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The aim of the present study was to evaluate in vitro effects of dietary phytochemicals naringenin, quercetin, and sesamin on the
activities of ethoxy- (EROD; CYP1A) and benzyloxy- (BROD; CYP3A) resorufin O-dealkylases after the exposure to the cocktail of
persistent organic pollutants (POPs). CD-1 mice were exposed from weaning, through gestation and lactation to a defined mixture
of POPs. Hepatic microsomes were prepared from their female offspring at postnatal day 42. Hepatic EROD and BROD activity
were evaluated in the presence of quercetin, naringenin, and sesamin at nine concentrations from 5 to 100000 nM. EROD activity
was strongly inhibited by quercetin with 𝐾𝑖 values from 1.7 to 2.6 𝜇M. BROD activity was inhibited by quercetin with 𝐾𝑖 values
from 64.9 to 75.3 𝜇Mand naringenin with𝐾𝑖 values from 39.3 to 45.8 𝜇M.The IC50 and𝐾𝑖 values did not differ between the groups
of mice with different levels of POPs exposure in any of the experimental sets. Sesamin did not inhibit either EROD or BROD. We
concluded that the interactions of quercetin and naringenin with CYP1A and CYP3A in mice liver were not affected by the levels
of POPs exposure.

1. Introduction

One of the greatest problems that the world is facing today is
increased contamination of global environment by persistent
organic pollutants (POPs). These compounds generally are
not biodegradable and bioaccumulate in food chains, exert-
ing adverse health effects in both humans and animals such
as cancer risk, reproductive disorders, endocrine disruption,
and genotoxicity [1].

Many pollutants act as inducers of several hepatic
cytochrome P450 enzymes (CYP450) [1], which are respon-
sible for metabolism of various endogenous compounds and
xenobiotics. Thus, CYP450 activity can be used as a marker
of contaminants in several species [2]. Among the CYP450s,
CYP1A, CYP2E1, and CYP3A are involved in the activation
of precarcinogens to highly reactive products which cause

carcinogenicity in humans and experimental animals and
thus are at least partly related to cancer formation [3, 4]. Some
studies suggest that induction of catalytic activity of these
enzymes is associated with increased risk of various forms
of cancer (reviewed by [5, 6]). Humans are permanently
exposed to several hundred anthropogenic chemicals at the
same time, which are also known to modulate activities of
CYP450 enzymes. Environmental pollutants often influence
the expression of various genes by modulating inducible
sequences in promoter regions, called responsive elements
[6]. It is likely that organisms exposed to CYP450-inducing
chemicals have an enhanced metabolism of drugs that are
metabolized by the induced enzymes.

A number of plant-originated phytochemicals have been
identified as inhibitors of CYP450 activity. These naturally
occurring chemicals are usually associated with beneficial
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Figure 1: In vitro inhibition of CYP1A by quercetin, naringenin, and sesamin in the microsomes from mice exposed to different levels of
POPs (𝑛 = 6mice per group). CYP1A activity was measured by the rate of 7-ethoxyresorufin O-deethylation. Data are presented as the mean
percentage of remaining activity and standard error of the enzyme activity in 6 mice.

effects and low toxicity. Moreover, some studies demon-
strated that they can be effective in cancer prevention [7].
For example, bergamottin, imperatorin, and isopimpinellin
inhibited humanCYP450 and block benzo[a]pyrene and 7,12-
dimethylbenz[a]anthracene DNA adduct formation [8]. In
mammals, quercetin and naringenin inhibited CYP1A and
CYP3A activities in both in vivo and in vitro studies [9–
12]. Sesamin, one of the major lignans from sesame seeds,
inhibited human CYP2C9 [13] and fish CYP1A [14].

We hypothesized that induction of major drug-
metabolizing enzyme activities by a mixture of POPs
can be suppressed by phenolic compounds. Specifically, the
aim of the present study was to evaluate in vitro effects of the
dietary phytochemicals naringenin, quercetin, and sesamin
on CYP1A and CYP3A activities in mice exposed to POPs.
These two enzymes were chosen because of their importance
in the metabolism of pollutants (especially CYP1A) and in
drug metabolism (CYP3A).

2. Material and Methods

2.1. Animals and Sampling. Liver samples from CD-1
mice were obtained from the Section for Experimental
Biomedicine at The Norwegian University of Life Sciences in
Oslo, Norway. The unit is licensed by the Norwegian Food
Safety Authority (NFSA; https://www.mattilsynet.no/dyr_
og_dyrehold/dyrevelferd/forsoksdyr/) and accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care (https://www.aaalac.org). The study was
approved by the unit’s animal ethics committee (Institutional
Animal Care and Use Committee/IACUC) and NSFA. The
CD-1 F1 generation was exposed, through feed, to a defined
mixture of POPs with the ratio of individual POP levels
representing reported ratios in a Scandinavian diet. The
exposure groups received either a low- or high-dose diet,
estimated as 5000 times or 100,000 times human daily intake,
respectively. Both control and exposure groups were fed from

https://www.mattilsynet.no/dyr_og_dyrehold/dyrevelferd/forsoksdyr/
https://www.mattilsynet.no/dyr_og_dyrehold/dyrevelferd/forsoksdyr/
https://www.aaalac.org


BioMed Research International 3

Low

1 2 3 4 50
7-Ethoxyresorufin (�휇M)

0

20

40

60

80

100

120

Ve
lo

ci
ty

 (p
m

ol
/m

in
/m

g)

Quercetin 0 nM
Quercetin 100 nM

Quercetin 5000 nM
Quercetin 100000 nM

Unexposed

1 2 3 4 50
7-Ethoxyresorufin (�휇M)

0

20

40

60

80

100

120
Ve

lo
ci

ty
 (p

m
ol

/m
in

/m
g)

Quercetin 0 nM
Quercetin 100 nM

Quercetin 5000 nM
Quercetin 100000 nM

High

0

20

40

60

80

100

120

Ve
lo

ci
ty

 (p
m

ol
/m

in
/m

g)

1 2 3 4 50
7-Ethoxyresorufin (�휇M)

Quercetin 0 nM
Quercetin 100 nM

Quercetin 5000 nM
Quercetin 100000 nM

Figure 2: Michaels-Menten kinetics of 7-ethoxyresorufin O-dealkylation with or without quercetin in the microsomes from mice exposed
to different levels of POPs.

weaning, through gestation and lactation.The F2 generation,
exposed in utero and during lactation, were euthanized by
necropsy at postnatal day 42.

Liver samples were taken immediately after necropsy,
frozen in ethanol and dry ice, and stored at −80∘C until
use.Themicrosomal fractions were prepared using a calcium
aggregation method. Microsomal protein concentration was
determined with a commercially available kit (Bio-Rad labo-
ratories Inc., Hercules, CA, USA) according to the manufac-
turer’s instructions.

2.2. CYP450 Activity Assays. In mice, O-dealkylation of 7-
ethoxyresorufin is catalyzed by CYP1A1 and CYP1A2 [15],
and O-dealkylation of 7-benzyloxyresorufin by CYP3A11
enzyme [16]. The activities of CYP1A and CYP3A were
determined as a rate of ethoxy- (EROD) and benzyloxy-
(BROD) resorufin O-dealkylation, respectively. Incubation
mixtures contained microsomal protein (0.2mg), phosphate
buffer (pH 7.4, 50mM), and appropriate substrate (1𝜇M of
7-ethoxyresorufin or 2 𝜇M of 7-benzyloxyresorufin). Reac-
tions were initiated by the addition of 0.5mM NADPH.

The reaction mixture, in a final volume of 500 𝜇L, was
incubated in a water bath at 37∘C for 5min (EROD) or
7min (BROD), and afterwards the reactions were terminated
with ice-cold methanol (500𝜇L), followed by centrifugation
at 7,500×g. Resorufin concentrations were measured as
previously described [11, 12]. ERODandBRODactivitieswere
expressed as pmol of resorufin per milligram protein and
minute. Incubation conditions were linear with respect to
incubation times and microsomal protein concentrations.

2.3. Inhibition Assays. EROD and BROD activities were
initially evaluated in the presence of quercetin, naringenin,
and sesamin at nine concentrations from 5 to 100000 nM. To
examine the inhibition mode, the activities were determined
in the presence of 2 or 3 inhibitor concentrations over the
substrate concentration ranges 0.005 to 4.0𝜇Mfor ERODand
0.05 to 8𝜇M for BROD, respectively. The stock solutions of
quercetin, naringenin, and sesamin were prepared in DMSO
and added to incubations to yield final concentrations of 5,
10, 50, 100, 500, 1000, 2000, 1000, and 100000 nM. The final
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Figure 3: In vitro inhibition of CYP3A by quercetin, naringenin, and sesamin in hepatic microsomes from mice exposed to different levels
of POPs (𝑛 = 6 mice per group). CYP3A activity was measured by the rate of 7-benzyloxyresorufin O-debenzylation. Data are presented as
the mean percentage of remaining activity and standard error of the enzyme activity in 6 mice.

Table 1: Activities of CYP1A (EROD) andCYP3A (BROD) (pmol/min/mg pf protein) in the hepaticmicrosomes frommice of the unexposed,
low-exposed, and high-exposed groups.

Enzyme Level of exposure
𝑃 value

Unexposed Low High
CYP1A (EROD) 21.2a ± 1.22 32.7ab ± 1.22 46.5b ± 1.22 0.078
CYP3A (BROD) 2.9a ± 2.15 16.8a ± 2.15 240.1b ± 2.15 0.018
EROD, 7-ethoxyresorufin O-dealkylase; BROD, 7-benzyloxyresorufin O-dealkylase. The activities were measured using a single substrate concentration (1 𝜇M
of 7-ethoxyresorufin for EROD, and 2 𝜇M of 7-benzyloxyresorufin for BROD). EROD and BROD activities were expressed as pmol of resorufin per minute
and milligram protein. Data are presented as geometric means and standard errors. 𝑃 value shows the overall effect of treatment on enzyme activity. Within a
row mean values with different superscripts significantly differ (𝑃 < 0.05).

DMSO content in the incubations was 0.5%. The control
incubations contained the same concentration of DMSO.

2.4. Data Analysis. Comparison of enzymatic activities in
the absence of the inhibitors between studied groups was
performed on logarithmically transformed values using a

mixed model with fixed effect of treatment (SAS version 9.3,
SAS Institute Inc., Cary, NC, USA). The IC50 (concentration
causing 50% reduction of control activity) and 𝐾𝑖 values for
inhibitors were calculated by nonlinear regression analysis
using GraphPad prism version 4.0 for Windows (GraphPad,
San Diego, CA, USA). Comparisons of IC50 and 𝐾𝑖 values
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Figure 4: Michaels-Menten kinetics of 7-benzoxyresorufin O-dealkylation with or without quercetin in the microsomes frommice exposed
to different levels of POPs.

Table 2: IC50 and 𝐾𝑖 values (𝜇M) for naringenin, quercetin, and sesamin calculated for mice from the unexposed, low-exposed, and high-
exposed groups.

Enzyme Phytochemical Level of exposure
𝑃 value

Unexposed Low High

CYP1A (EROD)

Quercetin
IC50 5.4 (1.5–19.6) 5.1 (1.7–15.8) 5.8 (3.2–10.5) 0.819
𝐾𝑖 1.7 (1.2–2.3) 2.6 (1.9–3.4) 2.6 (1.8–3.2) 0.721

Naringenin No inhibition
Sesamin No inhibition

CYP3A (BROD)

Quercetin
IC50 30.2 (10.4–41.7) 27.1 (9.3–28.7) 35.7 (20.4–83.2) 0.266
𝐾𝑖 67.1 (50.3–83.7) 64.9 (34.3–76.3) 75.3 (29.1–93.8) 0.893

Naringenin
IC50 40.3 (9.5–112.3) 49.1 (11.5–98.4) 43.1 (20.2–98.5) 0.925
Ki 42.1 (30.3–78.9) 45.8 (25.6–82.1) 39.3 (28.5–64.9) 0.271

Sesamin No inhibition
EROD, 7-ethoxyresorufinO-dealkylase; BROD, 7-benzyloxyresorufinO-dealkylase. Data are presented as geometricmeans and confidence interval in brackets.
𝑃 value shows the overall effect of group on IC50 and𝐾𝑖 values.
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Figure 5:Michaels-Menten kinetics of 7-benzoxyresorufinO-dealkylation with or without naringenin in themicrosomes frommice exposed
to different levels of POPs.

between the studied groups were performed on logarithmi-
cally transformed values using one-way analysis of variance,
followed by the Tukeymultiple-comparisons test. Differences
were regarded as significant when 𝑃 < 0.05.

3. Results

The activities of EROD and BROD in mice without addition
of phytochemicals differed and were highest in the offspring
of mice that received the highest concentrations of POPs
(Table 1).

EROD activity was competitively inhibited by quercetin
(Figures 1 and 2; Table 2). Neither IC50 nor𝐾𝑖 values differed
between the groups of mice with different levels of POPs
exposure (Table 2). Neither naringenin nor sesamin inhibited
EROD activity at the concentrations tested (Figure 1, Table 2).

BROD activity was noncompetitively inhibited by
quercetin and naringenin (Figures 3, 4, and 5). The IC50
and 𝐾𝑖 values of quercetin and naringenin were similar in

all groups (Table 2). Sesamin did not inhibit BROD activity
(Figure 3, Table 2).

4. Discussion

Awide array of plant-derived polyphenols decrease toxicant-
induced oxidative stress and inflammation in various cell
types, tissues, and animal species [17–20] and have been
suggested to be protective against POP-mediated oxidative
stress, inflammation, and toxicity [20]. It is likely that dietary
flavonoids may play a role in protecting against POPs-related
health disorders. Bearing in mind that CYP450 enzymes
play an important role in carcinogenesis, identification of
inhibitors of these enzymes is of huge interest.

A large number of studies investigated modulation of
CYP450 activity by a single foreign compound, either drug,
pollutant, or food-derived component [21]. However, expo-
sure to a single compound does not reflect real life expo-
sures. In the present study we investigated the ability of
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quercetin, naringenin, and sesamin to affect two major drug-
metabolizing enzymes CYP1A and CYP3A after exposure
to a mixture of POPs relevant to human exposure scenar-
ios. Activity of both enzymes was previously shown to be
induced by the presence of POPs [22]. It is well known
that CYP1A-dependent EROD activity is induced by var-
ious toxicants including polycyclic aromatic hydrocarbons
(PAH), polychlorated biphenyl (PCB), or polychlorodibenzo-
p-dioxine (PCDD) [23–25]. As expected, EROD activity in
the present study was higher in mice exposed to high POPs
concentrations. Additionally, CYP1A activity is affected by
the presence of bioactive compounds such as quercetin [26].
In the present study, the inhibitory potency of quercetin was
compared in offspring of mice exposed to low and high levels
of POPs. EROD activity was inhibited by quercetin with a
similarmagnitude in the control and exposedmice indicating
that quercetin can interact with CYP1A and probably alter
metabolism of CYP1A substrates independently of the levels
of POPs exposure. Similarly, quercetin inhibited CYP3A-
dependent BROD activity inmice independently of the levels
of POPs exposure.

Naringenin inhibited CYP3A-dependent BROD activity
somewhat stronger in the offspring of mice with high level
of exposure of POPs. However, similarities in IC50 values
imply no relevant effect of exposure to POPs on the ability of
naringenin to affect CYP3A activity. Thus, we concluded that
the interactions of quercetin and naringenin with CYP1A and
CYP3A in mice liver were not affected by the levels of POPs
exposure.

It should be emphasized that in vitro inhibition does
not necessarily translate to physiologically relevant in vivo
reduction of hepatic CYP1A activity.The fact that we used an
in vitro approach in this study can be regarded as a limitation.
Indeed, in vitro results cannot entirely reproduce a complex
in vivo situation. However, we believe that in vitro studies
provide a sound basis for in vivo approaches and is in agree-
ment with a 3R (reduction, refinement, and replacement)
strategy advocating use of a minimum number of animals.

In conclusion, the results of the present study demon-
strated that the interactions of quercetin and naringenin with
CYP1A and CYP3A in mice liver were not affected by the
levels of POPs exposure.
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