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Summary

Memory skills strongly differ across the general population, however little is known about the 

brain characteristics supporting superior memory performance. Here, we assess functional brain 

network organization of 23 of the world’s most successful memory athletes and matched controls 

by fMRI during both task-free resting state baseline and active memory encoding. We demonstrate 

that in a group of naïve controls, functional connectivity changes induced by six weeks of 

mnemonic training were correlated with the network organization that distinguishes athletes from 

controls. During rest, this effect was mainly driven by connections between rather than within the 

visual, medial temporal lobe and default mode networks, whereas during task it was driven by 

connectivity within these networks. Similarity with memory athlete connectivity patterns predicted 

memory improvements up to 4 months after training. In conclusion, mnemonic training drives 

distributed rather than regional changes, reorganizing the brain’s functional network organization 

to enable superior memory performance.
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Introduction

Memory is one of the core components of human cognition. Memory is critical for learning 

new information and allows one to plan for the future (Schacter et al., 2007). The sense of 

self is defined, in part, by one’s ability to remember past events. It is understandable, 

therefore, that few brain disorders are feared more than Alzheimer’s disease, the 

quintessential disorder of memory loss. The medial temporal lobes have been linked to 

memory since the seminal early reports on patient H.M (Scoville and Milner, 1957). 

Increasingly, however, the field has moved from a region-based understanding of memory 

function to a network-based approach. The network approach maintains the importance of 

MTL structures while highlighting the relevance of their interactions with cortical structures 

like the angular gyrus and posterior cingulate cortex, among others (Greicius et al., 2003, 

2006; Vincent et al., 2006). The network approach has begun to inform our understanding of 

Alzheimer’s disease and how it might spread progressively to other brain regions (Seeley et 

al., 2009).

In order to better understand the network structure supporting memory, we focus here not on 

memory loss but on memory gain. The top participants of the annual World Memory 

Championships regularly demonstrate the ability to memorize hundreds of words, digits or 

other abstract information units within minutes (Foer, 2011). Surprisingly, such memory 

skills do not seem to be associated with extraordinary brain anatomy or general cognitive 

superiority, but are acquired through deliberate training in mnemonic strategies (Maguire et 

al., 2003; Dresler and Konrad, 2013). The most prominent mnemonic technique is the 

method of loci, an ancient technique used extensively by Greek and Roman orators (Yates, 

1966)). It utilizes well-established memories of visuospatial routes: During encoding, to-be-

remembered information is visualized at salient points along such a route, which in turn is 

mentally retraced during retrieval. While numerous behavioral studies have demonstrated the 

efficacy of mnemonic strategies such as the method of loci (Worthen and Hunt, 2011), data 

on the brain changes underlying mnemonics are sparse. Previous fMRI studies have 

demonstrated transient activation of visuospatial brain regions during use of the method of 

loci in both expert and novice users (Maguire et al., 2003; Nyberg et al., 2003). More long-

lasting changes in baseline brain function or anatomy, however, have not been observed in 

mnemonic experts, possibly because distributed effects or distinctive brain network 

connectivity patterns are difficult to detect on the basis of very small sample sizes. To 

elucidate changes in baseline brain function due to extensive training in mnemonic 

strategies, here we investigate brain networks that are associated with memory and 

visuospatial processing. We compare fMRI functional connectivity patterns of a comparably 

large sample of the world’s leading memory athletes with mnemonics-naïve subjects before 

and after an intense training in the method of loci.

Results

Memory assessment and training

We investigated 23 memory athletes (aged 28±8.6 years, 9 female) out of the Top-50 of the 

memory sports world ranking list with magnetic resonance imaging assessing both brain 

anatomy and function during task-free rest before engaging in memory tasks. All of these 
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participants attribute their superior memory skills to deliberate training in mnemonic 

strategies. The memory athletes were compared with a control group closely matched for 

age, sex, intelligence, and handedness. 17 of the 23 athletes participated in a word learning 

task under fMRI conditions where they demonstrated their superior memory abilities 

compared to controls (70.8±0.6 vs. 39.9±3.6 of 72 words correctly recalled 20 minutes after 

encoding; Median: 72 vs. 41; Wilcoxon signed ranks test p<0.001, r=0.62).

To whether naïve controls can improve their memory with mnemonic training similar to that 

of memory athletes, 51 participants (aged 24±3.0 years, all male) without any prior 

experience in mnemonic strategies completed two fMRI sessions over a six-week interval 

(Fig. 1). In each session, all participants performed a memory test in which they memorized 

72 words. Memory was tested with free recall after 20 minutes and again after 24 hours. 

After the 24 h retest of the first session, subjects were pseudo-randomly assigned to either 

six weeks (40 x 30 minutes) of mnemonic training in the method of loci, or an active (n-back 

working memory training) or passive (no training) control condition (Fig. 1). At the 

conclusion of the six-week training period, participants returned for a post-training 

assessment that again included a resting-state fMRI scan and a further encoding session of 

72 new words, followed by free recall after 20 minute and 24 hour delays. Four months after 

training completion, participants of all three groups were invited again for a memory test of 

the 72 words used in the first session to assess potential long-term benefits of mnemonic 

training.

We observed significantly improved memory performance in the participants of the 

mnemonic training condition in the second experimental session, and this improvement was 

significantly greater than observed in participants of the active and passive control groups 

(F2,48>20, p<.001, η2>.4 each). These effects persisted at the four-month follow-up 

(F2,43=13.4, p<.001, η2=.39; Fig. 2 and supplemental table S2).

Resting state brain network connectivity

We were interested in the functional organization of brain networks underlying mnemonic 

expertise in memory athletes in comparison to brain network reorganization as a result of an 

intense mnemonic training in naïve subjects. All participants underwent a T1-weighted 

anatomical scan and an 8-minute resting-state fMRI (rs-fMRI) scan with a 3.0T scanner. 

Scans were completed before engaging in any memory-related activity, ensuring the 

assessment of pure baseline brain network organization. After fMRI data preprocessing, 

functional connectivity (FC) was calculated between 71 regions of interest (ROIs) 

distributed across 6 brain networks related to memory and visuospatial processing (Fig. 3). 

FC was compared between athletes and controls with a two-sample t-test, producing a 71 x 

71 connectivity matrix cataloguing differences in pairwise FC (athletes-controls connectivity 

matrix, Fig. 4). This difference matrix was then used as a starting point to test whether this 

network organization was innate to the athletes or could be instilled by 6 weeks of 

mnemonic training in naïve subjects. In the training groups we therefore calculated pre- and 

post-training connectivity matrices in the same manner as above. Using paired t-tests, we 

produced three 71 x 71 connectivity difference matrices documenting training changes in 

connectivity for each training condition. We then compared these FC changes for each 
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training group with the FC pattern that distinguished athletes from controls by correlating 

the two T-score matrices. We found that mnemonic training elicited changes in brain 

network organization that significantly resembled the network connectivity patterns that 

distinguish memory athletes from controls (Fig. 4, r=.22, p<.005). Neither the active nor 

passive control group experienced similar changes in neural network organization (r<.02, p>.

6 each). In contrast to this multivariate effect of global connectivity similarity, none of the 

univariate differences between any of the groups were significant after correction for 

multiple comparisons via false discovery rate. In other words, without comparison to the 

athlete/control connectivity difference pattern, no connectivity changes through mnemonic 

training would have been observed in our sample.

Association with behavioral measures

We next examined whether brain network re-organization was related to improved memory 

performance. We calculated the correlation of each individual subject’s connectivity-change 

matrix (post- minus pre-training FC matrix), to the athletes-controls matrix, producing 51 

different similarity values, one for each participant across the three training arms. These 

values were regressed against the participants’ change-in-free-recall scores (post-training 

minus pre-training free-recall performance). We found that the correlation of individual-

change matrices to the athletes-controls matrix was significantly related to the participants’ 

changes in free recall performance. This was true for 20 minute delayed recall, 24 hour 

delayed recall, and in a follow-up memory test four months after the end of training (Fig. 5, 

Z=2.07, p=.019; Z=2.12, p=.017; Z=1.65, p=.049, respectively).

Given that both memory athletes and participants of the mnemonic condition after training 

showed strong ceiling effects in the memory task, no meaningful correlations were possible 

within these groups. Further emphasizing the multivariate nature of our findings, for all 

other comparisons simple within-group univariate correlations with behavior were not 

significant after correction for multiple comparisons. We also did not find significant 

associations with training speed within the mnemonic training group.

Identification of pivotal connections and hubs

To understand the nature of the multivariate finding in more detail, we tested whether the 

effect is distributed across all connections between our selected ROIs or driven by more 

discriminative connections. We focused on those 25 connections in the athletes-controls 

matrix whose T-score absolute (i.e. both positive and negative) values were among the top 

1% of largest differences. We tested across participants if similarity between the individual 

pre-post training connectivity difference matrices with the athlete-control difference matrix 

differed between this restricted set of 25 connections and the whole set of 2485 connections. 

We found a significant increase in similarity in the mnemonic training condition (t=2.61, p=.

019), but not for the active (t=0.59, p=.57) or passive (t=−1.65, p=.12) control group. This 

suggests that the top 1% of connections carried a disproportional amount of information, 

thus allowing a more specific interpretation of the observed multivariate effect: Connectivity 

between two major hubs (MPFC and right-DLPFC) and a number of regions important for 

memory processes, including the left parahippocampal gyrus, bilateral retrosplenial cortex, 
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posterior cingulate cortex and right angular gyrus were pivotal for the observed similarity 

between training effects and memory athlete connectivity patterns (Fig. 6).

Resting state network dynamics

To gain additional insight into network dynamics, we investigated if the effect was more 

prominent within or between brain networks. We repeated the correlational similarity 

analyses for 885 connections lying entirely within either the default mode network (ventral 

and dorsal combined), or the visual network (visuospatial and higher visual combined), or 

the MTL (left and right combined); and separately for the 1600 connections between either 

of the default mode, visual, and MTL networks (Fig. 7). We found for neither condition 

significant resemblance of the pre vs. post connectivity differences with athlete vs. control 

connectivity differences within the networks (mnemonic training: r=0.10, p=0.29; active 

control: r=−0.05, p=0.64; passive control: r=−0.17, p=0.13). In contrast, we did find a 

significant correlation for pre vs. post connectivity differences with athlete vs. control 

connectivity differences between the networks in the mnemonic training condition (r=0.21, 

p=0.01), whereas the respective correlations for the active or passive control conditions were 

not significant (active control: r=0.02, p=0.82; passive control: r=0.00, p=0.96). Importantly, 

for the mnemonic training condition similarity with athlete-control connectivity patterns was 

significantly larger for between vs. within network connectivity (t=2.17, p=.049). Hence, the 

observed effect was mainly driven by between rather than within network connectivity 

patterns during task-free baseline rest.

Brain network connectivity during encoding

To replicate our findings and to test whether the observed multivariate similarity between 

brain network connectivity patterns of memory athletes and after mnemonic training was 

restricted to baseline rest or is also present during active memory encoding, we repeated the 

described analyses also for connectivity as seen in the fMRI encoding task data. We were 

able to replicate the main finding of a correlational similarity between athlete/control and 

pre/post training connectivity difference patterns for the mnemonic condition (r=0.26, 

p=0.02), but not for the active (r=0.03, p=0.74) or passive (r=−0.03, p=0.70) control groups.

Strikingly, in the within vs. between network analyses for the task recordings we found the 

opposite effect than for task-free resting state data: we observed a significant correlation for 

pre-post with athlete-control connectivity patterns within the networks specifically in the 

mnemonic training condition (mnemonic training: r=0.40, p=0.01; active control: r=0.00, 

p=0.97; passive control: r=0.04, p=0.70), however no significant similarity for between 

network connectivity in any of the training groups (mnemonic training: r=0.17, p=0.17; 

active control: r=0.05, p=0.65; passive control: r=−0.07, p=0.50). For the mnemonic training 

condition, similarity with athlete-control connectivity patterns was significantly larger for 

within vs. between network connectivity (t=3.0, p=.01). Hence, in contrast to task-free 

resting state, the similarity effect was driven by within rather than between network 

connectivity patterns during task.
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Discussion

Our results demonstrate that superior memory is supported by a multivariate resting-state 

functional connectivity profile distributed throughout the default mode network, visual 

networks and the medial temporal lobe. This superior-memory connectivity profile can be 

instilled in naïve controls by a 6-week period of mnemonic training in the method of loci: 

The greater the degree to which an individual’s functional connectivity profile after training 

resembled the memory athletes’ connectivity pattern, the more that individual profited on 

measures of short- and long-delay memory through training. The improved memory 

observed after mnemonic training persists for as long as four months after training 

concludes. Of note, the training-induced similarity with the superior memory connectivity 

profile can be observed both during task-free baseline resting state and for background brain 

connectivity during active encoding. During rest, similarity between training-induced 

changes and the specific connectivity pattern of memory athletes is mainly driven by 

connectivity between brain networks, whereas during encoding it is driven by within 

network connectivity.

One hypothesis for the efficacy of mnemonic strategies invokes their use of naturally 

evolved skills, such as visuospatial memory and navigation (Maguire et al., 2003). In the 

method of loci, abstract and unrelated information units are transformed into concrete and 

related information patterns that can more easily be processed by memory-related brain 

structures, such as the hippocampus. The method of loci has been associated with 

hippocampal place and grid cells (Becchetti, 2010), which are also active during mental 

navigation (Bellmund et al., 2016), and involved in episodic memory encoding and retrieval 

(Miller et al., 2013; Monaco et al., 2014). Brain regions critical for visuospatial memory and 

navigation such as retrosplenial and hippocampal areas are engaged during mnemonic 

encoding in memory athletes (Maguire et al., 2003). Acquisition of the method of loci in 

novices is related to activation increases in the left hippocampal region, its use during 

encoding with increased activation in the left occipito-parietal cortex, retrosplenial cortex 

and dorsolateral prefrontal cortex (Nyberg et al., 2003), and its use during recall with 

increased activation in the left parahippocampal gyrus and retrosplenial cortex (Kondo et al., 

2005). These studies converge with our data in that the left parahippocampal gyrus and 

bilateral retrosplenial cortex both showed significant changes in network connectivity 

between memory athletes and controls.

We identified the right dorsolateral prefrontal cortex (DLPFC) as a hub for a number of 

connections that contributed most strongly to the transfer effect. The DLPFC is more 

strongly activated when information is encoded in a more structured way, e.g. by chunking 

(Bor et al., 2003). In particular, the right DLPFC has been linked to the use of memory 

strategies: patients with right DLPFC lesions are specifically impaired when using strategies 

during memory tasks (Chase et al., 2008), and transcranial magnetic stimulation of the right 

DLPFC interferes with retrieval only in users of encoding strategies (Manenti et al., 2010). 

The right DLPFC shows activation increases mainly for the encoding of visual material 

(Kelley et al., 1998; Epstein et al., 2002), particularly during encoding via visuospatial 

mnemonics such as the method of loci (Kondo et al., 2005). The prominent role of right 

DLPFC we found in the brain connectivity profile of experts in the method of loci is 
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therefore convergent with previous work linking this brain region to visuospatial processing 

and encoding strategies.

Our results suggest participation of the medial prefrontal cortex (MPFC) in the functional 

connectivity profile supporting superior memory. Separate research on mental schemas has 

highlighted the role of the MPFC in memory processes: Mental schemas enhance learning 

by allowing efficient encoding of newly acquired information through incorporation in pre-

existing knowledge structures (Tse et al., 2007). Schema utilization improves learning, and 

is associated with increased activity in, and connectivity between, the MPFC and 

information-related cortices (van Kesteren et al., 2010a). Furthermore, the manipulation of 

prior schema knowledge was shown to influence MPFC-hippocampal connectivity during 

encoding and post-encoding rest (van Kesteren et al., 2010b). Mnemonics, such as the 

method of loci, can be conceptualized as utilizing schemas, providing pre-learned 

knowledge structures into which new information can be rapidly encoded.

Analyzing network dynamics, we observed that the similarity of mnemonic training-induced 

brain reorganization with superior memory connectivity patterns was mainly driven by 

between network connectivity during task-free baseline resting state, and by within network 

connectivity during actual encoding. While task-related brain processes are known to be 

intrinsically related to task-independent measurements collected at rest (Hampson et al., 

2006; Tavor et al., 2016; Shine et al., 2016), the specific association between task-free and 

task-related brain function is not well understood yet. Segregated processing modes coexist 

with a more global and integrated coordination of brain networks (Tognoli & Kelso, 2014), 

and the pattern of segregated vs. integrated brain network processing dynamically changes 

depending on cognitive task demands (Shine et al., 2016). Our data suggest that during rest, 

global between network measurements are more informative than regional within network 

measurements for detecting superior memory capacity, whereas the opposite is true during 

task engagement.

In conclusion, we demonstrate that superior memory capacity is supported by distributed 

changes in functional connectivity rather than by focal changes in single brain regions. The 

brain network organization associated with superior memory can be achieved by mnemonic 

training. Among the distributed differences across memory and visuospatial brain regions, 

we found most robustly increased functional connectivity among the right DLPFC, the 

MPFC and structures of the medial temporal lobe in expert users of mnemonics and in naïve 

subjects after mnemonic training. On the level of network dynamics, effects were driven 

between brain networks during rest and within networks during active encoding, 

corroborating differential neural processing during these two states also for the phenomenon 

of memory expertise. Collectively, these results demonstrate the role of mnemonic strategies 

in altering functional networks and improving memory performance, and support the use of 

fMRI brain connectivity measures as a powerful tool in the study of brain plasticity.
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STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact Martin Dresler (martin.dresler@donders.ru.nl). Restrictions apply to the 

raw data of memory athletes, as these allow personal identification of the participants.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Memory athletes of the Top-50 of the memory sports world rankings were recruited via 

email, phone calls or personally. Control participants were matched for age, sex, 

handedness, smoking status, and IQ. Where relevant, to ensure matching with the generally 

high intellectual level of the memory athletes, control participants were recruited among 

gifted students of academic foundations and members of the high-IQ society Mensa via 

mailing lists. Seven control participants were selected among the participants of the training 

arm according to their high cognitive performance shown in the screening session, evenly 

distributed among the three training conditions. All control participants were tested with a 

standardized memory test (Bäumler, 1974). Exclusion criterion was a performance of more 

than two standard deviations above the mean according to the norms provided with the 

memory test to avoid including ‘natural’ superior memorizers in the control group, however 

none of the participants reached this criterion. None of the cognitive tests were performed 

immediately before the fMRI session, in order to prevent the resting state network activity 

being influenced by previous learning. Participants for the training arm of the study were 

recruited via mailing lists and public announcements among students of the universities of 

Munich. In a screening session, exclusion criteria (experience in mnemonic strategies, 

psychiatric or neurological history, more than 5 cigarettes per day, other drug consumption) 

were checked. In addition, fluid reasoning (Weiß and Weiß, 2006) and memory abilities 

(Bäumler, 1974) were tested, and performance was used to pseudo-randomly assign 

participants to the three training conditions to ensure similar cognitive baseline levels 

between groups. To minimize motivational or compliance effects of the condition 

assignment, all participants of the training arm were offered to participate in an additional 

mnemonic strategy or working memory training after conclusion of the study. One 

participant dropped out of the active control condition after one week of n-back training due 

to 33 lack of commitment. One further participant had to be excluded before condition 

assignment due to a pathological finding in brain anatomy. Both participants were replaced 

by newly recruited subjects. All participants were paid and provided written informed 

consent to the study in line with the approval by the ethics committee of the medical faculty 

of the University of Munich. For a detailed overview over participants see Supplemental 

Table S1.

METHOD DETAILS

Cognitive training—Immediately after the 24 h free recall of session 1, all participants of 

the training arm were pseudo-randomly assigned to one of three training conditions. 

Participants of the mnemonic training condition started within one week after condition 

assignment with a 2 hours introduction course in mnemonic strategies at the Max Planck 

Institute of Psychiatry. They were introduced into the method of loci, were taught their first 
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loci route within and outside of the institute, applied this route in a first memorization task 

under supervision, were familiarized with the home-based training platform (http://

memocamp.com), instructed how to build new routes, and provided with a training plan for 

the upcoming week. Training plans gave instructions on which set of locations to use to 

ensure equal training of all routes and reduce interference of word list memorized on 

preceding days. The training consisted of 30 minutes of training per day for 40 days at home 

via a web-based training platform. During the first two weeks of the training, participants 

built and memorized three further loci routes, with which they trained to memorize lists of 

random words. During the next four weeks, training was restricted to memorizing lists of 

random words or images with the four loci routes. The task demand (number of words to be 

memorized) changed dynamically according to the individual performance of the 

participant: 5 to be memorized words were presented on the first trial; the number of 

presented words increased in subsequent training runs by 5 as soon as a subject managed to 

perfectly remember all words in a given run. Speed of training success was defined as the 

average number of training runs a participant needed per level increase until he successfully 

reached level 8 (i.e. 40 words presented), as this level was reached by most mnemonic 

training participants (16 out of 17), but can hardly be achieved by mnemonics-naïve 

individuals. Logfiles of the training sessions were checked each day to monitor compliance. 

In case of a missed or too short training session, participants were contacted on the 

following morning and instructed to expand the following training session to make up for the 

missed training time. Once a week, subjects came to the laboratory, were interviewed 

regarding problems with the training regime, trained under direct supervision, and were 

provided with a training plan for the next week.

Participants of the active control condition started within one week after condition 

assignment with an introduction into the home-based n-back working memory training 

program. We used a very demanding version of the dual n-back task, in which participants 

had to monitor and update series of both visually presented spatial locations and auditorily 

presented letters (Jaeggi et al., 2008). The value of n varied between blocks of trials, with 

adjustments made continuously based on performance. The task demand thus changed 

adaptively according to the individual performance of the participant. Participants trained 30 

minutes each day for 40 days. Logfiles of the training sessions were checked each day to 

control for compliance. In case of a missed or too short training session, participants were 

contacted on the following morning and instructed to expand the following training session 

to make up for the missed training time. Once a week, subjects came to the laboratory, were 

interviewed regarding problems with the training regime, and trained under direct 

supervision.

The passive control group did not receive any training between the two experimental 

sessions.

Behavioral data acquisition—All participants of the training arm of the study and 

performed a word-encoding task in the scanner during pre- and post-training sessions. In the 

post-training session, participants of the mnemonic training condition were asked to apply 

the method of loci to the task. We used two lists of 72 concrete nouns, with one list being 

presented per session. Words in both lists were counterbalanced for word length and 
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frequency, and were presented in a random order within each list. To prevent order effects 

across sessions, word lists were presented in a crossover-designed manner. Words were 

presented individually for 2 s each, with a jittered inter-stimulus interval of 2–5 s. After six 

words, a fixation cross was presented for 30 s, which was followed by the next 6 words etc. 

Participants were instructed not to rehearse during the fixation cross periods, and to think of 

nothing in particular, comparable to the resting state scan before, however with eyes open.

After the encoding task, a word order recognition task of all 72 words followed. Triplets of 

words from the word lists encoded before were presented for 10 seconds, after which 

participants had to indicate within 3 seconds if the order of words was exactly as presented 

before or in a changed order. Presentation and response to each triplet of target words was 

followed by a control condition, in which participants had to indicate if triplets of new words 

were shown in ascending order according to their number of syllables. Recognition data 

have not been analyzed yet and will be presented elsewhere.

Immediately after leaving the scanner, participants had to indicate on a 4-point scale if they 

had been continuously alert, partly tired, partly drowsy, or partly asleep during the rs-fMRI 

scan, and if they had their eyes closed during the resting state and open during the encoding 

session. Analysis of this data indicated that all participants adhered to the eyes closed 

instructions and no participant reported having been drowsy or asleep during rs-fMRI. 

Participants were then brought to the behavioral laboratory, where had to freely recall all 72 

words presented during the encoding session. Subjects wrote down all remembered words; 

after 5 min they were asked if they would need more time; after another 5 min recall was 

terminated. After 24 hours, another free recall of 5+5 min was performed via telephone. 

Recall score was defined as number of words correctly recalled ignoring order and spelling 

mistakes. On average, participants forgot 10.3 ±7.0 words in the 24 hour recall compared to 

20 min recall in the pre-training assessment, and 10.7 ±8.5 words in the 24 hour recall 

compared to 20 min recall in the post-training assessment (paired t-test: t>8.9, p<0.01 each).

During the final retest after four months, participants performed the encoding task once 

more, this time outside the scanner. The word list of their first session was used for re-test, 

and long-term effects were calculated as difference between first session and re-test session 

performance. Participants of the mnemonic training condition were asked to use the method 

of loci for encoding, and all confirmed use of the strategy after the task. Encoding was 

followed by a delay period of 15 minutes, filled with a reasoning task, after which 

participants had to freely recall all memorized words. Of the 51 study participants, 2 

participants each of the mnemonic training and passive control conditions and 1 participant 

of the passive control group were not available for the follow-up test session.

MRI data acquisition—All imaging data were collected at the Max Planck Institute of 

Psychiatry using a 3 T (GE Discovery MR750) scanner with a 12-channel head coil. A 

standard localizer, coil calibration and a 3D T1-weighted anatomical scan (TR 7.1 ms, TE 

2.2 ms, slice thickness 1.3 mm, in-plane FOV 240 mm, 320×320x128 matrix, 12° flip angle) 

preceded fMRI data collection. Eight minutes of rs-fMRI with eyes closed were collected 

(EPI sequence, TR 2.5 s, TE 30 ms), covering the whole brain with 34 slices, using a 64×64 

matrix with 3 mm slice thickness and 1 mm slice spacing, and a field of view of 240 x 240 
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mm2. The images were AC–PC aligned and acquired using an interleaved slice acquisition 

scheme.

After rs-fMRI data collection, participants performed a word encoding task (see “behavioral 

data acquisition” section above). We obtained 292 T2*-weighted blood oxygenation level-

dependent (BOLD) images for each encoding phase of the experiment, using the following 

EPI sequence: repetition time (TR), 2.5 s; echo time (TE), 30 ms; flip angle, 90°; 42 

ascending axial slices; field of view (FOV), 240 × 240 mm; 64 × 64 matrix; slice thickness, 

2 mm.

Participants further performed a word order recognition task in the scanner, and underwent a 

second rs-fMRI and a DTI scan (Fig. 1). Data of these additional scans have not been 

analyzed yet and will be presented elsewhere.

ROI selection—Functional connectivity (FC) for all participants was calculated across 71 

ROIs modified from Shirer et. al 2012. To generate the modified ROIs, we first divided the 

brain into 91 regions: 90 of which covered 14 major networks described by Shirer et al. 

2012, and the rest of the gray matter voxels were treated as a single region. We then divided 

each region into round(nN/p) parcels using Ward clustering (Michel et al., 2012), where n is 

the number of gray matter voxels in the given region, p is the total number of gray matter 

voxels in the brain, and N is a user-defined number of parcels, set to 500 in accordance with 

the literature (Van Essen and Ugurbil, 2012). To constrain the parcels to be spatially-

contiguous, only Pearson’s correlations between fMRI time courses of spatially-adjacent 

voxels were considered during Ward clustering. Whereas the Shirer et. al 2012 atlas did not 

cover a large portion of cortex and subcortical regions, this processing produced an atlas 

covering all brain regions (Altmann et al., 2015; Richiardi et al., 2015). From among these 

500 ROIs, we selected 71 ROIs that covered six brain networks chosen a priori as being 

related to memory or visuospatial processing and so potentially relevant to mnemonic 

training, namely the dorsal and ventral default mode networks, the visuospatial and higher 

visual networks, and the left and right medial temporal lobes (Fig. 3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis—For statistical analysis of training-related change in 20 min 

free recall (defined as the difference between pre- and post-training scores in 20 min free 

recall) and in 24 h free recall (defined likewise), we performed ANOVAs, each with the 

three levels mnemonic training, active control, and passive control. For training-related 

change in 20 min recall, we found a significant effect (F2,48=21.5, p<.001, η2=.47), with 

Bonferroni-corrected post hoc tests indicating a significant difference between mnemonic 

training and both active and passive control (p<.001 each), but not between the latter two 

(p>.9). Also for training-related change in 24 h recall, we found a significant effect 

(F2,48=33.2, p<.001, η2=.58), with Bonferroni-corrected post hoc tests indicating a 

significant difference between mnemonic training and both active and passive control (p<.

001 each), but not between the latter two (p=.29).

To test for long-term effects, we performed another ANOVA for the change from pre-

training 20 min recall to the 4 months retest, with the three levels mnemonic training, active 
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control, and passive control. We found a significant effect (F2,43=13.3, p<.001, η2=.38), with 

Bonferroni-corrected post hoc tests indicating a significant difference between mnemonic 

training and both active and passive control (p<.001 each), but not between the latter two 

(p>.9).

17 of the 23 athletes and their respective controls also underwent encoding and retrieval of 

72 words as described above, however were assessed only with short-term free recall, i.e. 

without the 24 hours or 4 months retest. Due to massive ceiling effects in the athletes group 

(70.8±0.6 vs. 39.9±3.6 of 72 words correctly recalled 20 minutes after encoding; Median: 72 

vs. 41), we used a Wilcoxon signed ranks test to analyze the difference between athletes and 

controls.

For detailed memory data see Supplemental Table S2.

Resting state fMRI analysis—rs-fMRI data were processed and analyzed using the 

FMRIB Software Library (FSL: version 4.1). We applied motion correction (for motion 

parameters see Table S3), removed nonbrain structures, and performed spatial smoothing 

with a 6mm FWHM Gaussian Kernel. The data were aligned to the MNI152 standard space 

image with affine linear registration. This was followed by noise regression of movement, 

cerebral spinal fluid, white matter, and global signal. The data were additionally filtered with 

a bandpass filter of 0.01–0.1 Hz, restricting analysis to low frequency BOLD fluctuations.

Functional connectivity (FC) for all participants was calculated across 71 ROIs that covered 

six brain networks chosen a priori as being related to memory or visuospatial processing and 

so potentially relevant to mnemonic training: dorsal and ventral default mode network, 

visuospatial and higher visual network, and left and right medial temporal lobe (see Fig. 3). 

We extracted the mean time series for each ROI, and calculated the Pearson correlation 

coefficient between the time series of all ROIs, producing a 71 x 71 matrix of correlation 

coefficients. This was done separately for memory athletes and matched controls. FC was 

compared between athletes and controls with a two-sample t-test, producing a 71 x 71 

matrix cataloguing differences in pairwise FC. We then generated the same connectivity 

difference matrices for all the training groups: The pre- and post-training FC matrices were 

compared with a paired-samples t-test. This was done separately for the three training 

conditions, producing corresponding 71 x 71 matrices of t-values for the mnemonic, and 

active and passive control conditions.

The FC changes that occurred in each training group were then compared with the 

differences in FC that distinguish memory athletes from matched controls by calculating the 

spatial correlation of the t-score matrices. To do this, we correlated the matrices of t-values 

for each training group separately with the matrix of t-values from the t-test of athletes 

versus controls. To test the resulting correlations for significance we constructed the 

permutation distribution for each of the correlations: By randomly permuting the athlete and 

control pairs (while keeping the matching intact) we generated in a first step 10.000 matrices 

containing t-values of the permuted athlete vs. control samples. In a second step, each of 

these matrices was correlated, analog to the procedure above, with each of the training group 

matrices, resulting in a permutation distribution for each of the three correlations. From 
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these we constructed the p-values by assessing the proportion of correlations from the 

permutation tests that had a higher absolute value than the absolute value of the correlations 

of the non-permuted data.

Association with behavior—We next examined the relationship between network 

reorganization and improved performance on the free-recall task. We calculated the spatial 

correlation of each subject’s change-matrix to the athletes-controls matrix, and regressed the 

subjects’ spatial correlations with their changes in performance on the free-recall task. This 

was done separately for the 20 minute delay free-recall, the 24 hour delay free-recall, and 

the 4 month follow-up. In addition, we analyzed the amount of forgetting that occurred from 

20 min recall to 24 hour recall in both the pre- and post-training assessment. For the 

mnemonic training group, we also associated the training speed (average number of training 

runs needed to reach 40 presented words as described above) with network reorganization. 

Correlations were converted to Z-scores with the Fisher transformation, and these Z-scores 

were used to assess the significance of the spatial correlation.

Identification of pivotal connections and hubs—We selected the top 1% (i.e. 25) 

connections with the highest t-scores in the athlete-control connectivity difference and 

visualized them using the Flexible Brain Graph Visualizer (Richiardi et al., 2012; http://

sourceforge.net/projects/flexbgv). To test if the observed similarity between mnemonic 

training effects and athlete/control connectivity differences holds also for this restricted set 

of 25 connections, we selected the same connections in each training group and repeated the 

similarity analysis as described above (with 1000 permutations) on these connections.

We then tested whether this restriction to this set of top connectivity differences significantly 

increased similarity of pre-post training changes with athlete-control connectivity 

differences. Instead of the group pre-post training difference matrices, we correlated the 

individual pre-post training difference matrices with the athlete-control difference matrix, 

thus obtaining one correlation per participant. We did this for the full set of 2485 

connections and for the top 1% of connections. Via paired t-test we then compared how the 

selection of regions influenced the previously observed connectivity similarity between 

training effects and athlete-control connectivity differences.

Within vs. between network analysis—The 71 ROIs were in total part of 3 larger 

networks: visual (visuospatial + higher visual combined, 19 ROIs), medial temporal lobe 

(left + right combined, 18 ROIs), and default mode network (dorsal + ventral combined, 34 

ROIs). To investigate whether the training effect we observed was driven by within or 

between network connectivity changes, we sorted our whole set of 2485 unique connections 

into 885 connections lying entirely within either the DMN, visual, and MTL network; and in 

1600 connections from a given ROI to a ROI outside of its own network. Then we repeated 

the correlational similarity analysis on the individual level as described above for both of 

these sets separately.

Task-based fMRI analyses—Following rs-fMRI, participants completed an encoding 

task within the fMRI scanner (see description of behavioral data acquisition above). All 

fMRI data acquired during encoding were preprocessed using SPM8 (http://
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www.fil.ion.ucl.ac.uk/spm/). The first five volumes were discarded to allow for T1-

equilibration. The remaining volumes were realigned to the mean image of each session (for 

memory athletes and matched controls), or across sessions (for participants in the training 

arm of the study). The structural scan was co-registered to the mean functional scan and 

segmented into grey matter, white matter, and cerebrospinal fluid using the “New 

Segmentation” algorithm. All images (functional and structural) were spatially normalized 

to the Montreal Neurological Institute (MNI) EPI template using Diffeomorphic Anatomical 

Registration Through Exponentiated Lie Algebra (DARTEL; Ashburner 2007), and 

functional images were further smoothed with a 3D Gaussian kernel (8 mm full-width at 

half maximum, FWHM). Task data of one participant (active control group) had to be 

excluded because of technical difficulties.

Next, we assessed functional connectivity during the encoding task. We used a voxel-wise 

general linear model (GLM) to remove nuisance-related effects. Nuisance regressors 

comprised the six realignment parameters, as well as additional regressors that captured 

scan-to-scan motion (Power et al. 2012). Specifically, we calculated the framewise 

displacement (FD) for every scan at time t by FD(t) = |Δdx(t)| + |Δdy(t)| + |Δdz(t)| + r|α(t)| + 

r|β(t)| + r|γ(t)|, where (dx, dy, dz) is the translational-, and (α, β, γ) the rotational 

movement. Scans that exceeded a head motion limit of FD(t) > 0.3 mm were removed, 

indicated in one additional regressor per removed scan. For one participant (matched control 

group) more than 50% of the scans during encoding exceeded the FD-limit, and we therefore 

excluded this data set from all task-based functional connectivity analysis. Within the 

remaining sample, the % of excluded scans was relatively low, and neither the amount of 

excluded scans nor average FD differed between groups (all p>.38, see Table S4). Finally, 

the data was high-pass filtered at a cut-off of 128 s. For training groups, both sessions 

(initial, delayed) were modeled in one GLM. The residuals of this model were used for all 

following task-based connectivity analysis.

To capture encoding effects rather than fixation periods that might contain rs-fMRI 

fluctuations, we only used volumes from the 12 encoding periods for our task-based 

functional connectivity analysis (30 s each; 144 volumes in total). Encoding volumes were 

concatenated and the average residual time course was extracted based on all voxels within 

each of the ROIs. Since the parts of the cerebellum were not covered during task data 

acquisition, we restricted the analysis to 70 ROIs fully covered. Time courses were 

correlated (Pearson’s r), yielding a 70 × 70 correlation matrix per participant and encoding 

session. Correlations were Fisher’s z transformed and remaining analyses steps were 

identical to the analysis of rs-fMRI data (see above).

As a control we repeated the whole analysis and modeled task-related events in addition to 

nuisance regressors. This so-called “background connectivity” has been demonstrated to be 

unrelated to task-evoked responses, and is thus thought to provide an index of sustained 

processing during cognitive operations (Al-Aidroos et al. 2012; Duncan et al. 2014; 

Tompary et al. 2015). We modeled the BOLD response for all encoding trials as a single task 

regressor, time-locked to the onset of each trial. Instructions were binned within a separate 

regressor of no interest. All events were estimated as a boxcar function with a duration of 3 s 

(encoding trials), or 5 s (instructions), and were convolved with a canonical hemodynamic 

Dresler et al. Page 14

Neuron. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fil.ion.ucl.ac.uk/spm/


response function. None of the results changed essentially in this background connectivity 

analysis, in particular none of the significant results became insignificant or vice versa.

Control analyses—As a control analysis for our choice of brain parcellation scheme, we 

repeated the correlational similarity analysis of connectivity differences with those ROIs 

from the Brainnetome parcellation (Fan et al., 2016) that had at least 100 Voxels overlap 

with the preselected ROIs from our parcellation (82 of the Brainnetome 273 parcels 

remained). We were able to replicate our main results (mnemonic training: r= 0.23, p<0.003; 

active control: r=−0.06, p=0.59; passive control: r=−0.07, p=0.59). An exploratory whole 

brain analysis using the Brainnetome parcellation yielded results in the same direction as our 

main analysis with pre-selected brain networks, which however were not significant 

(mnemonic training: r= 0.08, p=0.35; active control: r=0.02, p=0.78; passive control: r=

−0.06, p=0.51).

To check whether the observed effects were based on the actual mnemonic training or might 

have been induced already by the exposure to the visuospatial imagery strategy in the 

introductory course in the method of loci, we performed two control analyses. First, we 

compared baseline performance on training day 1 with the weekly means of the individual 

top scores in the training discipline “memorizing random words in five minutes”, which 

most closely resembles the task conditions during the fMRI sessions. We observed a 

continuous increase in memory performance over the six weeks of training from 16.6±1.2 to 

42.3±3.85 words memorized in 5 minutes (see supplemental figure S1). Second, we 

analyzed data from an independent study on mnemonic strategies, where participants 

underwent an fMRI RS scan (same scanner, sequences, procedures as in our main study) 

immediately before and after a 2-day introductory course into visuospatial mnemonic 

strategies including the method of loci. Hence, participants (n=18, age 23.5±3.4 years, all 

male) were as familiar with the general principles of the method of loci as participants in our 

main study, however lacked the intense training phase. In this control analysis, we did not 

find the similarity with athlete/control connectivity differences that we observed in our main 

study (r=−0.02, p=0.85). Both control analyses combined therefore confirm the 

interpretation that the observed behavioral, brain network reorganization and similarity 

effects are related to the intense training in the method of loci and not just on the mere 

exposure to the visuospatial principles of the strategy.

As a control analysis for the restricted set of top 1% connectivity differences between 

athletes and controls, we also tested the opposite direction, i.e. selected the top 1% 

connectivity changes in the mnemonic training group and correlated these with the athlete/

control connectivity matrices. We observed a marginally significant similarity (r=0.68, 

p=0.055).

Crucially, to check whether our general findings rely on the comparison with the athlete/

control connectivity differences or could be observed in analyses restricted to the training 

sample, we performed simple univariate analyses that compared connectivity changes 

directly with behavioral measures as described above.
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Gray matter analysis—T1-weighted data were analyzed with FMRIB Software Library 

(FSL)-VBM, a voxel-based morphometry style analysis (Ashburner and Friston, 2000; Good 

et al., 2001) performed with FSL tools (Smith et al., 2004). First, anatomical images were 

brain extracted using the Brain Extraction Tool (Smith et al., 2002). Next, tissue-type 

segmentation was performed using FAST4 (Zhang et al., 2001). The resultant gray matter 

partial volume images were then aligned to MNI152 standard space using the affine 

registration tool FLIRT (Jenkinson and Smith, 2001), followed by nonlinear registration 

using FNIRT (Anderson et al., 2007), which uses a b-spline representation of the registration 

warp field (Rueckert et al., 1999). For the use of gray matter volume as a voxelwise 

regressor in the fMRI data analysis, a four-dimensional (4D) image was created by 

concatenating every participant’s standard space gray matter image.

For direct comparison of gray matter volume, the individual standard space gray matter 

images were averaged to create a study-specific template, to which the native gray matter 

images were then nonlinearly reregistered. The registered partial volume images were then 

modulated (to correct for local expansion or contraction) by dividing by the Jacobian of the 

warp field. The modulated segmented images were smoothed with an isotropic Gaussian 

kernel with σ = 3 mm. Finally, to test for significant differences between memory athletes 

and matched controls, a voxelwise general linear model was applied using permutation-

based nonparametric testing, with Threshold-Free Cluster Enhancement (TFCE) as 

implemented in FSL (Smith and Nichols, 2009) and p < 0.05 familywise error corrected. We 

used the same preprocessing, analysis, and thresholding to examine pre/post changes within 

the three training conditions.

We also analyzed gray matter volume within the functional regions of interest (fROIs) used 

in the functional connectivity analyses. We masked each subject’s processed T1-weighted 

gray matter segmentation image with a fROI and calculated the gray matter volume within 

the masked area. Gray matter volume was defined as the average volume within the area of 

the segmentation image masked by a fROI; this was calculated separately for each of the 71 

fROIs. We compared gray matter volume in memory athletes with matched controls across 

all 71 fROIs using a two-sample t-test. Results were thresholded with an FDR correction to 

account for multiple comparisons (q < 0.05). The same processing and thresholding was 

used to examine pre/post changes in the three training conditions; however, in this analysis 

we used a paired-samples t-test instead of a two-sample t-test.

DATA AND SOFTWARE AVAILABILITY

Data resources—ROIs are available via http://findlab.stanford.edu/functional_ROIs.html.

ADDITIONAL RESOURCES

None.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Top: study schema. All participants underwent at least one experimental session; participants 

of the training arm underwent a second experimental session after six weeks, plus a retest 

after four months. Bottom: Sequence of MRI scans and memory tasks performed in pre- and 

post-training sessions.

Dresler et al. Page 20

Neuron. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Mnemonic training has potent and enduring effects on memory capacity. Participants in the 

mnemonic condition showed significantly greater improvement in memory performance 

after training than participants of the active and passive control groups (p<.001, η2=.3 each, 

no significant difference between control groups). Mean changes from pre- to post-training 

sessions in free recall of 72 learned words ± standard error of the mean are shown. During a 

four month follow-up, subjects re-encoded the list of words from their baseline visit and 

were asked to recall the list after a 15 minute delay.
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Figure 3. 
Brain networks examined with resting-state fMRI analyses: Six networks based on Shirer et 

al. 2012 were selected due to their hypothesized recruitment by the memory task: (A) ventral 

(dark blue) and dorsal (light blue) default mode network, (B) higher visual (dark red) and 

visuospatial (light red) network, (C) left (dark green) and right (light green) medial temporal 

lobe.
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Figure 4. 
Similarity of training-induced connectivity changes with athlete-control connectivity 

differences. (A) Brain network connectivity differences between memory athletes and 

controls. (B) Connectivity changes from pre- to post-training assessment for each training 

condition. (C) Scatterplots and correlations between the memory athlete vs. control 

connectivity difference matrix and the pre- vs. post-training connectivity difference matrices. 

The pattern of connectivity differences between memory athletes and controls correlates 

significantly with the pattern of connectivity changes in the mnemonic training condition 

(r=.222, p=.005), but does not correlate significantly with the connectivity pattern changes in 

the active (r=.011, p=.943) or passive (r=−.061, p=.632) control groups.
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Figure 5. 
Memory performance is correlated with functional connectivity changes. The spatial 

correlation strength of change-in-FC matrices to the athletes-controls matrix was 

significantly related to the participants’ performance on the free-recall tasks at 20 minutes, 

24 hours, and in an additional learning session at 15 minutes for the baseline list of words 

re-encoded at the 4 month follow-up visit.
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Figure 6. 
The top 1% of differential connections between memory athletes and matched controls are 

shown. Red connections depict stronger and blue connections weaker functional 

connectivity in memory athletes as compared to controls.

Dresler et al. Page 25

Neuron. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
During resting state, similarity between mnemonic training-induced connectivity changes 

and athlete/control connectivity differences is mainly driven by between brain network 

connectivity. During encoding, in contrast, similarity between mnemonic training-induced 

connectivity changes and athlete/control connectivity differences is mainly driven by within 

brain network connectivity.
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