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Summary

We have developed a general progressive procedure, Active Interaction Mapping, to guide 

assembly of the hierarchy of functions encoding any biological system. Using this process, we 

assemble an ontology of functions comprising autophagy, a central recycling process implicated in 

numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, 

captures most known autophagy components in broad relation to vesicle transport, cell cycle and 

stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for 

further experiments; consequently, we saturate the model with 156,364 such measurements across 

autophagy-activating conditions. These targeted interactions provide more information about 

autophagy than all previous datasets, producing a second-generation ontology of 220 functions. 

Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-

assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, 

Did4 and others in selective and non-selective autophagy. The procedure and autophagy hierarchy 

are at http://atgo.ucsd.edu/.
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Introduction

A key promise of Systems Biology is to advance our understanding of biological systems by 

combining genome-scale data with model building in a virtuous cycle (Ideker et al., 2001a; 

Kitano, 2002). New genomics data inform the biological model and, in turn, analysis of the 

model informs collection of new datasets. Systems Biology typically surveys the literature to 

assemble knowledge of specific molecules, interactions and reactions involved in a 

biological system, then uses this knowledge to initialize a computational model (Covert et 

al., 2004; Davidson et al., 2002; Ideker et al., 2001b; Karr et al., 2012; King et al., 2004; 

Malleshaiah et al., 2010). Model predictions are systematically compared to laboratory 

measurements, with discrepancies used to improve the model and design further 

experiments.

Formulating a model can be laborious, requires that much is already known about the 

system, and may be biased towards well-studied components. Alternatively, many studies 

have sought to construct models of biological systems directly from systematic datasets 

(Ergun et al., 2007; Ho et al., 2002). Genome-scale data, including profiles of mRNAs, 

proteins or metabolites and gene and protein interactions, are analyzed to infer a network of 

genes describing the system (Behrends et al., 2010; Havugimana et al., 2012; Kim et al., 

2011; Lefebvre et al., 2012; Picotti et al., 2013). Such network models have been 

increasingly used to describe key biological systems, including tissue specificity (Greene et 

al., 2015), cell differentiation (Cahan et al., 2014), and diseases such as cancer (Carro et al., 

2010; Creixell et al., 2015; Leiserson et al., 2015).

At this juncture, we see two challenges. First, biological systems do not merely consist of 

flat networks of genes– they are exquisitely hierarchical in nature. Models should seek to 

capture this hierarchy, which extends over multiple scales from nucleotides (1nm scale) to 

proteins (1–10nm), protein complexes (10–100nm), cellular processes (100nm), organelles 
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(1μm), cells (1–10μm), tissues (100μm–100mm) and complex organisms (>1m). Second, 

while the field has taken a foundational step by enabling the construction of models directly 

from data rather than only literature, a next step will be to determine how to iteratively 

improve these models with the most informative new data. The ability to rationally motivate 

and design new -omics data sets is sorely needed in genomics; far too many large-scale 

experiments are performed simply because one can, without justification or guidance for 

why those experiments might lead to an improved biological understanding.

Towards the first challenge, a hierarchical biological model already in widespread use is the 

Gene Ontology (GO) (Ashburner et al., 2000). Through extensive literature curation efforts, 

GO aims to factor the cell into a complete hierarchy of cellular components and processes, 

each represented by a GO “term”. Recently, we showed that an ontology of the cell very 

much like GO could be automatically constructed from diverse genome-scale datasets 

(Dutkowski et al., 2013; Kramer et al., 2014). Using this method we built a data-driven 

ontology of yeast, the Network eXtracted Ontology (NeXO), which recapitulated 

approximately 60% of known cellular components in GO. However, it was also clear that 

our hierarchical understanding of cell biology is far from complete, leaving open the second 

challenge: how to most efficiently improve cell function hierarchies with high value 

experiments. Thus far, methods have been devised for selecting the optimal next experiment 

considering a particular kind of model (e.g. a gene network), data type (e.g. growth 

phenotyping), and a constrained repertoire of treatments (e.g. single or double gene 

knockouts) (Atias et al., 2014; Barrett and Palsson, 2006; Ideker et al., 2000; King et al., 

2009; King et al., 2004). However, such questions of experimental design have not been 

approached for building general hierarchical models, and given the plethora of -omics data 

types that can now be generated, guidance is needed on which type of data one should 

collect next to improve the models.

Here, we describe a general program for elucidating the hierarchy of functions underlying a 

cellular process, based on progressive cycles of mapping and modeling which we call Active 

Interaction Mapping or AI-MAP (Figure 1A). We apply this approach to develop a 

hierarchical model of autophagy, the conserved process of “self-eating” by which cells 

respond to starvation and other stress by degrading macromolecules and recycling their 

constituent building blocks (Levine and Yuan, 2005). During autophagy, cellular contents 

are enclosed in a double-walled vesicle, the autophagosome, and delivered to the yeast 

vacuole or mammalian lysosome for degradation and recycling; such contents can include 

non-selective cytoplasmic contents (macroautophagy) or selective organelles, such as 

peroxisomes (pexophagy) or mitochondria (mitophagy). All non-selective and selective 

autophagy pathways share a core set of molecular machinery (Jin and Klionsky, 2013), 

which has wide-ranging effects on pathways such as tumor suppression (Liang et al., 1999), 

neurodegeneration (Rubinsztein et al., 2005), and aging (Rubinsztein et al., 2011).

In what follows, we [1] construct a first-generation hierarchical model of autophagy from 

publicly available interaction networks for the budding yeast, Saccharomyces cerevisiae, [2)] 

identify synthetic-lethal genetic interactions as the most useful type of data for 

systematically improving the model, [3] generate static and differential genetic networks 

involving growth measurements of over 156,000 yeast genotypes across autophagy-relevant 
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conditions, and [4] integrate these new with previous datasets to arrive at a substantially 

improved understanding of autophagy. The Active Interaction Mapping process creates a 

‘living’ ontology of cell function, which actively suggests new data types for self-

improvement and highlights new functions discovered as data are added. The process has 

general utility for any biological process.

Results

Integrating diverse ‘omics data constructs a first-generation model of autophagy

To initialize the AI-MAP process, we sought to construct a ‘first-generation’ hierarchical 

model of autophagy, called the Autophagy Ontology (AtgO), based on publicly available 

molecular interaction networks in S. cerevisiae. Although not all datasets have been 

specifically designed to study autophagy, non-selective or selective autophagy pathways 

have some activity in nearly all conditions (Reggiori et al., 2012). In total, we obtained a 

compendium of 78 networks of 9 different data types, including protein interactions, genetic 

interactions, gene co-expression and gene-gene similarity based on shared protein sequence 

and structural information, as previously curated for YeastNet (Kim et al., 2014) (Figure 1A 

i).

To build an ontology from these heterogeneous datasets, we first integrated all data into a 

single pairwise gene similarity network (Figure 1A ii) and then analyzed the hierarchical 

structure of this network to infer a gene ontology (Figure 1A iii). Pairwise gene-gene 

similarities in the similarity network were determined using a statistical regression 

procedure that combines available interaction datasets into a single quantitative similarity 

score. To learn how the different data types should be combined, the regression was trained 

to model a ‘standard reference’ gene similarity network derived from GO (gene-gene 

similarity scores based on relatedness in GO of the two genes, see Experimental 
Procedures). In this way, the data-derived similarity network captured known biological 

processes and components in GO when supported by data (Pearson r = 0.4 versus GO, p < 

10−300, out-of-bag prediction); similar data combinations then identify new biological 

processes, components, and relationships not previously documented (Figure 1B).

For assembly of the ontology, we selected 492 candidate genes with potential relation to 

autophagy based on literature or data (Figure 1C). A broad net was intentionally cast to 

allow later steps of the AI-MAP process to dictate which of these 492 genes are most related 

to core autophagy functions. The CliXO algorithm (Clique Extracted Ontologies, Kramer et 

al., 2014) was then applied to analyze the hierarchical structure of the data-derived gene 

similarity network among these 492 genes (Figure 1A iii). By this method, nested 

communities of genes apparent in the pairwise similarity data were identified, resulting in a 

hierarchy of 218 terms and 310 term relations which we call the Autophagy Ontology (AtgO 

1.0, Figure 1D). To determine which terms represent known biological functions and which 

represent potential new biology, AtgO 1.0 was aligned with GO according to a previously 

described alignment procedure (Dutkowski et al., 2013). This process seeks a one-to-one 

mapping between terms in AtgO and terms in GO; for aligned terms, term names and 

descriptions are transferred from the GO reference. Term AtgO:9, which aligned to GO:

0006914 (autophagy), encapsulated 234 genes organized into 82 sub-terms (Figure 2A–C), 
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including 19 of the 20 core autophagy genes and 67 other genes annotated to GO: 

“autophagy” (Figure 2D). Also included were 148 genes newly associated with autophagy; 

within these we observed a significant enrichment for functions in cell cycle (51 genes, p < 

10−12), cellular response to stress (42 genes, p < 1012) and vesicle transport (47 genes, p < 

10−24), placing these functions in broad relation to autophagy.

This AI-MAP protocol is available in a Jupyter Notebook at http://atgo.ucsd.edu; notebook 

execution constructs the AtgO model described herein; however, general ontology models 

can be constructed by running the notebook with new data supplied by the user.

Analysis of model reveals genetic interactions as most effective new data

Next, we determined which new network data would be most capable of improving the 

AtgO model in further experiments (Figure 1A iv). For this purpose, we removed all data of 

a given type and evaluated the resulting decrease in model performance, measured as the 

ability to capture the GO reference (Figure 3A). The largest contribution was from protein-

protein interactions, closely followed by genetic interactions; that is, recovery of GO 

depends most strongly on data of these two types, making these more desirable. Beyond this 

absolute importance measure, we were also interested in the importance of data relative to 

the present time, i.e., the extent to which adding another dataset of a given type is expected 

to improve the model. Therefore, we measured the decrease in model performance as 

individual studies of a particular type were sequentially removed (Figure 3B). The unit of 

one ‘study’ was used to normalize for different temporal and financial costs of generating 

each type of data – it roughly estimates the amount of data one ‘omics lab can produce in 

one study on average (i.e. data per lab-study). Removing single studies of genetic 

interactions caused the steepest instantaneous decrease in performance, suggesting that such 

studies may continue to provide the most information. A similar result was obtained when 

individual interactions rather than whole studies were progressively removed (Figure S1). 

Interestingly, gene expression data provided very little information not captured by other 

data types, either when removed as a group (Figure 3A) or one study at a time (Figure 3B).

Conditional genetic interaction networks incorporate new autophagy genes

Guided by the above analysis, we designed a systematic screen for genetic interactions 

targeted at genes and conditions relevant to autophagy (Figure 3C, D). Synthetic Genetic 

Array technology (SGA) (Tong and Boone, 2006) was used to query 52 autophagy-related 

genes for genetic interactions against an array of 3,007 genes, covering approximately two-

thirds of the non-essential yeast genome. SGA uses high-throughput robotic colony pinning 

on agar to create and score growth of many double gene deletion strains in parallel, here 

yielding 52 × 3,007 = 156,364 tests for gene-gene interaction (Table S1). These SGA 

networks were created in three conditions: rapamycin, which pharmacologically induces 

autophagy; amino-acid starvation, which metabolically induces autophagy; and an untreated 

control. An established computational workflow (Bean et al., 2014) was used to assign 

quantitative S-scores to all gene pairs, with positive S-scores indicating faster than expected 

growth (epistatic or suppressive interaction) and negative S-scores indicating slower than 

expected growth (synthetic-sick or lethal interaction). SGA networks were also computed in 

‘differential’ configurations (Bandyopadhyay et al., 2010), based on the differences in S-
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scores between 1) rapamycin and untreated, 2) nitrogen starvation and untreated, and 3) 

nitrogen starvation and rapamycin.

Several array genes displayed strong differential interactions with core autophagy genes, 

most specifically upon rapamycin treatment (Figure 3E). These included SSD1, encoding an 

mRNA-binding protein which represses translation (Jansen et al., 2009); DID4 and STP22 
encoding subunits of the ESCRT complexes, which are required for autophagy in humans 

but had not yet been examined in yeast (Rusten and Stenmark, 2009); GYP1, a GTPase-

activating protein (GAP) (Du and Novick, 2001); IRA2, an inhibitor of RAS-cAMP 

(Rodkaer and Faergeman, 2014); PIB2, a phosphatidylinositol(3)-phosphate binding protein 

of unknown function (Shin et al., 2001); and YPL247C, an uncharacterized open reading 

frame. To investigate whether these genes play a direct role in macroautophagy, we scored 

their null mutants by the Pho8Δ60 assay, which provides a quantitative marker of autophagic 

flow into the vacuole (Noda et al., 1995). With the exception of YPL247C, autophagy 

showed a clear dependence on all of these genes, as predicted (Figure 3F).

New targeted interactions markedly improve the hierarchical model

Next, we evaluated the extent to which the new interactions improved the AtgO ontology. 

When used as the sole source of data, networks from each of the static conditions showed 

some ability to reconstruct GO (r = 0.13 – 0.18, Figure 3G). The differential networks 

showed better performance (r = 0.23 – 0.31), consistent with previous findings on the utility 

of differential interaction mapping (Bandyopadhyay et al., 2010; Ideker and Krogan, 2012). 

Integrating all static and differential conditions into a single network yielded the best 

correspondence with GO (r = 0.42), suggesting that multiple conditions reveal different 

aspects of cell biology. Remarkably, this performance was better than all previous data 

combined (r = 0.30; Figure 3H). Integrating previous with new data performed best of all (r 
= 0.48). We designate the ‘second-generation’ ontology of 220 terms resulting from these 

integrated data as AtgO 2.0 (Figure 4).

Beyond its improved ability to reconstruct GO, we found that the hierarchical structure of 

this model captured many potential new biological functions and relationships. In particular, 

analysis of AtgO 2.0 revealed that the majority of terms (56%) involved previously unknown 

biological findings, which we categorized into four broad types: [1] terms representing 

previously unknown subfunctions of autophagy (previously unknown groupings of primarily 

known autophagy genes), [2] terms representing previously unknown subfunctions related to 

autophagy (groupings of genes previously attributed to diverse functions), [3] terms 

representing superprocesses which integrate known processes, and [4] terms representing a 

known process but expanded by adding genes (Figure 5A, Table S2). In what follows, we 

survey brief, but suggestive, experimental findings from several of these types. We have 

constructed a web portal to AtgO 2.0 (http://atgo.ucsd.edu/) which permits exploration of the 

autophagy hierarchy with visualization of the network data supporting each term.

A key regulator of vesicular trafficking, Gyp1, is required for autophagy-related pathways

AtgO 2.0 suggested a broader involvement of vesicle trafficking, docking and fusion 

pathways in autophagy (Figure 4C): for example, we noted AtgO:18 (“vesicle transport 
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machinery of ER-EE-MVB-vacuole and autophagy”, 37 genes) which integrated core 

autophagy or pexophagy genes with many Rab GTPases and GAPs known primarily for 

their function in Golgi transport (GYP1, YPT1, YPT31-32 and SEC4) (Jean and Kiger, 

2012) (Figure 4C i). GYP1, the GTPase-activating protein (GAP) of this pathway, displayed 

significant genetic interactions with core autophagy genes under starvation and rapamycin 

treatment, including positive interactions between Gyp1 and the Atg9-recycling system 

(Atg9, Atg18), as well as with the two core Ubiquitin-like conjugation systems (Atg3, Atg5, 

Atg7) (Figure 3E); these interactions were not observed in untreated conditions (Table S1). 

Gyp1 had been previously localized to the Golgi (Du and Novick, 2001); however, we 

observed that GFP-Gyp1 is also localized to the phagophore assembly site (PAS), the 

location of the autophagosome-generating machinery (Figure 6A). Functional experiments 

with a gyp1Δ strain revealed a requirement for Gyp1 in PAS formation, as deletion of GYP1 
caused mislocalization of GFP-Atg8 (Figure 6B) and an Atg8-processing defect (Figure 6C); 

reduced maturation of prApe1 into mApe1 via selective autophagy (Figure 6D); and 

impaired macroautophagy under nitrogen-starvation as measured by the Pho8Δ60 assay 

(Figure 3F). These assays confirm a general requirement of Gyp1 in autophagy-related 

pathways.

The Rab GTPase Ypt1 has also been implicated in autophagy (Wang et al., 2015); Gyp1 

may act as the heretofore unknown GAP on Ypt1 at the PAS. To test this possibility, we used 

a Ypt1 overexpression system which leads to increased PAS formation and rescues the 

autophagy defect of a Ypt1 GEF mutant (Trs85; upstream of Ypt1), but not of a Ypt1 

effector mutant (Atg11; downstream of Ypt1) (Lipatova et al., 2012). When Ypt1 was 

overexpressed in a gyp1Δ strain, the gyp1Δ defect in PAS formation was not rescued (Figure 

6E). This indicates that Gyp1 acts downstream of Ypt1 during autophagy, similar to its 

function as the GAP for Ypt1 in ER-to-Golgi protein trafficking (Figure 6F).

Finally, some of the same autophagy-deficient phenotypes were observed for a vps1Δ strain 

(Figures 6B, C); VPS1 is also annotated to AtgO:18 and had been formerly implicated in 

pexophagy (Mao et al., 2014); these results indicate it may have a more general role in 

autophagy-related pathways.

Engulfment of selective autophagy cargos involves Atg8 and Atg24

AtgO:247 was a new term in AtgO 2.0 that grouped ATG8, encoding a ubiquitin-like protein 

that localizes to isolation membranes and mature autophagosomes (Noda et al., 2010), with 

ATG24, a regulator of membrane fusion (Ano et al., 2005; Kanki and Klionsky, 2008), based 

on a combination of strong genetic interaction profile similarity and co-expression (Figure 

4B i, Figure 5B). Working with the yeast Pichia pastoris, where the very large peroxisomes 

serve as a model cargo for imaging of autophagy (Oku and Sakai, 2008), we followed 

Atg24-GFP in both wild-type and atg8Δ cells. We noted a change in Atg24 localization 

specific to the atg8Δ genotype, in which Atg24 occupies a large perimeter of the peroxisome 

cargo, as opposed to only a few punctate structures in wild-type cells (Figure 6G). Atg8 

function has been thought to depend on Atg7, an E1-like enzyme that conjugates Atg8 to 

phosphatidylethanolamine (PE), a lipid. Therefore, we also examined the localization of 

Atg24 in a atg7Δ mutant, predicting that it would have the same phenotype as that in atg8Δ 
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cells. Surprisingly, Atg24 localization was not affected in atg7Δ cells; thus, the new term 

appears to represent a separate activity of Atg8, independent of Atg8 conjugation to PE. 

Although further investigations will be needed to fully understand the Atg8-Atg24 

relationship, we have provisionally named AtgO:247 “engulfment of selective autophagy 

cargo”.

Atg26 is required for processing of large aggregates in the Cvt pathway

Term AtgO:185 expanded from two genes, Atg11 and Atg19 (Figure 2C i, Figure 7A), to 

include Atg26 and Atg27 (Figure 4A i, Figure 7B), based on strong genetic interaction 

profile similarity across the new conditions. Three of these genes (Atg11, Atg19, Atg27; Yen 

et al., 2007; Yorimitsu and Klionsky, 2005) have known roles in the Cytoplasm-to-vacuole 

targeting (Cvt) pathway, by which aggregates of the aminopeptidase precursor prApe1 are 

transported to, and processed in the vacuole to mature Ape1. AtgO:185 implied involvement 

of the remaining gene, Atg26, in transport of prApe1 aggregates to the vacuole. In the yeast 

Pichia pastoris, the Atg26 ortholog participates in pexophagy, where it is required for the 

degradation of large peroxisomes; hence, its designation as an ‘Atg’ gene (Nazarko et al., 

2009; Oku et al., 2003).

Although previous work in S. cerevisiae had found no involvement of Atg26 in standard 

autophagy assays (Cao and Klionsky, 2007), we observed that Atg26 co-localizes in distinct, 

overlapping puncta with Atg19, the known receptor for prApe1 aggregates (Figure 7C). We 

then monitored processing of prApe1 in wild-type and atg26Δ strains, as well as in atg1Δ 

cells, as a positive control for disruption of prApe1 processing (Cheong et al., 2008). Normal 

maturation of prApe1 was observed in wild-type, but not atg1Δ, cells (Figure 7D). The 
atg26Δ mutant also showed processing defects, especially in cells overexpressing prApe1, 

which produce larger aggregates (50 μM CuSO4, Figure 7D). Furthermore, we found that 

atg26Δ cells contained significantly more large prApe1 aggregates than did wild-type cells 

(p = 0.03, Figure 7E, F); overexpression exacerbated this defect (5 μM CuSO4, p = 0.02; 50 

μM CuSO4, p = 0.0003). Using rapamycin to induce macroautophagy, wild-type cells 

successfully processed all large prApe1 aggregates even when they were greatly 

overexpressed (50 μM CuSO4, Figure 7F). In contrast, many aggregates remained in the 

atg26Δ mutant after rapamycin treatment (Figure 7G). Finally, in addition to prApe1, the 

Cvt pathway transports the vacuolar hydrolases aminopeptidase 4 (Ape4) and the Ty1 

transposon to the vacuole (Suzuki et al., 2011; Yuga et al., 2011). We found that atg26Δ 

strains had reduced processing for each of these cargos (Figure 7H, I). These results support 

a role for Atg26 in the transport of several cargos which use Atg19 as their receptor, 

including large prApe1-containing aggregates, Ty1, and Ape4; hence we gave AtgO:185 the 

name “transport of Atg19-receptor cargos”.

AtgO as an automated literature-curation device

By incorporating evidence from all available ‘omics studies, AtgO 2.0 recovered many 

functions already reported in literature but which had not yet been curated by GO (Figure 

5A; representing 23% of all terms). For example, AtgO:138 recovered the Ubp3p-Bre5p 

ubiquitin protease complex implicated in ribophagy (Figure 4B ii) (Kraft et al., 2008); AtgO:

160 recovered the Pho85-Pho80 CDK-cyclin complex which regulates autophagy (Figure 4B 

Kramer et al. Page 8

Mol Cell. Author manuscript; available in PMC 2018 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



iii) (Yang et al., 2010); AtgO:106 recovered Skm1, Ste20 and Cla4, part of a complex that 

downregulates sterol uptake (Figure 4B iv) (Lin et al., 2009); and AtgO:140 recovered the 

Vma12-Vma22 assembly complex (Figure 4B v) (Graham et al., 1998). We submitted each 

of these terms to GO curators, and given the ample prior evidence, all were accepted for 

inclusion in the Gene Ontology (GO:1990861, GO:1990860, GO:1990872 and GO:1990871 

respectively). Other terms missing from GO, but supported by literature, include AtgO:246, 

which captured an E1/E2 enzyme complex that activates Atg8 in a ubiquitin-like cascade 

(Figure 4B vi, Figure 5B), and AtgO:240, a second ubiquitin-like cascade activating Atg12 

(Figure 4B vii, Figure 5B) (Kaiser et al., 2012). Numerous new AtgO gene annotations were 

also supported by prior studies: for instance, term AtgO:96 was assigned Vac8, Nvj1, and 

Swh1, which form the nucleus-vacuole junction (Figure 4B viii) during piecemeal 

microautophagy of the nucleus (Dawaliby and Mayer, 2010; Kvam and Goldfarb, 2004). 

Two of these genes (NVJ1, SWH1) were not annotated as such in GO and thus at our request 

were annotated to this term (GO:0034727). As another example, we found that eight 

proteins annotated to autophagy by AtgO but not GO already had literature support for 

autophagy phenotypes: Hog1 (Prick et al., 2006), Pep12 (Kanki et al., 2009), Snf1 (Wang et 

al., 2001), Stt4 (Wang et al., 2012), Tpk1 (Budovskaya et al., 2004), Vps4 (Nebauer et al., 

2007), Vps51 (Reggiori et al., 2003), and Vps52 (Reggiori et al., 2003). Here too, these new 

gene annotations were accepted for inclusion in GO. Thus, AI-MAP can automatically mine, 

structure, and unify knowledge of a cellular process to create a central research resource that 

is complementary to literature curated models.

Application to human autophagy

To test the feasibility of the Active Interaction Mapping approach in the study of human 

biology, we applied the same procedure described in yeast to a compendium of human data 

including gene expression profiling, protein-protein interactions, genetic interactions, co-

localization and sequence similarity. As in yeast, we began with a seed set of (33) genes 

designated as having core functions common to non-selective and selective autophagy (Jin 

and Klionsky, 2013). This process resulted in a human Autophagy Ontology (hAtgO 1.0) of 

1,452 genes and 1,664 terms, 173 of which align significantly to existing terms in the human 

GO, and the rest of which represent potential new autophagy subprocesses and components 

(Figure S2A, Table S3). Compared to yeast, a smaller percentage of the ontology (10% vs 

35%) aligned to existing GO terms, which may be due to better GO annotation of yeast than 

human, more complete data in yeast than human, or both. As in yeast, much of the core 

machinery of autophagy was grouped together (hAtgO:2962), which contains 14 core and 8 

other genes (Figure S2A). Also as before, our confidence in the model is increased by the 

presence of recently discovered autophagy biology which is not yet captured by GO; for 

example, the Huntingtin protein, Htt, is placed amongst core autophagy proteins, consistent 

with the recent discovery that this important disease gene acts physiologically as a scaffold 

for selective autophagy (Rui et al., 2015). Turning to the data most valuable for constructing 

hAtgO, we see a striking difference as compared to yeast, as the Active Interaction Mapping 

process relies primarily on gene expression profiling to construct the model of the human 

autophagy system (Figure S2B). This result suggests the generality of Active Interaction 

Mapping, as it can quickly be adapted to a new species (human) and can rely on the data 

most available and useful for that species and system.
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Discussion

This study provides a roadmap for how to progressively elucidate the ontology of cellular 

functions underlying any biological process. Studying a new process is straightforward, 

requiring starting knowledge of some of the genes involved and access to public ‘omics data 

sets. At all points of the study, virtually any genomic data can be analyzed since almost any 

data linked to genes or proteins can inform gene-gene similarity networks.

The current AtgO 2.0 model, assembled entirely from network data, is larger and has 

differences in content and structure from the literature-curated GO. Many of these 

differences imply new biological findings, as reported above. Other differences between the 

models may arise due to differences in policy between the AI-MAP process and human 

curation. For example, AtgO groups core autophagy genes under the single term “core 

machinery of autophagy”, whereas GO repetitively annotates each core gene to all non-

selective and selective autophagy pathways including “macroautophagy,” “microautophagy,” 

and “nucleophagy.” Furthermore, GO generally does not group paralogous genes of similar 

function, whereas AtgO creates a term for functionally similar paralogs, the same as for any 

functional gene set (e.g., “PDK homolog kinases,” “ADP ribosylation factors”).

An important aspect of Active Interaction Mapping is that heterogeneous new and existing 

data are interwoven in the same modeling framework. This enables a comprehensive 

assessment of the current support for a biological model (Figure 3A), as well as what type of 

information is most needed next (Figure 3B). After data generation, the value of the new 

dataset is systematically evaluated in the context of all existing data (Figures 3G, H). Here, 

such assessments pointed us to genetic interactions, leading us to generate a new targeted 

dataset, which was more powerful at recovering knowledge about autophagy in GO than all 

previous public datasets combined (Figure 3H). In this regard, the significant information 

gained by including multiple conditions (Figure 3G) argues that condition-specific and 

differential interaction maps have provided a particularly worthwhile bolus of data.

In future many research communities, each focused on a cellular process of interest, may 

find it useful to organize around shared hierarchical models as a means for representing cell 

biological knowledge, communicating new findings, and designing targeted datasets. Once a 

baseline model of a process is created, the value of any new dataset can be evaluated by its 

ability to improve this baseline. The value of new interaction mapping efforts can thus be 

rigorously evaluated rather than assumed, and the design of these experiments can be guided 

rationally, based on current knowledge and data.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

As Lead Contact, Trey Ideker is responsible for all reagent and resource requests. Please 

contact Trey Ideker at tideker@ucsd.edu with requests and inquiries.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains—Saccharomyces cerevisiae and Pichia pastoris laboratory strains as 

described in Key Resources table with growth conditions as appropriate for experiments as 

described in Method Details.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-vacuolar aminopeptidase 1 (Ape1) Klionsky et al., 1992 N/A

Anti-β-actin (C4) Santa Cruz Biotechnology Cat# sc-47778

Anti-GFP (JL8) Clontech Cat# 632381

Anti-Mouse IgG-HRP BioRad Cat#170-6516

Anti-Rabbit IgG-HRP BioRad Cat#170-1019

Biological Samples

Saccharomyces cerevisiae (BY4741) 
knockout library

ThermoFisher Cat# 95400.BY4741

Chemicals, Peptides, and Recombinant Proteins

Rapamycin Sigma Cat# R0395

Nourseothricin (clonNAT) Jena Bioscience Cat# AB-102L

Geneticin selective antibiotic (G418 sulfate) ThermoFisher Cat# 11811031

Phenylmethanesulfonyl fluoride (PMSF) Sigma Cat# P7626

ρ-nitrophenyl phosphate (pNPP) Sigma Cat# N9389

ρ-nitrophenol Sigma Cat# N7660

Pierce BCA Protein Assay Kit ThermoFisher Cat# 23225

Critical Commercial Assays

Deposited Data

YeastNet v3 Kim et al., 2014 http://www.inetbio.org/yeastnet/

GeneMania Warde-Farley et al., 2010 http://pages.genemania.org/data/

Gene Expression Omnibus (GEO) Barrett et al., 2013 https://www.ncbi.nlm.nih.gov/geo/

Gene Network Analysis Tool (GNAT) Pierson et al., 2015 http://mostafavilab.stat.ubc.ca/gnat/

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains
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REAGENT or RESOURCE SOURCE IDENTIFIER

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3

Bicknell et al., 2010 MNY1121; WT Pho8Δ60

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
atg8Δ::kanMX

Bicknell et al., 2010 MNY1123; atg8Δ Pho8Δ60

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
ypl247cΔ::kanMX

This study sAtg0-186; ypl247cΔ Pho8Δ60

MATa, leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
gyp1Δ::kanMX

This study sAtg0-187; gyp1Δ Pho8Δ60

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
pib2Δ::kanMX

This study sAtg0-188; pib2Δ Pho8Δ60

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
ira2Δ::kanMX

This study sAtg0-189; ira2Δ Pho8Δ60

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
ssd1Δ::kanMX

This study sAtg0-190; ssd1Δ Pho8Δ60

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
did4Δ::kanMX

This study sAtg0-191; did4Δ Pho8Δ60

MATa leu2–3,112, trp1, ura3–52, 
pho8::pho8Δ60, pho13::URA3 
stp22Δ::kanMX

This study sAtg0-192; stp22Δ Pho8Δ60

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pDP103 (BFP-Ape1), NRB1322 (GFP-
Gyp1)

This study sAtg0-52′; WT+BFP-Ape1+ GFP-Gyp1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pRS315-GFP-Atg8

This study sAtg0-1; WT+GFP-Atg8

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg6Δ::kanMX, pRS315-GFP-Atg8

This study sAtg0-12; atg6Δ+GFP-Atg8

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
gyp1Δ::kanMX, pRS315-GFP-Atg8

This study sAtg0-39; gyp1Δ+GFP-Atg8

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
vps1Δ::kanMX, pRS315-GFP-Atg8

This study sAtg0-48; vps1Δ+GFP-Atg8

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
gyp1Δ::kanMX, pRS315-GFP-Atg8, 
NRB167 (Ypt1 Overexpression)

This study sAtg0-150; gyp1Δ+GFP-Atg8+OverYpt1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pRS315-GFP-Atg8, NRB167 (Ypt1 
Overexpression)

This study sAtg0-152; WT+GFP-Atg8+OverYpt1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pTS551 (GFP-Ape4)

This study sAtg0-79; WT+GFP-Ape4

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg11Δ::kanMX, pTS551 (GFP-Ape4)

This study sAtg0-80; atg11Δ+GFP-Ape4

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg19Δ::kanMX, pTS551 (GFP-Ape4)

This study sAtg0-81; atg19Δ+GFP-Ape4

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg26Δ::kanMX, pTS551 (GFP-Ape4)

This study sAtg0-82; atg26Δ+GFP-Ape4

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg27Δ::kanMX, pTS551 (GFP-Ape4)

This study sAtg0-83; atg27Δ+GFP-Ape4
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REAGENT or RESOURCE SOURCE IDENTIFIER

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pYEX-BX (GFP–Ty1 Gag)

This study sAtg0-111; WT+GFP-Ty1 Gag

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg11Δ::kanMX, pYEX-BX (GFP–Ty1 Gag)

This study sAtg0-112; atg11Δ+GFP-Ty1 Gag

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg19Δ::kanMX, pYEX-BX (GFP–Ty1 Gag)

This study sAtg0-113; atg19Δ+GFP-Ty1 Gag

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg26Δ::kanMX, pYEX-BX (GFP–Ty1 Gag)

This study sAtg0-114; atg26Δ+GFP-Ty1 Gag

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg27Δ::kanMX, pYEX-BX (GFP–Ty1 Gag)

This study sAtg0-115; atg27Δ+GFP-Ty1 Gag

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pCK770 (pRS415-GFP-Atg19), pCU416-
tdTomato-Atg26

This study sAtg0-194; WT+GFP-Atg19+tdTomato-Atg26

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pCK782 (Ape1 overexpression)

This study sAtg0-3; WT+OverApe1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, 
pCK782 (Ape1 overexpression)

This study sAtg0-4; WT+OverApe1+BFP-Ape1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg26Δ::kanMX, pCK782 (Ape1 
overexpression)

This study sAtg0-28; atg26Δ+OverApe1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg26Δ::kanMX, pDP105 (Ape1 
overexpression+BFP-Ape1)

This study sAtg0-29; atg26Δ+OverApe1+BFP-Ape1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg1Δ::kanMX, pCK782 (Ape1 
overexpression)

This study sAtg0-195; atg1Δ+OverApe1

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 
atg1Δ::kanMX, pDP105 (Ape1 
overexpression+BFP-Ape1)

This study sAtg0-196; atg1Δ+OverApe1+BFP-Ape1

PPY12 his4 arg4 pPIC6a-BFP-
SKL::Blasticidinr, pJCF210(Atg24-
GFP)::HIS4

This study sJCF322; WT+BFP-SKL+Atg24-GFP

atg7Δ::ScARG4 his4 arg4 pPICz-BFP-
SKL::Zeocinr, pJCF210(Atg24-GFP)::HIS4

This study sJCF351; atg7Δ+BFP-SKL+Atg24-GFP

atg8Δ::kanMX his4 arg4 pPICz-BFP-
SKL::Zeocinr, pJCF210(Atg24-GFP)::HIS4

This study sJCF353; atg8Δ+BFP-SKL+Atg24-GFP

MATα can1Δ::MFA1pr-HIS3::MFα1pr-
LEU2 ura3Δ0 leu2Δ0 his3Δ1 lys2Δ0)

Tong et al., 2004 Y3656, query strain

Recombinant DNA

BFP-Ape1 Pfaffenwimmer et al., 
2014

pDP103

pRS306 pADH1-GFP-HA-GYP1-CYC1term Rivera-Molina and 
Novick, 2009

NRB1322

pRS315-GFP-Atg8 This study pRS315-GFP-Atg8

Ypt1 Overexpression Bacon et al., 1989 pNB167

GFP-Ape4 Yuga et al., 2011 pTS551

pRS415-GFP-Atg19 Pfaffenwimmer et al., 
2014

pCK770

GFP–Ty1 Gag Suzuki et al., 2011 pYEX-BX

pCU416-tdTomato-Atg26 This study pCU416-tdTomato-Atg26
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REAGENT or RESOURCE SOURCE IDENTIFIER

Ape1 overexpression Pfaffenwimmer et al., 
2014

pCK782

Ape1 overexpression+BFP-Ape1 Pfaffenwimmer et al., 
2014

pDP105

Atg24-GFP This study pJCF210

pPIC6a-BFP-SKL This study pPIC6a-BFP-SKL

pPICz-BFP-SKL This study pPICz-BFP-SKL

Sequence-Based Reagents

Software and Algorithms

Active Interaction Mapping This Study http://atgo.ucsd.edu/download.html

CliXO v0.3 Kramer et al., 2014 https://mhk7.github.io/clixo_0.3/

Ontology Alignment Algorithm Dutkowski et al., 2013 https://mhk7.github.io/alignOntology/

ImageJ NIH https://imagej.nih.gov/ij/

Bean Colony Analyzer Toolkit Bean et al., 2014 https://github.com/brazilbean/Matlab-Colony-Analyzer-Toolkit

R R Project http://www.R-project.org.

Jupyter Jupyter Project http://jupyter.org/

Python https://www.python.org/

Scikitlearn http://scikit-learn.org/stable/

Other

METHOD DETAILS

Public data for S. cerevisiae—Data from YeastNet v3 (Kim et al., 2014) were obtained 

from http://www.inetbio.org/yeastnet/, consisting of the following numbers of datasets 

classified by type: 50 co-expression, 1 domain co-occurrence, 1 genomic neighbor, 10 

genetic interaction, 12 high-throughput protein-protein interaction, 1 phylogenetic profile, 1 

protein network tertiary structure, 1 low-throughput protein-protein interaction, and 1 co-

citation.

Data integration—Input datasets were provided as features to a random forest regression 

system for prediction of gene-gene pairwise similarity, trained using pairwise gene 

similarities in GO as a bronze standard. The network of predicted similarities we call the 

‘data-derived gene similarity network’ We aimed to use the Gene Ontology (GO) as a 

standard reference for learning to integrate data in a supervised fashion. Previously, we 

showed that a weighted network of gene-gene similarities derived from a gene ontology can 

be analyzed to reconstruct the full hierarchy of terms and term relations with near perfect 

precision and recall (Kramer et al., 2014). Because the network and the ontology can be 

interconverted, both contain the same information. Based on this equivalence, we guided our 
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integration of data using a gene similarity network derived from GO instead of using GO 

directly. We derived this network by calculating the Resnik semantic similarity for each pair 

of genes (Resnik, 1995). Semantic similarities are calculated across the Biological Process 

and Cellular Component branches of GO, downloaded on 6/2/2015 from 

www.geneontology.org.

The 78 input datasets were integrated into a single network by using them as features in a 

supervised learning of the GO gene similarity network. Learning was performed using 

random forest regression (Breiman, 2001) from the Python scikit-learn package (Pedregosa 

et al., 2011). Predictions were made “out of bag”, i.e., the similarity of a gene pair was 

predicted based on information learned from other gene pairs. In effect, the random forest 

learns patterns in the networks which recapitulate information in GO. Hence, only relations 

in GO that can be systematically explained from data are included, any relations not justified 

by the data are excluded, and new relations not in GO are added when the network data 

support them (Figure 1B).

Construction of Autophagy Ontology (AtgO) 1.0—We analyzed the data-derived 

gene similarity network using the Clique Extracted Ontology (CliXO) algorithm, version 0.3 

(http://mhk7.github.io/clixo_0.3/; Kramer et al., 2014), with parameters α=0.1 and β=0.5. 

We identified significantly aligned terms between AtgO and GO using a previously 

described ontology alignment procedure with FDR threshold of 10% and minimum 

alignment score of 0.24 (http://mhk7.github.io/alignOntology/; Dutkowski et al., 2013). 

Alignment was performed first against the sub-branch of GO rooted at GO: “autophagy” and 

then the entire GO, prepared as in Dutkowski et al., 2013; significant alignments to the 

autophagy sub-branch were given first priority.

Genetic interaction mapping—Strain construction, plating of mutants, mutant selection, 

and scoring of genetic interactions in each condition were performed using a previously 

defined protocol (Collins et al., 2006; Schuldiner et al., 2006). Using a replica pinning robot 

(Singer Instruments; UK), haploid double mutants representing crosses of 52 autophagy-

related query genes and 3007 array mutants were grown on agar plates that were either 

untreated, rapamycin treated or nitrogen deficient. Plates were photographed and colony 

sizes normalized, spatially corrected and quantified using the Colony Analyzer Toolkit 

(Bean et al., 2014). For the three replicates per double mutant, the resulting experimental 

data were used to assign a quantitative S-score based on a modified T-test that compares the 

observed double mutant growth rate to that expected assuming no interaction exists, again 

using the Colony Analyzer Toolkit. Differential interactions were calculated by subtracting 

the S-scores for the same double mutant pair across conditions. Resulting S-scores available 

in Table S1.

Construction of Autophagy Ontology (AtgO) 2.0—The data-derived gene similarity 

network was recalculated incorporating both prior data and the new genetic interaction 

screen. The CliXO algorithm was applied with previous parameters. Term names in AtgO 

2.0 were manually curated by our team, considering the names of aligned terms in GO, 

when available, as well as an extensive literature review. Reasoning and citations for term 

names are included in Table S2.
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Biochemical studies

The prApe1 processing assay: The prApe1 processing assays for Figure 6D: cells were 

grown for 16 h in YPD medium (1% yeast extract, 2% peptone and 2% glucose) without 

exceeding exponential phase (OD600 above 1), 1 OD600 equivalents of cells were collected 

and Trichloroacetic acid (TCA) precipitated using a final concentration of 12.5% TCA and 

incubated at least for 30 min at −80°C, next TCA-treated cells were pelleted by 

centrifugation (10 min at 21,000 g, room temperature), washed twice with ice-cold 80% 

acetone, and air-dried. After dissolving the pellets in 100 μl of 1% SDS/0.1 N sodium 

hydroxide, 20 μl of 6× SDS sample buffer was added. Samples were boiled for 5 min. For 

SDS-polyacrylamide gel electrophoresis, 10 μl of each sample was used per lane and blotted 

onto nitrocellulose membranes. Western blots were blocked with 5% dry skim milk in Tris-

buffered saline with 0.1% tween-20 (TTBS) and, probed with anti-Ape1 (1:5000; rabbit; a 

gift from Dr. Daniel Klionsky) and anti-β-actin antibodies (1:5000; mouse; C4, Santa Cruz 

Biotechnology) diluted in TTBS with 5% dry skim milk and incubated overnight at 4°C. 

Membranes were probed with anti-rabbit or anti-mouse IgG HRP (1:5000; BioRad). All 

blots were detected with HyGLO Quick Spray (Denville Scientific Inc.) on a Medical film 

processor SRX-101A (Konica).

The prApe1 processing assays for Figure 7D: cells harboring the plasmid overexpressing 

prApe1 (pCK782, a gift from Dr. Claudine Kraft; Papinski et al., 2014) were grown for 16 h 

in SD-Cu medium (0.67% yeast nitrogen base [YNB] without amino acids and copper, 2% 

glucose plus any required amino acid, nucleotide, or vitamin supplement) without exceeding 

exponential phase (OD600 above 1) and transferred to SD-Cu medium with 200 nM 

Rapamycin and the indicated CuSO4 concentration at an OD600 of 1. One ml of cells was 

collected at different times, TCA precipitated and analyzed as described above.

Pho8Δ60 assay: The Pho8Δ60 assay (WT and atg8Δ strains were a gift from Dr. Maho 

Niwa) was performed as described previously (Manjithaya et al., 2010; Noda and Klionsky, 

2008). For the alkaline phosphatase assay, five OD600 equivalents of yeast cells were 

harvested, washed once with cold water and once with wash buffer (0.85% NaCl and 1mM 

PMSF) and resuspended in 500 μl lysis buffer (20 mM Pipes, pH 7.0, 0.5% Triton X-100, 50 

mM KCl, 100 mM potassium acetate, 10 mM MgSO4, 10 μM ZnSO4, and 1 mM PMSF). 

The cells were lysed by vortexing at full speed 10 times with 250 μl equivalents of glass 

beads for 1 min and incubated for 1 min on ice in between. The lysate was centrifuged at 

14,000 g for 5 min at 4°C and the supernatant was recovered without disturbing the pellet. 

100 μl of this supernatant was added to 400 μl reaction buffer (250 mM Tris-HCl, pH 8.5, 

0.4% Triton X-100, 10 mM MgSO4, and 1.25 mM p-nitrophenyl phosphate [pNNP]), and 

samples were incubated for 10–15 min at 30°C before terminating the reaction by adding 

500 μl of stop buffer (2 M glycine, pH 11). Production of p–nitrophenol was monitored by 

measuring the absorbance at 400 nm (A400) using a spectrophotometer (DU-730; Beckman 

Coulter), and the concentration in nmol of p–nitrophenol in the samples was calculated by 

graphing the adjusted A400 values relative to a standard curve of commercial p–nitrophenol 

(0 to 100 nmol). Protein concentration in the extracts was measured with the Pierce BCA 

Protein Assay Kit (Thermo Fisher Scientific), and the specific activity was calculated as 

nmol p–nitrophenol/min/mg protein.
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The GFP-Atg8, GFP-Ape4 and GFP-Ty1 Gag processing assays: For the GFP-Atg8, 

GFP-Ape4 and GFP-Ty1 Gag processing assays, yeast strains harboring the plasmids GFP-

Atg8 (pRS315-GFP-Atg8, in house plasmid), GFP-Ape4 (pTS551, a gift from Dr. Takahiro 

Shintani; Yuga et al., 2011) and GFP-Ty1 Gag (pYEX-BX[GFP–Ty1 Gag], a gift from Dr. 

Yoshinori Ohsumi; Suzuki et al., 2011) were grown to mid log phase in SD medium (0.67% 

YNB without amino acids, 2% glucose plus any required amino acid, nucleotide, or vitamin 

supplement) lacking auxotrophic amino acids and then shifted to SD-N medium (0.17% 

YNB without amino acids and ammonium sulfate, and 2% glucose) at an OD600 of 1 for the 

indicated time. At each indicated time point, 1 ml of cell culture was removed and TCA 

precipitated as described above. The protein extracts were resolved by SDS-PAGE and 

proteins were revealed by Western blotting with anti-GFP (1:2500; mouse; JL8, Clontech) 

and anti-β-actin (1:5000; mouse; C4, Santa Cruz Biotechnology) antibodies. Densitometry 

was performed using ImageJ software.

Fluorescence microscopy studies—Cell culture conditions for microscopy were 

performed as described for biochemical studies. Fluorescence microscopy images were 

acquired at indicated times using a motorized fluorescence microscope (Axioskop 2 MOT, 

Carl Zeiss MicroImaging, Thornwood, NY) coupled to a monochrome digital camera 

(AxioCam MRm, Carl Zeiss MicroImaging) and processed using the AxioVision 4.8.2 

software. To quantify prApe1 aggregates images, the fluorescence microscopy parameters 

such as exposition time, gain and binning were kept constant. Pexophagy condition used for 

Pichia pastoris in Figure 6G: cells were grown in methanol medium (0.67% YNB without 

amino acids and 1% methanol plus any required amino acid) starting an OD600 of 0.2 for 

15–16 hours and shifted to SD for 1 hour, then images were acquired.

Other methods—Cloning, gene deletion and yeast transformation were performed using 

standard methods.

Human Autophagy Ontology (hAtgO)—Datasets utilized are listed in Table S3. All 

quantitative interaction/co-expression data were linearly transformed into 8 bit integers prior 

to data integration. Ontology constructed using available Active Interaction Mapping Jupyter 

notebook downloadable at atgo.ucsd.edu/download.html

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests performed using R and python. Significance of pearson correlation 

calculated using pearsonr function in python’s scipy package. Statistical GO gene set 

enrichments in the main text calculated using the hypergeometric test in R. For Figure 7H 

and I, statistical comparison of processed GFP for GFP-Ape4 and GFP-GAG Ty processing 

assay were calculated by comparing 3 replicates of each strain to 3 replicates of wild-type 

using the one sided t-test in R.

DATA AND SOFTWARE AVAILABILITY

Genetic interaction S-scores as measured for 52 autophagy-related query genes and 3007 

array genes under 3 static and 3 differential conditions: Table S1.
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Active Interaction Mapping (AIM) software and data necessary to perform AIMin S. 
cerevisiae and H. Sapiens are available for download as a Jupyter notebook at atgo.ucsd.edu/

download.html. The AtgO 2.0 model is also available for browsing and exploration at 

atgo.ucsd.edu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Program for Active Interaction Mapping
(A) After initialization with public data sets (i), the approach proceeds by progressive 

iterations of data integration (ii), hierarchical model assembly (iii), and adaptive generation 

of new data (iv). (B) Pairwise gene similarity scores from curated knowledge (GO) versus 

the integrated data. Curves track percentiles in GO similarity scores at a given level of data 

similarity. (C) Selection of 492 autophagy-related genes. Twenty genes (red) are assigned to 

“core autophagy” by (Jin and Klionsky, 2013); another 102 genes (yellow) are annotated to 

GO:autophagy (GO:0006914). For all other genes (green) the average similarity score to 

core autophagy genes is calculated from the network data; a similarity threshold (vertical 
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line) is set to select 370 genes at least as similar to core genes as those in GO:autophagy. (D) 
Inference of the hierarchical model from (idealized) pairwise similarity scores using CliXO.
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Figure 2. First-generation autophagy ontology
(A–C) AtgO 1.0 model of terms (rectangles), genes (ovals), and hierarchical interrelations 

among these (links). Rectangle size shows number of genes annotated to that term; its color 

shows term alignment to GO: darker blue indicates higher similarity to GO, white terms/red 

outlines do not align. Oval color indicates gene status. For compactness, gene annotations 

are displayed only for terms AtgO:15 (B, no GO alignment) and AtgO:18 (C, aligned to GO: 

“macroautophagy”). (D) Comparison to the Gene Ontology as curated from literature, 

showing GO terms and annotations for GO:0006914:“autophagy” and its descendants. Links 

of the same color are relations with the same parent term.
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Figure 3. Active analysis of data types leads to conditional genetic interaction maps
(A) Performance decrease in AtgO 1.0 when all data of one type are excluded from the 

model. Performance is measured as the Pearson correlation between pairwise similarity 

scores derived from integrated data versus GO, focusing on gene pairs within the 492 

autophagy-related genes (see main text). (B) Performance degradation as single studies of 

the indicated type (color) are cumulatively excluded. The mean (points) and standard 

deviation (error bars) are calculated over 50 random sets of removed studies. See also Figure 

S1. (C–D) New genetic interaction maps between 52 autophagy query genes and 3007 non-

essential array genes in untreated conditions (rich media, C) as well as rapamycin and 

starvation conditions (D). Differential maps between each pair of conditions are also 

displayed. See also Table S1. (E) Differential genetic interactions (rapamycin – untreated) 

between core autophagy genes and implicated array genes. (F) Pho8Δ60 enzymatic activity 

measurement of gene deletions in (E). Samples were collected from growing cells (0h; mid-

log phase in YPD) and after nitrogen starvation (4h SD–N). All activity measurements were 

normalized to Pho8Δ60 activity in the WT 4h sample (100%). Error bars indicate SD of 

three replicates. (G–H) Performance of reconstructing GO, using new data only (G) or 

integrating new with prior data (H). Performance is measured over gene pairs within the set 

of 52 autophagy query genes, in comparison to randomized data or GO (mean of 100 trials).
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Figure 4. Second-generation ontology
(A) AtgO 2.0 hierarchical model. AtgO:220:“autophagy and related processes” and its 

descendants are displayed. Gene annotations are shown for branches beneath AtgO:11:

“membrane trafficking, cell growth and stress responses II” (B) and AtgO:14:“vesicle 

(especially golgi) and organelle traffic/cell cycle and stress response” (C). Term names have 

been manually curated by our team, thus may differ from previous versions of AtgO or GO. 

See also Table S2, Table S3, Figure S2.
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Figure 5. Characterization of AtgO 2.0
(A) Summary of AtgO terms by types of biological findings. (B) Pairwise gene similarity 

matrix and resulting AtgO 2.0 hierarchy for a subset of core autophagy genes.
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Figure 6. Analysis of Gyp1 and Atg8/Atg24
(A) Co-localization (yellow arrows) of Gyp1 and the PAS marker Ape1 in wild-type cells 

under nominal conditions (SD) or after rapamycin (SD+rapamycin) treatment, using 

fluorescence microscopy. (B) Atg8 localization in wild-type and gyp1Δ cells. (C) Atg8 

cleavage and (D) prApe1 maturation assay in wild-type, atg6Δ (positive control), gyp1Δ and 

vps1Δ strains. (E) Atg8 localization in context of wild-type, Ypt1 overexpression, and 

gyp1Δ with Ypt1 overexpression after rapamycin treatment for 1 hour. (F) Model proposing 

the conversion of GDP-bound Ypt1 into the GTP-bound, active form, catalyzed by 

guanidine nucleotide exchange factor TRAPPIII during autophagy. Ypt1-GTP is recognized 

by at least two autophagy effectors, Atg11 and the COG complex, and is converted back to 

the GDP-bound, inactive form by the GTPase-activating protein Gyp1. (G) Localization of 

Atg24 in wild-type, atg7Δ and atg8Δ strains of P. pastoris under pexophagy conditions. Bar 

scale is 5 μm.
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Figure 7. Analysis of Atg26 involvement in the transport of Atg19-receptor cargos
(A–B) The refinement of AtgO 1.0 (A) to AtgO 2.0 (B), resulting in expansion of AtgO:185 

which we name “transport of Atg19-receptor cargos”. (C) Co-localization of dTomato-

Atg26 and GFP-Atg19 in wild-type cells before and after 1 hour of rapamycin treatment. (D) 
Western blot of prApe1 and Ape1 across genetic backgrounds (wild-type, atg1Δ, atg26Δ) 

with prApe1 expressed from a copper-inducible promoter and incubated 16 hours in SD–Cu 

media plus copper (CuSO4) followed by removal from CuSO4 and treatment with rapamycin 

for indicated times. (E) Fluorescence micrographs of cells expressing endogenous prApe1, 

prApe1-BFP from the endogenous promoter, and prApe1 from the copper-inducible 

promoter. Cells incubated 16 hours in SD–Cu +50μm CuSO4 followed by 14 hours in SD–

Cu media +rapamycin. (F) Analysis of cells with constructs as in (E). Fraction of cells with 

observed prApe1 aggregates (light blue) and large prApe1 aggregates >1μM (red) after 16 

hours incubation in SD–Cu media + indicated CuSO4, followed by 14 hours incubation in 

SD–Cu + rapamycin. >250 cells were analyzed. Asterisk indicates significant difference 

from wild-type under the same condition as judged by Fisher’s exact test. (G) Same as (F) 
but pre-treatment in CuSO4 followed by 14 hours incubation in SD–Cu +rapamycin. (H, I) 
Quantitative analysis of processed GFP for GFP-Ape4 and GFP-GAG Ty processing assay. 
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Error bars represent SD of three replicates. Asterisks indicate significant difference 

compared to wild-type as judged by the one sided t-test (p < 0.05).
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