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Abstract

Hyaluronan and versican are extracellular matrix (ECM) components that are enriched in the 

provisional matrices that form during the early stages of development and disease. These two 

molecules interact to create pericellular “coats” and “open space” that facilitate cell sorting, 

proliferation, migration, and survival. Such complexes also impact the recruitment of leukocytes 

during development and in the early stages of disease. Once thought to be inert components of the 

ECM that help hold cells together, it is now quite clear that they play important roles in controlling 

cell phenotype, shaping tissue response to injury and maintaining tissue homeostasis. Conversion 

of hyaluronan-/versican-enriched provisional matrix to collagen-rich matrix is a “hallmark” of 

tissue fibrosis .Targeting the hyaluronan and versican content of provisional matrices in a variety 

of diseases including, cardiovascular disease and cancer, is becoming an attractive strategy for 

intervention.
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Introduction

Throughout life, the extracellular matrix (ECM) constantly changes! ECM composition is 

controlled by the coordinate and differential regulation of synthesis and turnover of each of 

its individual components. These changes are driven by cytokines and growth factors and 

can involve the formation of matrices that are open and loose or compact and rigid. Disease 

often recapitulates development. Early in development, the ECM remodels to form a loose 

open network of molecules that facilitate cell division, cell movement, and cell sorting. 

While, in disease, the first stages of repair are the creation of an ECM that is open and loose, 

allowing cells to enter and repair tissue damage created by disease insult. Such an open and 

loosely organized ECM is, in both cases, referred to as a Provisional Matrix.

Components of the ECM interact by entanglement, cross-linking, and charge-dependent 

interactions to form bioactive polymers which, in part, regulate the biomechanical properties 

Corresponding Author: Thomas N. Wight, Director, Matrix Biology Program, Benaroya Research Institute, 1201 9th Avenue, Seattle, 
WA 98101, (206) 287-5661, twight@benaroyaresearch.org. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Matrix Biol. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Matrix Biol. 2017 July ; 60-61: 38–56. doi:10.1016/j.matbio.2016.12.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of tissues and interact with cells to affect cell phenotype [1]. Usually, matrices that are soft 

and compliant are enriched in proteoglycans and hyaluronan, while matrices that are stiff 

and rigid are enriched in collagens and other fibrous proteins. The relative contributions of 

different ECM molecules vary with tissue type and result in mechanical and chemical 

properties appropriate to each tissue environment [2]. However, during development and in 

disease, the ECM undergoes changes to accommodate cellular events, such as proliferation 

and migration, and to maintain tissue homeostasis. Disturbances in the balance of these 

components creates altered tissue architecture that impacts tissue function. In fact, such 

ECM disturbances may determine or dictate the course of disease pathogenesis. Targeting 

the ECM is becoming an effective therapeutic strategy to treat human disease [3–5]. To 

understand the dynamic nature of the ECM and the functional consequences of ECM 

changes as tissues develop and remodel, classic wound healing is often given as an example 

of the transitions that occur [6–8]. Wound healing shares certain common features of ECM 

remodeling and with early events during embryonic development, such as in the 

development of the chick cornea or neural crest, the complete regeneration of a limb in 

amphibians [9–11], and in epithelial-to-mesenchymal transitions (EMT) [12]. With 

wounding, an ECM forms in a cell-free space, followed by the migration of mesenchymal 

cells into this ECM. These early changes involve the wound filling with a wave of cytokines 

and growth factors originating from broken or leaky blood vessels and cells entering and 

originating from within the damaged tissue. The early “provisional ECM” is formed by 

plasma proteins, such as fibrin, fibrinogen, and fibronectin, seeping into the wound site 

along with hyaluronan, either from the plasma or released from migrating mesenchymal 

cells. These components interact to form a crossed-linked gel which acts as a temporary 

scaffold for cellular events needed to repair the wound [6, 8, 11, 13, 14]. Thus, the 

provisional matrix serves as a scaffold and substrate for other cells entering into the wound 

bed, such as fibroblasts and smooth muscle cells. Such a substrate impacts the phenotype of 

the cells in contact with this matrix. For example, we showed that culturing arterial smooth 

muscle cells (ASMCs) on fibrin gels dramatically enriches these gels with decorin and 

biglycan, thus changing the mechanical properties of the fibrin gel. Such changes lead to 

alterations in the phenotype of the ASMCs [15].

In addition, during the early provisional phase of wound healing, inflammatory cells are 

drawn into the wound bed together with additional fibroblasts which further modify the 

composition of the provisional matrix. Such modifications include the synthesis and 

accumulation of hyaluronan and versican [16–18]. This is referred to by some as a “second 

order” of provisional ECM [19, 20]. This review will consider the importance of hyaluronan 

and versican as specific ECM components of the provisional matrix and their role in 

regulating the phenotype of cells embedded in this matrix.

Hyaluronan and Versican

Hyaluronan is a glycosaminoglycan (GAG) consisting of a linear polymer of repeating 

disaccharides of glucuronic acid and N-acetylglucosamine [β(1,4)-GlcUAβ(1,3)-GlcNAc-]n, 

and is synthesized by three different, but related, hyaluronan synthases, HAS1, HAS2, and 

HAS3 [21–24]. These are enzymes with multiple transmembrane domains and are situated 

on the inner surface of the plasma membrane of cells. During synthesis, the growing 
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polymer is extruded through the membrane into the pericellular space. This is in contrast to 

the mode of synthesis of other GAGs, which are made and covalently linked to core proteins 

in the Golgi apparatus of the cell to form a proteoglycan, and then secreted by normal 

exocytotic mechanisms [25, 26]. Hyaluronan chains can be anchored to the cell surface via 

the synthase enzyme or through binding to a cell surface receptor such as CD44 or RHAMM 

(receptor for hyaluronan-mediated motility). Hyaluronan is cleaved by one of several 

hyaluronidases. There are six hyaluronidase genes in humans, encoding enzymes with 

different properties and different cell locations [27, 28]. Under normal physiological 

conditions, hyaluronan ranges in relative molecular mass from 104–107 Da (see reviews [29, 

30]). Hyaluronan can also self-associate to form fibers (cables), networks, and stacks. When 

retained at the cell surface, hyaluronan forms a voluminous pericellular matrix or “coat,” 

which has also been termed “glycocalyx.” The hyaluronan-dependent coat has multiple 

important roles, from serving structural and mechanochemical functions, to the regulation of 

cell division and motility [31]. High molecular weight hyaluronan (> 500 kDa) has anti-

inflammatory properties while low molecular weight (fragments < 500 kDa) promote 

inflammation [29, 30]. Hyaluronan interacts with a number of cells including leukocytes, 

playing a critical role in immunity and inflammation [29, 32, 33]. Such interactions are 

prominent in diseases such as cancer and affect events that promote tumor formation such as 

progression and metastasis [34–39]. Hyaluronan is an integral component of the provisional 

matrix.

Versican is a large chondroitin sulfate (CS)-containing proteoglycan that interacts with 

hyaluronan through specific domains in its core protein [40]. Versican is synthesized by a 

variety of cells and in humans it is encoded from a single gene locus on chromosome 5q14.3 

[41]. It is 86% identical between mouse and human [42], indicating the importance and 

highly conserved nature of this proteoglycan. Versican is encoded by 15 exons that are 

arrayed over 90 kb of continuous genomic DNA [43]. The central, GAG-bearing domain of 

the versican core protein is coded by two large exons, α-GAG and β-GAG, which can be 

alternately spliced with exon 7, which codes for the α-GAG region, and exon 8, which codes 

for the β-GAG region. When both the entire exons 7 and 8 are present and no splicing 

occurs, versican V0 is formed. When exon 7 is spliced out, versican V1 is formed. When 

exon 8 is spliced out, versican V2 is formed. When both exons 7 and 8 are spliced out, 

versican V3 is formed. This form of alternate splicing gives rise to versican variants that 

differ in the number of CS chains attached to the consensus sequence attachment sites in the 

core proteins (see reviews [43–45]). Since V3 does not contain any CS chains, it cannot be 

considered a proteoglycan, but it is frequently grouped with proteoglycans and characterized 

as such [46]. It is of interest that while V0, V1, and V3 are found in most tissues, V2 is 

mostly restricted to the central nervous system [47]. The CS GAG chains attached to the 

different isoforms of versican may differ in size and composition, depending upon the 

species, the tissue of origin, or the culture conditions that promote versican synthesis. For 

example, CS chains isolated from versican synthesized by ASMCs have a 6-sulfate:4-sulfate 

ratio of 2 which increases to approximately 4 upon platelet-derived growth factor (PDGF) 

(mitogenic) stimulation of the cells [48, 49]. Such stimulation also increases the length of 

the CS chains attached to versican from 45 to 70 kDa leading to an overall increase in the 

hydrodynamic size of the proteoglycan and its capacity to trap water. Versican is cleaved by 
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a number of proteases [50] including members of the a disintegrin and metalloproteinase 

with a thrombospondin type-1 motif (ADAMTS) family [51]. Versican fragments 

(versikines) are capable of eliciting biological activities, such as promoting cell death 

(apoptosis) [52] in some systems. The modifications in the structure of versican contribute to 

different degrees of matrix expansion and the altered mechanical properties of provisional 

matrices. Both stromal cells [44] and leukocytes (macrophages) [53, 54] are capable of 

synthesizing and secreting versican.

Hyaluronan Binding Proteins–the Hyaladherins

Hyaluronan is a “sticky” molecule and several proteins involved in provisional matrix 

formation bind hyaluronan, including fibrin, fibrinogen, fibronectin, and the family of 

hyaluronan binding proteoglycans, the hyaladherins of which versican is a member [47, 55]. 

Versican binds hyaluronan via a 100-amino acid domain within the G1 domain of the 

proteoglycan termed a Link Module [40, 56–60]. Examination of the vertebrate genomes 

reveals at least 13 hyaluronan binding proteins, with one or two link module domains, plus 

an unknown number of proteins that contain the hyaluronan binding motifs B(X7)B. This 

motif defines B as arginine or lysine and X is any non-acidic amino acid [61]. The 

interaction of versican with hyaluronan is the basis for formation of the pericellular matrix 

that surrounds cells and, in part, controls their phenotype, as seen in development and 

disease (Figure 1). The interaction of these two molecules with one another has a dramatic 

impact on how they are assembled into complex structures. For example, we recently found 

that adding the G1 domain of versican to dermal fibroblasts in vitro promoted hyaluronan 

aggregation on the surface of the fibroblasts and the formation of hyaluronan cables [62] 

(Figure 2A,B). In cell culture, such structures can be seen to connect adjacent cells and may 

be important in cell-cell communication. These hyaluronan cables can serve as “landing 

strips” for leukocytes that come into contact with this matrix during inflammation (Figure 

2B). It is also clear that different isoforms of versican can impact the organization of the 

ECM in such a manner as to create either a pro- or anti-inflammatory form of the ECM [44, 

45, 63]. For example, overexpression of the V3 isoform of versican by stromal cells 

decreases the expression of the V0 and V1 isoforms as well as the synthesis and 

accumulation of hyaluronan. These changes are accompanied by increases in elastic fiber 

assembly and decreases in the capacity of this remodeled ECM to bind and activate 

macrophages [64–69].

While versican and hyaluronan are usually found together in complex formation within the 

pericellular ECM, there can be situations where only versican is present without hyaluronan 

and vice versa. Such alterations have a dramatic effect on how cells respond to various 

stimuli [70]. Other proteins such as inter-alpha-inhibitor (IαI) and tumor necrosis factor-

stimulated gene-6 (TSG-6), have link domains and interact through covalent cross linking, 

promoting the formation and organization of hyaluronan strands [29, 58–60, 71–74]. IαI is a 

serum protein that forms cross links with hyaluronan monomers through the catalytic 

activity of TSG-6 [58, 59, 71–73]. This type of cross linking stabilizes the hyaluronan-

enriched matrices and is prominent during provisional matrix formation. This is the only 

covalent modification known to occur on hyaluronan that facilitates changes in its 

organization and assembly critical to specific events in development and disease [29, 75, 
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76]. These interactions are critical to shaping both the microenvironment and the provisional 

matrix, and to a large extent may regulate the ability of hyaluronan to impact cell phenotype 

[29, 58, 59]. A recent study suggests that complexes that contain hyaluronan, versican, 

TSG-6, and IαI found on the surface (glycocalyx) of umbilical cord mesenchymal stem cells 

have immunosuppressive properties and protect the stem cells from immunodestruction [77]. 

Furthermore, this study went on to show that this versican/hyaluronan-enriched glycocalyx 

impacted both T cell and macrophage inflammatory phenotypes. Such results suggest that 

this hyaluronan/versican complex may be a valuable resource for immnunosuppressive and 

anti-inflammatory therapeutic approaches. Interestingly, in tumors, cancer stem cells 

synthesize and secrete prominent pericellular matrices enriched in hyaluronan and versican 

[78]. Such a “cell coat” may account, in part, for the resistance to chemotherapy that these 

cells exhibit, as well as protection from immune surveillance.

Hyaluronan and Versican as Components of the Pericellular Matrix

Cells alter the composition and organization of their microenvironment when they divide 

and migrate [31, 79]. This remodeling is driven by cytokines and growth factors. For 

example, PDGF promotes cell proliferation as part of the early growth response that occurs 

in development and in the early phase of wound repair. PDGF also stimulates cells to 

produce a pericellular matrix enriched in hyaluronan and versican forming a viscoelastic cell 

coat. This cell coat allows the cells to change shape and facilitates cell division and 

migration [31, 49, 79–82]. In fact, interfering with the formation of this ECM coat by 

treating the cells with short oligosaccharides of hyaluronan blocks their proliferation even in 

the presence of a mitogen [79]. It is postulated that all cells use this modification to different 

degrees for division and migration.

Several studies have investigated the structure and formation of the hyaluronan/versican-rich 

pericellular matrix that forms the provisional matrix for a number of cells. A technique to 

view the hyaluronan-dependent pericellular matrix is the particle exclusion assay, which was 

first utilized nearly forty years ago [83]. In this cell culture assay, a suspension of particles, 

usually fixed erythrocytes, is allowed to settle onto a cell culture dish containing cells. A 

clear zone surrounding the cell is made apparent by virtue of the exclusion of the red blood 

cells (RBCs) by the gel-like hyaluronan coat (Figure 3). When cells proliferate and/or 

migrate, hyaluronan and versican are secreted and form a coat in the pericellular space [31, 

79]. This coat excludes the RBCs used in the particle exclusion assay as it is possible to 

watch the coat spread and expand when using living cells (Figure 3A, B). Treatment of cells 

with hyaluronan-specific Streptomyces hyaluronidase removes the pericellular coat, 

indicating that the coat is hyaluronan-dependent. The size of the pericellular coat is 

dependent on the presence of an aggregating proteoglycan, such as aggrecan or versican, and 

is required to exclude erythrocytes in the particle assay [84, 85]. The presence of 

aggregating proteoglycans in the pericellular matrix confers a high fixed negative charge 

density due to the numerous CS chains, and can have important effects on the material 

properties and permeability of the matrix. In addition, this matrix allows cells to change 

shape and guides their proliferation and migration [44, 86]. Thus, the osmotic swelling 

pressure of the pericellular matrix is increased when more proteoglycans are present. The 

importance of the aggregating proteoglycans in the formation of the pericellular coat and 
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determination of cell phenotype is highlighted by a study examining dermal fibroblasts from 

ADAMTS5−/− mice which lack this versican-degrading protease [87]. The cells from these 

mice had thickened pericellular coats due to elevated versican content and exhibited a 

myofibroblast phenotype. However, crossing these mice to versican haplo-insufficient mice 

generated dermal fibroblasts with normal pericellular coats and normal cell phenotypes. 

Such findings indicate that the composition of the pericellular matrix can, in part, regulate 

cell phenotype.

Hyaluronan and Versican in Provisional Matrices in Development

Provisional matrices are highly malleable, viscoelastic, and compliant. They are important in 

the development of several organ systems in that hyaluronan and versican create tissue space 

for cell sorting and shifting during development. For example, expression and accumulation 

of versican occur in the dermal papillae and associated mesenchyme in the skin in distinct 

temporal and spatial patterns during hair follicle development, implicating versican in hair 

follicle maturation [88, 89]. Versican also increases concomitantly with hyaluronan during 

the pre-ovulatory follicular development period and expansion of the cumulus cell oocyte 

complex during ovulation [90, 91]. The uterine cervix undergoes changes during pregnancy 

and labor that transforms it from a closed rigid structure to a dilated distensible structure 

enriched in versican and hyaluronan to allow birth. This involves significant remodeling of 

the ECM with increases in hyaluronan and versican [92]. Versican expression is also high in 

the developing mesenchyme during limb development as the ECM expands prior to 

mesenchymal condensation [93, 94]. Transient expression of versican also occurs in 

migratory pathways of melanoblasts [95–98] and in neural crest migratory pathways and 

provides migratory cues for these developmental events [86, 99, 100]. Expression and 

processing of versican appear important during embryonic stem cell differentiation since the 

different splice variants of versican are upregulated and deposited along with ADAMTS-

generated versican fragments during embryoid body formation, with localization in the 

developing mesenchyme consistent with a role in epithelial-to-mesenchymal transition [101–

103]. While a distinct mechanistic role for hyaluronan and versican in stem cell 

differentiation is not known, it is of interest that changes in the expression of these ECM 

components accompany cardiomyocyte differentiation from undifferentiated human 

embryonic stem cells [104]. Provisional matrices enriched in hyaluronan and versican are 

involved in migratory activity of cells in endocardial cushion formation in the developing 

heart [105–107]. Interestingly, knocking out the gene for either hyaluronan or versican is 

embryonic lethal due to failure of the heart to form. In addition, the different isoforms of 

versican and/or the processing of versican together with hyaluronan in these matrices may 

control different aspects of cardiomyocyte differentiation and heart development as well 

[108–110].

Hyaluronan and Versican in Provisional Matrices in Blood Vessel Disease

The in vitro generation of hyaluronan/versican pericellular matrix can be seen in vivo as 

well. In blood vessels, these provisional matrices containing few collagen or elastic fibers 

[81, 111–114] (Figure 4) participate in early intimal hyperplasia in response to arterial 

injury, such as occurs in vascular angioplasty, stenting, and bypass grafting [63, 81, 115]. 
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Such matrices are postulated to support ASMC proliferative and migratory intimal 

expansion characteristic of early vascular disease. Inhibiting the accumulation of hyaluronan 

following arterial injury by treatment with 4-methylbelliferone (4-MU) in this animal model 

inhibits intimal hyperplasia [116]. Furthermore, animals deficient in HAS3, one of the 

enzymes responsible for hyaluronan synthesis, do not develop intimal hyperplasia when 

subjected to arterial injury [117]. Collectively, these studies indicate a critical role for 

hyaluronan in matrix expansion and ASMC proliferation in early arterial disease. We also 

know that these changes are found not only in experimental animals subjected to 

experimental injury, but also in humans who have undergone balloon angioplasty to debulk 

vascular lesions [111–114]. The restenotic lesions that occur following balloon angioplasty 

in patients can occur in less than a year after intervention and are composed primarily of an 

ECM of hyaluronan and versican creating an open wound bed [111–114] (Figure 4). In fact, 

this ECM has been likened to a provisional matrix in early wounds [118]. Such matrices are 

often termed “myxoid” and are devoid of collagens and other fibrous proteins necessary to 

offset the swelling pressure of the large proteoglycans and hyaluronan. Thus, it may be that 

the rapid closure of vessels that have undergone balloon angioplasty is due to edema and 

tissue swelling. On the other hand, loss or breakdown of the hyaluronan/versican complex 

could lead to the expulsion of water and tissue shrinkage (inward remodeling) and a 

compromise in arterial circumference [63]. This myxoid matrix is also characteristic of 

artery/vein anastomoses and failed vein grafts which are enriched in versican and 

hyaluronan with little collagen or elastic fibers [111–113, 119]. These myxoid matrices 

promote leukocyte invasion and accumulation, (see reviews: [29, 45, 120]) as described 

above. Interfering with the generation of this provisional matrix, such as inhibiting the 

accumulation of versican, completely blocks macrophage influx and lipid accumulation in 

an animal model of vascular injury with high fat feeding [68]. Other vascular diseases, such 

as idiopathic pulmonary hypertension, involve intimal hyperplasia, vascular remodeling, and 

inflammatory cell recruitment and are characterized by increases in hyaluronan [71, 121] 

and versican [122].

Hyaluronan and Versican in Provisional Matrices in Cancer

In addition, myxoid provisional matrices are formed in different types and stages in cancer 

[34–37, 123–127]. These ECMs are found in tumor stroma [124, 125, 128, 129] and have 

prompted the suggestion that “tumors are wounds that do not heal” [129, 130]. Clearly 

tumor stroma is enriched in fibrin, hyaluronan, and versican. Such a matrix that fails to 

transit to a more fibrous, cross-linked mature ECM could provide an environment for 

continued tumor growth, promoting tumor cell proliferation and migration [129]. In cancer, 

either the stromal cells surrounding the tumor or the tumor cells themselves produce 

hyaluronan/versican provisional matrices impacting tumor cell proliferation, migration, and 

metastasis [78, 123–125, 131]. For example, in a study of human leiomyosarcoma smooth 

muscle tumors which are enriched in versican, we found that the tumor cells exhibited thick 

pericellular coats in culture which could be reduced by inhibiting versican synthesis using 

siRNA treatment of these cells (Figure 5) [123]. Interestingly, blocking versican synthesis 

and accumulation in the pericellular matrices reduced tumor cell growth in vitro and the 

ability of these cells to form tumors in vivo in a mouse model of leiomyosarcoma [123] 
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(Figure 5). Such results indicate that controlling provisional matrix formation by tumor or 

stromal cells may represent a therapeutic approach for treating certain cancers.

Hyaluronan and Versican in Provisional Matrices in Angiogenesis

Support for the importance of such a provisional matrix in tumor growth is the impact of the 

ECM on growth of new blood vessels [132]. Angiogenesis is a normal and vital process in 

development, wound healing, and disease and, in part, takes place in matrices that are open 

and compliant such as found in the provisional ECM. Versican and hyaluronan also play a 

central role in angiogenesis [133–144]. We found, for example, that human stromal stem 

cells can regulate the angiogenic phenotype of endothelial cells by modulating the formation 

of hyaluronan- and versican-enriched provisional matrices [145]. Stromal stem cells that 

produce elevated levels of versican formed the most extensive vascular network when co-

cultured with vascular endothelial cells. Furthermore, patches containing these pro-

angiogenic cells, when transplanted onto uninjured athymic rat hearts, developed 50-fold 

more vessels than stromal cells with low versican expression [145]. The deposition of 

versican has been found to be linearly correlated with the number of microvessels in tumor 

stroma [146, 147]. Versican is actively processed during the early stages of VEGF-A-

induced pathological angiogenesis in tumors [136]. These observations, plus the fact that the 

tumor stroma contains provisional matrix components such as fibrin, fibronectin, and 

hyaluronan [129, 130, 148], highlight the importance of this specialized ECM in the 

pathogenesis of cancer. In angiogenic models, increased versican expression is often 

accompanied by increased expression of hyaluronan [149, 150]. Clearly hyaluronan and 

fragments of hyaluronan have been shown to play a key role in new blood vessel formation, 

affecting the behavior of endothelial cells [137–144]. The involvement of immune cells as 

part of this angiogenic phenotype in disease such as cancer is critical [151].

Hyaluronan and Versican in Provisional Matrices in Immune Regulation and 

Inflammation

Immune and inflammatory cells penetrate provisional matrices and come into contact with 

hyaluronan and versican. For example, intact hyaluronan interacts with regulatory T cells 

through CD44 and promotes their functional suppression of T cell responder proliferation, 

whereas degraded low molecular weight hyaluronan does not exhibit this activity [152, 153]. 

In addition, high molecular weight hyaluronan promotes the induction of IL-10 by TR-1 

regulatory cells. Such treatment is capable of abrogating an IL-10-dependent colitis in a 

mouse model, while fragmented hyaluronan is ineffective [154]. Both hyaluronan and 

versican, when produced by stromal cells under stress, such as endoplasmic reticulum (ER) 

stress, are strongly adhesive for T cells and this limits their migration [155]. The important 

role that hyaluronan and the provisional matrix play in disease progression has recently been 

highlighted by studies showing that interfering with hyaluronan accumulation in pancreatic 

islets and the brain can block the development of type 1 diabetes (T1D) [156] and the 

progression of multiple sclerosis [157] in experimental animals.

Leukocytes interact with complexes of hyaluronan and versican that have formed cable-like 

structures within the ECM [32, 45, 70, 158–162]. It has been proposed that the presentation 
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of hyaluronan in a crosslinked form, together with other hyaluronan binding molecules, 

leads to receptor clustering on leukocytes (or co-receptor engagement through the presence 

of accessory molecules on the cables) which promotes adhesion [58, 160]. Furthermore, 

these versican/hyaluronan-rich ECMs may be degraded by infiltrating leukocytes, generating 

small versican and hyaluronan fragments, which by themselves impact inflammatory events 

[163] as described above. ECM degradation is often referred to as a “danger signal” alerting 

the cells to remodel and repair the ECM so that homeostasis can be restored [164]. Some 

ECM fragments can promote vascularization as part of the repair process, such as is seen for 

hyaluronan fragments promoting new blood vessel growth [144]. In addition, hyaluronan 

fragments can be pro-inflammatory by stimulating inflammatory cytokine release by 

myeloid cells [165, 166]. The bioactive members of the ADAMTS family of proteases can 

degrade versican to form versican fragments such as versikine [167] which can be pro-

apoptotic in some systems [52] and/or immunoregulatory [168] in other systems. 

Furthermore, fragments of hyaluronan promote collagen production in some cells [140]. It 

has been suggested also that this form of “early inflammation” if not resolved may lead to 

further leukocyte infiltration and chronic inflammation and thus, eventually to fibrosis [169, 

170]. Others have suggested that hyaluronan/versican complexes could be anti-inflammatory 

and control leukocyte adhesion and activation, preventing the leukocytes from getting to 

their site of action [58, 158, 160]. Such examples highlight the importance of provisional 

matrix components controlling events such as immunity and inflammation. Other diseases 

that involve hyaluronan and versican impacting immune and inflammatory cell invasion 

include lung disease [76, 171–176], inflammatory bowel disease (IBD) [32, 158], kidney 

disease [162, 177], and autoimmune diseases, such as T1D [178, 179]. In diseases of the 

lung, both versican and hyaluronan accumulate as part of provisional matrices in 

subepithelial regions and perivascular compartments of the lung, impacting the recruitment 

of inflammatory cells, such as neutrophils, eosinophils, and macrophages. Hyaluronan-rich 

matrices in pancreatic islets are also prominent in autoimmune diseases, such as T1D in 

areas of insulitis where leukocyte invasion and destruction occur. Such observations raise 

questions as to the source of these ECM components in the diabetic islet and whether 

changes in the hyaluronan and versican content of the islet is the cause or the result of islet 

destruction by leukocytes.

Hyaluronan and versican interact with the surface of immune and inflammatory cells [33, 

180–182]. Current wisdom suggests that size matters when it comes to both hyaluronan and 

versican impacting immune cell phenotype [33, 182, 183]. Receptors, such as CD44 on 

lymphoid and myeloid cells, bind high molecular weight hyaluronan inducing clustering of 

CD44 and provoking signaling pathways involving p38, ERK1,2, Akt, MEK ,FAK resulting 

in the production of anti-inflammatory cytokines such as IL-10 [33, 182]. On the other hand, 

fragmented hyaluronan binds toll-like receptors (TLRs), such as TLR2 and TLR4, which 

initiates signaling cascades that involve MYD88, IRAK, TRAFs resulting in upregulation of 

NFκB. This pathway drives the expression of pro-inflammmatory cytokines by myeloid 

cells such as IL-6, TNFα and IL1β [180]. While receptors and signaling pathways have 

been identified for hyaluronan on immune cells [181], less is known about the binding of 

versican to immune and inflammatory cells. One way versican can affect immune cell 

phenotype is through its binding to hyaluronan. In fact, we found that incubating versican 

Wight Page 9

Matrix Biol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with hyaluronan before adding to activated T lymphocytes inhibited the binding of 

hyaluronan to the lymphocytes and blocked the migration of T lymphocytes [155]. In 

addition, versican and versican fragments, like hyaluronan fragments , can bind TLR2 and 4 

and induce inflammatory cytokine release from monocytes/macrophages [168, 184–192] 

providing yet another example of how ECM components possess bioactivity and regulate 

critical events during the early inflammatory response.

Dynamic ECM Remodeling of Hyaluronan and Versican: From Provisional 

Matrix to Fibrotic Matrix

Once the proliferative phase has occurred and leukocytes have migrated into a wound site, 

the provisional ECM is remodeled [193]. This coincides with the appearance of the 

myofibroblast, a specialized form of fibroblast whose differentiation is primarily driven by 

cytokines, such as TGF-β and mechanical tension [194, 195]. A number of other cytokines 

such as connective tissue growth factor, insulin-like growth factor-1 and PDGF have been 

identified as pro-fibrotic cytokines. Myofibroblasts are responsible for wound closure and 

for the formation of a collagen-rich scar [194, 196]. It is also the myofibroblasts that are 

thought to be responsible for the excessive production of collagen leading to fibrosis and 

tissue destruction in multiple diseases.

Interestingly, the myofibroblast seems to be dependent upon the synthesis and secretion 

hyaluronan and versican which are prominent players in the provisional matrix stage of 

ECM maturation. Hyaluronan secretion has been intimately connected with the maintenance 

of the myofibroblast phenotype and thus may have a role in fibrosis [169, 197–203]. 

Association of hyaluronan with CD44 influences the positioning of TGF-β receptors which 

can have an impact on TGF-β signaling [204, 205]. Furthermore, blocking the synthesis of 

hyaluronan in fibroblasts inhibits the increase in α-actin expression induced by TGF-β 
during the fibroblast-to-myofibroblast conversion [201]. Since removal of cell surface 

hyaluronan is known to destabilize focal adhesions involved in cell attachment [206], these 

findings point to the possibility that hyaluronan, as a constituent of the cross-linked 

pericellular matrix, may cooperate with focal adhesions to provide the mechanical tension 

needed to maintain the myofibroblast phenotype. Molecules, such as hyaluronan, that 

interact with fibrillar collagens, will modulate the mechanical properties of the collagen and 

alter the contractile forces that can be generated by the cells [207]. Furthermore, release of 

mechanical tension in myofibroblasts can result in a wave of apoptosis and cell loss [208, 

209], suggesting that pericellular hyaluronan may promote survival of the myofibroblast. In 

addition, the capacity of a cell to synthesize and secrete hyaluronan in response to TGF-β 
has been linked to a fibrotic cell phenotype. For example, fibroblasts isolated from human 

oral mucosa are resistant to TGF-β-driven myofibroblast conversion [198] and this 

difference has been associated with scar-free healing of the oral mucosa. However, human 

dermal fibroblasts are readily converted to myofibroblasts by TGF-β and form scars with 

healing. In dermal fibroblasts, myofibroblast conversion is associated with an induction of 

the hyaluronan synthases, HAS1 and HAS2, and formation of a pericellular coat. Changes in 

these enzymes and pericellular coat formation were not observed for the oral fibroblasts in 

response to TGF-β [198]. While it is not entirely clear how pericellular hyaluronan 
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promotes events leading to fibrosis, one possibility is that the hyaluronan-enriched ECM that 

forms around cells in response to pro-inflammatory agonists attracts and retains 

inflammatory cells, thus driving the inflammation associated with fibrosis [70, 158, 198]. 

Recent studies by Paul Noble’s group have demonstrated that overexpression of HAS2 in 

murine mesenchymal cells regulates the invasiveness of fibroblasts and promotes pulmonary 

fibrosis [210]. Furthermore, this same group has shown that HAS2 controls fibroblast 

senescence [211] and that targeting HAS2 could be an attractive therapeutic approach to 

resolve tissue fibrosis. These studies however have been further complicated by studies from 

our own group [212] which showed that removal of hyaluronan from TGF-β-stimulated 

myofibroblasts promotes the fibrotic phenotype by increasing, rather than inhibiting, the 

expression and accumulation of collagen I and fibronectin (Figure 6). These results differ 

from those cited above and raise questions as to how these different ECM components 

interact and how this interaction creates altered cell phenotypes. It may be that it matters if 

other hyaluronan binding molecules such as versican participate. It also may be a timing 

issue in that short treatments to reduce hyaluronan may impact phenotype in one way 

whereas longer treatment periods may have opposite effects. Versican also may exhibit pro-

fibrotic activity. For example, forced expression of versican V1 in cultured fibroblasts leads 

to the induction of the myofibroblast phenotype and the production of collagens [213]. Thus, 

while versican and hyaluronan are prominent players in the generation and activity of the 

provisional matrix, their relative concentration and availability may also be critical for the 

transition of this matrix to a more fibrotic matrix. Such questions need to be answered if 

progress in preventing fibrosis is to be achieved.

Summary and Conclusions

In summary, the provisional matrices that form early in both development and disease 

pathogenesis are enriched in hyaluronan and versican. These molecules can act singularly, 

together, or as part of a complex to promote assembly of a specialized ECM that is open, 

viscoelastic, and compliant. Not only do they contribute to mechanical properties of tissue, 

but also they influence the phenotype of the cells with which they interact. Thus, hyaluronan 

and versican are emerging as potential targets for therapeutic intervention across a variety of 

disease conditions where tissues form provisional matrices as a part of early pathogenesis.
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Highlights

• Versican and hyaluronan are enriched in Provisional Matrices

• Provisional matrices occur in development and early stages of disease 

pathogenesis

• Versican/hyaluronan complexes facilitate cell proliferation and migration

• Versican/hyaluronan interact with immune and inflammatory cells

• Inhibition of versican and/or hyaluronan accumulation alters disease 

progression
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Figure 1. 
ECM transitions in the pericellular matrix required for cell shape changes in r cell 

proliferation and migration. Growth factors such as PDGF and/or TGF-β stimulate arterial 

smooth muscle cells to produce hyaluronan and versican which interact and expand the 

tissue space by entrapping water. Reprinted from Advanced Drug Delivery Reviews, Volume 

59, Evanko SP, Tammi, MI, Tammi, RH, Wight, TN. Hyaluronan-dependent pericellular 

matrix, pages 1351–65, Copyright 2007, with permission from Elsevier.
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Figure 2. 
(A) Pericellular hyaluronan cables. Recombinant G1 domain of versican (red) was added to 

cultured human dermal fibroblasts and the cultures stained for hyaluronan (green). The G1 

domain bound to the hyaluronan strands causing them to aggregate (yellow). These cable-

like strands were observed connecting adjacent cells in a perinuclear distribution. (B) 

Pericellular hyaluronan/versican cables bind leukocytes. Adhesion of T lymphocytes 

(purple) to a hyaluronan (red)/versican (green)-enriched cable in the pericellular matrix of 

fibroblasts. Panel A is reprinted from Merrilees MJ, Zuo N, Evanko SP, Day AJ, Wight TN. 

G1 domain of versican regulates hyaluronan organization and the phenotype of cultured 

human dermal fibroblasts. J Histochem Cytochem. 64:353–363, 2016. Panel B is reprinted 
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from Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1840, Issue 8, Wight 

TN, Kinsella MG, Evanko SP, Potter-Perigo S, Merrilees MJ. Versican and the regulation of 

cell phenotype in disease, pages 2441–2451, Copyright 2014, with permission from Elsevier.
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Figure 3. 
Video microscopic images of migrating (A, B, C) and dividing (D-G) human vascular 

smooth muscle cells treated with PDGF. Fixed red blood cells (particles) have been added to 

the living culture and are being excluded from the pericellular matrix by the viscoelastic 

versican/hyaluronan matrix. The formation of this matrix facilitates cell shape change and is 

permissive for cell proliferation and migration. Reprinted from Chemistry and Biology of 
Hyaluronan, Garg HG, Hales CA, eds. Wight TN, Evanko S, Kolodgie F, Farb A, Virmani R, 

Chapter 14, Hyaluronan in atherosclerosis and restenosis, pages 307–321, Copyright 2004, 

with permission from Elsevier.
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Figure 4. 
Hyaluronan accumulates in blood vessels following balloon angioplasty. Rat carotid artery 

stained for hyaluronan (red) and proliferative cell nuclear antigen (brown). (A) Uninjured. 

Hyaluronan is confined to the adventitia with little to no staining for PCNA. (B) 3 days after 

balloon injury, positive PCNA staining appears in the media surrounded by hyaluronan 

staining (red). (C) By 7 days, a neointima has formed consisting of PCNA-positive cells in a 

“sea” of hyaluronan (red). Versican is also present with hyaluronan, but little to no collagen 

or elastic fibers are present. (D) A section of a human coronary restenotic lesion retrieved 3 

months after angioplasty and doubled stained for PCNA (brown) and hyaluronan (red). This 

myxoid ECM is also enriched in versican (not shown) with little to no collagen or elastic 

fibers present. Originally published in Circulation. Riessen R, Wight TN, Pastore C, Henley 

C, Isner JM. Distribution of hyaluronan during extracellular remodeling in human restenotic 

arteries and balloon-injured rat carotid arteries. Circulation. 1996; 93:1141–1147. Wolters 

Kluwer Health Lippincott Williams & Wilkins©.
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Figure 5. 
Versican in tumor provisional matrix. (A) Section of normal human myometrium stained for 

versican showing no staining. (B) Grade 2 leiomyosarcoma stained for versican (brown) 

showing extensive immunostaining. (C) Northern blot analyses showing enrichment for the 

versican signal in the tumor compared to control. (D–F) Leiomyosarcoma smooth muscle 

(LMS) cells in culture treated with fixed red blood cells to image the pericellular matrix. (D) 

The LMS cells exhibit extensive pericellular coats. E. Pericellular matrix of the LMS cells 

after treatment with siRNA to versican. (F) LMS pericellular coat 24 hours after adding back 

versican to cells shown in B. (G) Tumor growth in a mouse model of LMS using LMS cells 

treated or not treated with siRNA to versican. This figure shows reduced tumor growth in the 

animals receiving siRNA versican LMS cells. This research was originally published in 

Journal of Biological Chemistry. Keire PA, Bressler SL, Lemire JM, Edris B, Rubin BP, 

Rahmani M, McManus BM, van de Rijn M, Wight TN. A role for versican in the 

development of leiomyosarcoma. J Biol Chem. 2014; 289:34089–103. © by the American 

Society for Biochemistry and Molecular Biology.
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Figure 6. 
Impact of hyaluronan on synthesis and accumulation of fibronectin and collagen. TGFβ1-

treated myofibroblasts were left untreated (A) or treated with 4-MU (B), hyaluronan 

oligosaccharides (C) or Streptomyces hyaluronidase (D) for 4 days. Cultures were stained 

for fibronectin (red) and hyaluronan (green). Parallel cultures undergoing the same 

treatments were evaluated for collagen I (E) and fibronectin (F) gene expression using qRT-

PCR. Results indicate that chronic removal of HA from TGF-β1-treated myofibroblasts 

increases their fibrotic response by promoting collagen and fibronectin synthesis and 

accumulation. Reprinted from Matrix Biology, Vol. 42, Evanko SP, Potter-Perigo S, Petty 

LJ, Workman GA, Wight TN, Hyaluronan controls the deposition of fibronectin and 
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collagen and modulates TGF-β1 induction of lung myofibroblasts, Pages 74–92, Copyright 

(2015), with permission from Elsevier.
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