) and Forkhead box O (FOXO) 

(inactivation) (Fig. 2), as discussed in a recent review [71]. Accumulating evidence suggests 

that AKT signaling changes with aging and the variation seems tissue dependent [72]. For 

example, AKT phosphorylation (at Ser473) and activity were significantly declined in the 

elderly in mice hippocampus (6 months vs 20 months) [73], skeletal muscle of human [74], 

but increased the old in rat soleus muscles (6 months vs 33 months) [75] and hypothalamus 

(6 months vs 24 months) [76].

Many studies have investigated the effect of HNE on AKT in diverse cell models and with a 

wide range of HNE concentration (Table 1). HNE decreased AKT phosphorylation and 

activity in a wide concentration range from 5–100 μM in MG63 human osteosarcoma cells 

[77], 3T3-L1 adipocytes [78], human OA chondrocytes [79] and Jurkat cells [80]. In 

contrast, increased AKT phosphorylation was observed in vascular smooth muscle cells 

(1μM) [50], PC12 cells (15 μM) [81], human neuroblastoma IMR-32 cells (10 μM) [82], 

human corneal epithelial cells (30μM) [83] and retinal pigment epithelial (RPE) cells (0.1–5 

μM) [84]. In rat slow-twitch skeletal muscle cells however, HNE did not affect AKT 

phosphorylation and activity [85]. This evidence indicates that the regulation of HNE on 

AKT activity is cell dependent. However, it remains unclear what underlies the different 

regulatory effects of HNE on AKT.

HNE could regulate AKT activity directly through forming adducts. Shearn et al. 

investigated the regulation of HNE on AKT1 and AKT2 in HePG2 cells and found that both 

AKT1 and AT2 could form adducts with HNE, and as a result, the activity of AKT1 or 

AKT2 was inhibited [86][87]. Interestingly total AKT phosphorylation (Ser473) was 

increased in both cases. There is evidence that the overall effect of HNE on AKT signaling 

may be an integrated result of activation via canonical pathway (PI3K activation), 

dephosphorylation by PTEN and PP2A, and HNE conjugation (inhibition) [80, 86, 87] (Fig. 

2). The role of AKT3 in this regulation is unknown.

In summary, HNE may affect age-related AKT signaling in a complex manner (Fig. 2). 

Since most studies on AKT signaling regulation used much higher HNE concentrations than 

physiological concentration, the exact role of HNE in the change of AKT signaling with 

aging in vivo needs to be further elucidated. Further studies on how HNE affects the AKT 

signaling initiated by insulin are expected, as recent report that HNE inhibited the response 

of AKT to insulin and H2O2 [86].

mTOR signaling

Mechanistic target of rapamycin (mTOR) has been being extensively studied as a key 

modulator of aging and aging-related diseases, and its role as a key regulatory nexus of 

modulating anabolic processes versus catabolic processes and involvement in aging-related 

processes have been well discussed by many [88, 89]. The signaling network of mTOR is 

described briefly here. mTOR is a serine/threonine protein kinase of the PI3K-related family 

that functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 

2 (mTORC2) (Fig. 3) [88], and the former is much more extensively studied than the latter. 
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Upstream, mTORC1 can be activated by growth factors such as insulin, and environmental 

nutrients such as amino acids, and oxidative stress, or repressed by AMP-activated protein 

kinase (AMPK), a key sensor of cellular energy status. Downstream, mTORC1 

phosphorylates and regulates a diverse substrates including ribosomal protein S6 kinases 

(S6K), NF-κB, hypoxia inducible factor 1 alpha (HIF-1α), etc. (Fig. 3), thus promotes cell 

growth and proliferation, lipid synthesis, and modulates mitochondria function and 

autophagy [90–92]. In contrast, mTORC2 is less studied, and available evidence suggests it 

is regulated by growth factors and primarily involved in cytoskeleton assembly and cell size 

modulation [93, 94]. As feedback regulation, S6K could inhibit mTORC1 pathway through 

phosphorylating and inhibiting insulin receptor (IRS)/PI3K/AKT signaling and thus benefit 

longevity processes. On the other hand, mTORC2 could activate AKT pathway and enhance 

aging. The actual situation is much more complex as interactions occur among signaling 

networks.

HNE could modulate mTOR-signaling network via acting on several targets. Besides 

modulating AKT signaling to mTOR as discussed above (Fig. 2), HNE could also regulate 

mTOR signaling through liver kinase B1 (LKB1)-AMPK-mTORC1 pathway (Table 2, Fig. 

3).

LKB1, also called serine/threonine kinase 11, is kinase that phosphorylates and activates 

AMPK, a central metabolic sensor that regulates lipid, cholesterol and glucose metabolism. 

Dolinsky et al. first reported that HNE (40 μM) could conjugate with LKB1 and repress its 

activity, and inhibit its downstream substrate AMPK activity, and thus result in the activation 

of mTOR/p70S6 kinas pathway in isolated cardiomyocytes [95]. This finding was supported 

by other studies, which demonstrated that LKB1 was inhibited by HNE in various cell 

models, including primary mouse cardiomyocytes (20 μM) [96], HEK293T cells (1–40 μM) 

[97], and rat ventricular cardiomyocytes (10 μM) [98]. In these studies, HNE-LKB1 adducts 

were detected and total LKB1 decreased, and this was postulated as the mechanism of LKB1 

inhibition. HNE inhibition on LKB1 would suppress subsequent AMPK activity, and thus 

activate mTORC1 signaling. However, this hypothesis is challenged by a recent study, in 

which LKB1 knockout did not replicate the effect of HNE on mTORC1-S6K-RPS6 

signaling [98]. It is suggested that HNE may activate mTORC1 signaling through direct 

inhibition of AMPK. Although AMPK activity was inhibited by HNE [95, 96, 99, 100], 

direct evidence of HNE-AMPK1 adducts has not been demonstrated.

Other age-related signaling

The aging process is accompanied by variation in multiple signaling pathways that have 

been less examined. P21, a protein implicated in cell cycle arrest and senescence [101, 102], 

was increased by HNE at concentration of as low as 1 μM [103, 104] in p53-dependent- 

[103, 105] or p53-independent manner [106]. The activity of both 20S proteasome and 

telomerase declines with aging and are implicated in the aging processes. Both 20S 

proteasome and telomerase were reportedly inhibited by HNE [107, 108]. It is expected that 

HNE with its many targets will be shown to alter additional signaling and other enzymatic 

activities associated with aging as work continues in this field.
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Summary and future prospective

HNE concentration (in free or adduct form) increases with aging. Given its modification of 

multiple signaling molecules and its meditation of a wide range of signaling pathways, HNE 

is involved in aging-related signaling pathways through multiple entry points. In this article, 

we discussed the potential contribution of HNE to NF-κB, AKT, Nrf2, and mTOR, four 

signaling pathways that are implicated in aging processes (Fig. 4). Although not yet 

specifically examined, other signaling pathways involved in aging, such as that related to 

growth factor signaling EGFR [109–114], PDGFR [115–117], and others [118], are also 

mediated by HNE. It is noted that most of the evidence cited here is based on cell models 

and further evidence with model organisms would help elucidate the role of HNE in aging.
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Highlights

• HNE concentration in the plasma and cells/tissues increases with aging

• HNE regulates NF-κB signaling in concentration-dependent manner

• HNE contributes to aging-related decline in Nrf2 signaling response

• HNE causes aging-related variation of AKT signaling via PTEN and others.

• HNE alters aging-related mTORC1 signaling through LKB1, AMPK and 

others.

Zhang and Forman Page 14

Free Radic Biol Med. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Regulation of NF-κB signaling by HNE. At low concentration (0.1–1 μM) HNE activates 

NF-κB signaling through conjugating with IKKs (IKKα and IKKβ) and IκB, and increases 

the expression of proinflammatory cytokines (A). While at high concentration (2.5–50 μM), 

HNE inhibits IKKs, resulting in the repression of basal and inducible activity of NF-κB 

signaling (B).
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Figure 2. 
HNE mediates AKT signaling. HNE could either activate AKT, through inhibiting PTEN 

and activating PI3K, or inhibiting AKT, through forming an HNE-AKT adduct or activating 

PP2A, a phosphatase that dephosphorylates pAKT. HNE may interfere with insulin-

activated AKT signaling. Thus the final effect of HNE on AKT signaling may vary 

depending on cell type or other factors. Active AKT regulates the downstream targets 

involved in aging processes. IRS, insulin receptor substrate; GSK3β, glycogen synthase 

kinas 3 beta; FOXO, Forkhead box O; PP2A, Protein phosphatase 2.

Zhang and Forman Page 16

Free Radic Biol Med. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
HNE is involvement in mTOR signaling. HNE could conjugate and inhibit LKB1, thus 

inhibiting AMPK activity, and subsequently leading to the activation of mTORC1 and 

regulation of its downstream targets that are involved in aging processes. HNE could also 

either activate or inhibit mTORC1 through regulating AKT signaling as illustrated in Fig. 2. 

S6K, ribosome S6 kinase; 4E-BPs, translation initiation factor 4E-binding proteins; HIF-1α, 

hypoxia inducible factor 1alpha.
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Figure 4. 
A summary of HNE involvement in aging-related signaling alteration. HNE may contribute 

to the aging process through activating or inhibiting aging-related signaling. It should be 

noted that HNE might have a dual effect on some signaling molecules such as AKT, as 

discussed in the text.
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Table 1

Differential regulation of HNE on AKT signaling

Signaling molecules HNE concentration (μM) Effect Cells Reference

AKT and PP2A 20 in 10% FBS medium Decreased AKT phosphorylation and 
inhibited its activity via activating 
PP2A

Jurkat cells [80]

PI3K/AKT 10 in 10% FBS medium Activated Human neuroblastoma 
IMR-32 cells

[82]

AKT 15 in 10% FBS medium Activated PC12 cells [81]

PI3K/AKT 25–100 μM in 0.2% serum free 
medium

Inhibited 3T3-L1 adipocytes [78]

PI3K/AKT 1 μM in 10% FBS medium Activated Vascular smooth muscle 
cells

[50]

AKT 30 μM in 2% FBS medium Inhibited Human OA chondrocytes [79]

AKT1 and AKT2 100 μM in serum free medium Increased AKT2 phosphorylation via 
inhibiting PTEN, but inhibit its 
activity via forming AKT-HNE 
adduct. No effect on AKT1

HepG2 cells [87]

AKT and PTEN 12.5–100 μM in serum free 
medium

Increased AKT phosphorylation at 
Ser473 and thr308, conjugated and 
decreased PTEN phosphorylation and 
activity

HepG2 cells and primary rat 
hepatocyte

[119]

AKT 0.1–5 μM in 10% FBS medium Increased AKT phosphorylation Retinal pigment epithelial 
(RPE) cells

[84]

AKT1 25–100 μM in serum free 
medium

Inhibited AKT1 phosphorylation but 
not AKT2, and inhibited AKT 
activity by forming carbonyl AKT1 
adduct

HepG2 cells [86]

PI3K/AKT 30 μM in 5% FBS medium Activated Human corneal epithelial 
cells

[83]

AKT 5–50 μM in 10% FBS medium Inhibited AKT activity MG63 human osteosarcoma 
cells

[77]

AKT 50 μM in 10% FBS medium No effect on AKT phosporylation at 
Ser473

Rat slow-twitch skeletal 
muscle

[85]
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Table 2

Regulation of HNE on mTOR signaling molecules

Signaling molecules HNE concentration (μM) Effect Cells Reference

LKB1 and AMPK N/A Conjugated with LKB1, and 
inhibited LKB1 and AMPK 
activity

MCF-7 and RKO cells [120]

LKP1 and AMPK 40 μM in 10% FBS medium Conjugated and inhibited LKB1; 
inhibited AMPK activity

Cardiomyocytes [95]

AMPK 10–30 μM in 10% FBS medium Inhibited AMPKα activity via 
decreasing its phosphorylation at 
Thr172

Human retinal pigment 
epithelium cell line ARPE19

[100]

LKB1 and AMPK 20 μM in 10% FBS medium Decreased total and 
phosphorylated LKB1, and 
inhibited AMPK activity

Primary Mouse cardiomyocytes [96]

LKB1 1–40 μM in 10% FBS medium Conjugated with LKB1 and 
inhibited its activity

HEK293T cells [97]

LKB1 10 μM in 10% FBS medium Conjugated with LKB1 and 
inhibited its activity; inhibited 
AMPK activity, increased 
mTOR–p70S6K–RPS6 
signaling

Rat ventricular cardiomyocytes [98]

AMPK 10 and 30 μM in 10% FBS 
medium

Inhibited AMPK activity 3T3-L1 adipocyte [99]

LKB1 N/A Increase of HNE-LKB1 adducts Mouse heart tissue [121]
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