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Abstract

We present an approach to quantifying errors in covariance structures in which adventitious error, 

identified as the process underlying the discrepancy between the population and the structured 

model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter 

of this distribution to be estimated gives a measure of misspecification. Analytical properties of 

the resultant procedure are investigated and the measure of misspecification is found to be related 

to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The 

consistency and asymptotic sampling distributions of the estimators are established under a new 

asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. 

Simulations validate the asymptotic sampling distributions and demonstrate the importance of 

accounting for the variations in the parameter estimates due to adventitious error. Two examples 

are also given as illustrations.
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1. Introduction

Covariance Structure Models (CSMs) have been widely used in psychometrics. In a CSM, a 

structured covariance matrix Ω = Ω(ξ) is specified by hypothesizing relationships among 

latent and manifest variables and the parameters in vector ξ are estimated by fitting the 

covariance structure to data, usually in the form of a sample covariance matrix S. When 

evaluating the dispersion of the estimate ξ̂ or the fit of the model, the simplest assumption is 

that the covariance structure is correctly specified in the population, or the population 

covariance matrix Σ = Ω(ξ). Under this assumption, the estimation procedure takes into 

account only the error due to sampling uncertainty.

*Correspondence should be addressed to the first author at wu.498@osu.edu. 

This article is based in part on research carried out for the first author’s Ph.D. degree in Quantitative Psychology at The Ohio State 
University (June 2010). The second author was advisor.

HHS Public Access
Author manuscript
Psychometrika. Author manuscript; available in PMC 2017 May 22.

Published in final edited form as:
Psychometrika. 2015 September ; 80(3): 571–600. doi:10.1007/s11336-015-9451-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, this assumption usually leads to the rejection of the model in most practical 

situations, especially with large sample size. This is not surprising, because CSMs, like all 

statistical models, are only approximations to reality and are never exactly correct in the 

statistical population (MacCallum, 2003; MacCallum and Tucker, 1991). This implies that 

the data are contaminated not only by sampling error but also by additional errors.

1.1. Adventitious Error and its Stochastic Nature

In most cases, a psychometric theory is established for a general group of people under a 

general measurement condition, but observations are only made on a specific group of 

people under some concrete condition. This deviation between the population from which 

observations are collected and the population for which the theory is hypothesized is defined 

as adventitious error, where the word “adventitious” refers to the fact that this error is 

random and arises in an unpredicable manner from unknown sources external to the design 

of a study. For example, suppose that the structure of a depression scale is hypothesized for 

adults in the U.S. measured under a general measurement condition. To validate this 

structure, data are collected from randomly selected adults in Chicago on a day of summer. 

In this case, the statistical population from which the observations can be viewed as a 

random sample is no longer the ratings by adults in the U.S. under a general condition. 

Instead, the observations are better viewed as a random sample from the ratings by adults 

from Chicago in summer. The difference between these two populations is adventitious 

error. It is very rare that a study uses a truly random sample from adults in the U.S.. Even if 

such a sample of people is obtained, the measurement of the sampled adults usually takes 

place in a specific span of time, which may not be representative of a general measurement 

condition. It should be noted that in most research, the “general population under a general 

measurement condition” of interest is an ideal construct that exists only in theory. In practice 

a sample is necessarily drawn from an operational and concrete population that differs from 

the theoretical population. In this sense, adventitious error is unavoidable.

The presence of adventitious error is the result of different and usually unknown sources of 

error that make the two populations different. Error unique to one study may result in 

systematic deviation of all observations obtained in this study from the pattern hypothesized 

by theory. In the example above, the particular location and time at which the measurement 

takes place, the way the measurement is administered and the conductors of the study may 

all be sources of error, and there are likely even more sources of error that are unknown to 

the researcher. It should be noted that all such errors of known or unknown sources are not 

of theoretical interest and cannot be distinguished from each other using observations from a 

single study. As a result, similar to the modeling of sampling error, their joint effect is 

combined into a single error and modeled with a distribution.

An important feature of adventitious error is its randomness. To better understand its 

stochastic nature, we need to consider hypothetical replications of a measurement. Still 

taking the example above, if the study in Chicago is to be replicated, it is more likely to be 

conducted by another investigator in another city at another time of year, because the theory 

to be validated concerns adults in the U.S. under a general measurement condition. In 

general, because a psychometric theory concerns a theoretical population, instead of 
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assuming that replications of a study are taken repeatedly from the same operational 

population, it is more meaningful to assume that different replications are taken from this 

theoretical population operationalized in slightly different ways, and those different 

replications as a whole are representative of the general population of interest. In terms of 

adventitious error, it is more meaningful to assume that its different sources are realized 

differently across these different replications. The fact that adventitious error differs across 

different realizations of the same study highlights its randomness.

1.2. The Traditional Approach to Model Misspecification

The traditional approach to misspecification assumes an unknown but fixed covariance 

matrix Σ for the population from which the observations are a random sample. This 

covariance matrix deviates from the covariance structure Ω(ξ) and this deviation is referred 

to as discrepancy of approximation (Cudeck and Henly, 1991). Despite this discrepancy, the 

procedure of parameter estimation stays the same as for correctly specified models. Only the 

asymptotic distribution of the test statistic is adjusted to account for misspecification and the 

root mean square error of approximation (RMSEA, Steiger and Lind, 1980; Browne and 

Cudeck, 1992) can be estimated as a measure of the extent of misspecification.

Unfortunately, this traditional approach, though fairly successful, is still imperfect. The 

primary reason is that it was developed as minimal modification to the routine for correctly-

specified models through post-hoc adjustments. Especially, misspecification is not actively 

modeled but is treated as the fixed discrepancy of approximation in the operational 

population. Neglecting the randomness of the operational population changes the replication 

framework discussed earlier and shifts the focus of the study from the general population of 

theoretical interest to the specific population of which the sample in the current replication 

of study is representative. This effectively limits the generalizability of the model. In 

addition, it also renders the parameter estimates less meaningful, because the model does not 

hold in the specific population and the parameters are better interpreted in terms of the 

general population where the model is correctly specified. The present paper will maintain 

the point of view that the operational population should be modeled formally as a stochastic 

quantity due to the presence of adventitious error and its randomness should be accounted 

for when estimating the parameters and evaluating the model.

1.3. Stochastic Approaches to Adventitious Error

The origination and role of a random adventitious error were first systematically studied by 

Tucker, Koopman and Linn (1969), in which the difference between a formal model (i.e. a 

covariance structure) and a simulation model (i.e. a population covariance matrix) was 

identified as an error due to the presence of minor factors. Especially, loadings on these 

minor factors “are taken as random variables somewhat out of the control of the designer of 

the variable and the experimenter collecting the data”, and the simulation model “conceives 

of each measure involving a sampling of influences on the behavior of the individual”. A 

more recent study by Briggs and MacCallum (2003) used the same stochastic approach to 

simulate population correlation matrices and considered conditions with either or both 

adventitious error and sampling error.
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As both adventitious error and sampling error are present in the data and contribute to its 

randomness, the estimation procedure should include both of these two particular sources of 

error. Estimation under multiple sources of error has been an active subject of applied 

statistics and engineering (Kennedy and O’Hagan, 2001; Trucano et al., 2006). For example, 

for a nonlinear regression model, the standard practice is to obtain the least square estimates 

of its parameters. To account for misspecification, the traditional approach would assume a 

fixed model discrepancy and adjust the confidence intervals accordingly, and the test 

statistics would have a non-central χ2 distribution (White, 1981; Wardorp, Grasman and 

Huizenga, 2006). To account for randomness in the actual physical process, Trucano et al. 

(2006, section 3) employ a Gaussian process to model the discrepancy between the true 

process and the nonlinear regression model, and parameters are estimated in a Bayesian 

framework. The issue of quantifying uncertainties has recently been introduced to 

psychology by MacCallum (2011a,b).

In this work, we quantify both the adventitious error and sampling error with distributions in 

line with the above discussion. In particular, the misspecified population covariance matrix Σ 
follows a distribution centered at the structure Ω(ξ), implying a stochastic adventitious error 

Σ – Ω(ξ) as a random effect. Although one could account for adventitious error with 

unaccounted minor factors as discussed in Tucker, Koopman and Linn (1969), we choose to 

use a simple conjugate distribution as a first attempt at this issue.

2. The Traditional Approach

2.1. Correctly-Specified Covariance Structures

Traditionally, a covariance structure Ω(ξ) is fitted to a sample covariance matrix S by 

minimizing a discrepancy function F(S, Ω(ξ)) (see, e.g., Browne, 1984, p.64). General 

classes of discrepancy functions include the generalized least squares (GLS, Browne, 1974) 

and the Swain (1975) family. As a member of both families, the maximum Wishart 

likelihood (MWL) discrepancy function (see, e.g., Lawley and Maxwell, 1971) is given by

(1)

Minimizing this function is equivalent to maximizing the likelihood function of the Wishart 

distribution Wp(Ω(ξ)/n, n), the sampling distribution of S under the assumptions of Σ = Ω 
and normality. Under these assumptions, parameter estimate ξ̂W has the asymptotic 

distribution (Shapiro, 2007, Theorem 5.5), , where 

 and V = (Ω⊗Ω)−1. Throughout the paper we use the notation ω = vecΩ, with σ and 

s defined similarly. The superscript * indicates evaluation at the true value ξ = ξ0. Note that 

 is the Fisher information matrix. The fit of a model is evaluated with the 

likelihood ratio test (LRT). The observed discrepancy function value n F̂ has an asymptotic 

distribution of , where df is the difference in dimensions between the tested model and 
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saturated model. As has been discussed in the Introduction, the LRT always rejects the 

structured model in practice when sample size is large enough due to misspecification.

2.2. Misspecified Covariance Structures

When the model is misspecified, there is no longer a true value ξ0 in the parameter space Ξ 
such that Σ = Ω(ξ0). However, under mild regularity conditions, the parameter estimate ξ̂W 

is still consistent towards ξ#, the minimizer of F(Σ,Ω(ξ)). White (1981, Theorem 3.3; 1982, 

Theorem 2.2) and Shapiro (1983, Theorem 5.4(a); 2007, Section 5.3) investigated the 

asymptotic distribution of ξ̂W under a misspecification assumption and obtained equivalent 

results. Their results have rarely been used, partially because higher order derivatives of 

Ω(ξ) are involved when the model is misspecified.

Shapiro (1983, Theorem 5.4(c)) also derived the asymptotic distribution of the test statistic 

through a Taylor expansion of the discrepancy function and found that 

, where F# = FW(Σ,Ω(ξ#)) is the minimum 

discrepancy function value in the population, and . The superscript # is used to denote 

the value evaluated at the fixed and possibly misspecified population s = σ and ξ = ξ#. When 

misspecification is not present, F# = 0, a# = 0 and the normal distribution becomes 

degenerate. In this case, the quadratic term in the Taylor expansion gives a χ2 approximation 

for n F̂.

Because F̂W is bounded by 0 from below and has a skewed distribution in most cases, the 

normal approximation is not appropriate. To amend this situation, one introduces the Pitman 

drift assumption that the population Σ becomes closer and closer to the model Ω as sample 

size n increases, with . Under this assumption, , where δ 
= lim nF#. This assumption also implies that ξ̂W has the same asymptotic distribution as in a 

correctly specified model.

The RMSEA (Browne and Cudeck, 1992) given by  measures the discrepancy 

per degree of freedom. Its bias adjusted point estimate is given by , 

where a+ = max{a, 0}, and its confidence interval (CI) can be obtained from the non-central 

χ2 distribution of n F̂ discussed above (see also MacCallum, Browne and Sugawara, 1996). 

In practice, with the issue of model misspecification borne in mind, one does not discard the 

model immediately when exact fit is rejected. Instead, the RMSEA is estimated and tested 

against some criterion (e.g. ε < 0.05) through the use of a lower confidence bound (CB). If 

the RMSEA is regarded as below the tolerance value, the model is retained.

2.3. Problems of the Traditional Approach

As a post hoc amendment, the traditional approach only addresses the question of what 

would happen to the results from the procedure for a correctly specified model when 

misspecification is present. Consequently, it only acknowledges model misspecification, but 

does not model how it has occurred. For parameter estimates and CIs, the traditional 
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approach uses the same procedure as for correctly-specified models. Especially, the 

traditional approach defines a “true value” ξ# for the replication-specific population as the 

minimizer of F(Σ,Ω(ξ)). This may be misleading for two reasons: First, the discrepancy 

between Σ and Ω(ξ#) is measured by a function used to measure a deviation due to sampling 

error, though clearly it is due to adventitious error in this case; Second, the “true value” is a 

property of the replication-specific population, which is only a noisy realization of the 

general population and is therefore not of theoretical interest. As mentioned in the 

Introduction, inference on ξ# narrows the generalizability of the study.

A second problem of the traditional approach above concerns the stochastic nature of 

adventitious error. The traditional approach assumes only a fixed misspecification in the 

population and does not account for adventitious error as a source of variation. This 

assumption neglects the variation of the potential realizations across different replications of 

the same study, and would result in underestimation of the randomness in the sample, 

parameter estimates and test statistics.

In addition to issues mentioned above, a technical drawback is also present in the traditional 

approach, which invokes the Pitman drift assumption (see Section 2.2) as a mathematical 

convenience to justify the asymptotic noncentral χ2 distribution of n F̂. Nevertheless, this 

assumption, which states that the population becomes gradually close to the model as 

sample size increases, is implausible in practice because the population should not be 

affected by sample size. Its use has been heavily debated (see, e.g., Yuan, Hayashi and 

Bentler, 2007; Yuan, 2008; Chun and Shapiro, 2009).

In the light of these problems, we present an alternative approach to misspecified covariance 

structures. This approach models not only the sampling error, but also the adventitious error.

3. A Model for Adventitious Error

Three quantities are particularly important in our model: the sample covariance matrix S, the 

covariance matrix Σ of the replication-specific population, and the structured covariance 

matrix Ω(ξ) of the general population given by theory. Between the three quantities, two 

sources of error are of primary concern: sampling error and adventitious error. Sampling 

error is the deviation of the observed sample from the replication-specific population due to 

the sampling process from this population. It is the main concern of most statistical 

procedures. In most situations, the effects of sampling error can be made small by increasing 

sample size. In contrast, adventitious error exists in the replication-specific population and is 

not related to the sampling process. Because of this error, the population from which we 

obtain a random sample fails to satisfy the structure implied by theory. Especially, if the 

same study is to be replicated multiple times, variations would be present among those 

populations from which we obtain observations. The effect of adventitious error can not be 

minimized by increasing sample size. As we can see from the above analysis, the 

discrepancy between sample and the model arises from both sources of error. Now we give a 

statistical formulation of our discussion of the two types of error above.

Under the normality assumption, the sample covariance matrix has a Wishart distribution:
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(2)

where we assume S is the usual unbiased estimator of the unstructured population 

covariance matrix, and n is the degrees of freedom, usually sample size less 1. This gives the 

distribution of sampling error S–Σ. In addition, the population covariance matrix Σ is 

assumed to follow an inverted Wishart distribution, the conjugate distribution to the Wishart 

distribution1:

(3)

where m > p–1 is a continuous precision parameter. The inclusion of the distribution of Σ 
follows from the rationale of a random adventitious error as discussed in the Introduction. It 

posits that the adventitious error Σ – Ω(ξ) be a random effect, so that Σ differs from the 

structure Ω and would have different realizations if the same study is to be replicated 

multiple times. An extra parameter m is introduced by the random effect and its inverse v = 

1/m ∈ [0, (p – 1)−1) denotes the dispersion of adventitious error and gives a measure of the 

extent of misspecification2. Especially, as v → 0, from the weak law of large numbers 

(WLLN), we have  and no adventitious error is present.

Equations 2 and 3 were previously employed as an empirical Bayesian model in shrinkage 

estimation of an unstructured population covariance matrix Σ (Chen, 1979). Because the 

sample covariance matrix S is unstable when sample size is small, Chen (1979) proposed the 

shrinkage estimator Σ̂ = (m̂Ω(ξ̂)+nS)/(m̂+n), which is the posterior mode of Σ implied by 

Equations (2) and (3). This estimator stabilizes S by shrinking it towards some prespecified 

structure Ω(ξ), and the amount of shrinkage is governed by parameter m. Both ξ and m are 

estimated by maximizing the marginal likelihood.

Although we are using a similar model to Chen (1979), the following distinctions should be 

noted. First, the main purpose of the current research is the estimation of the structured 

covariance matrix Ω and the parameter v = 1/m in the presence of adventitious error, 

whereas Chen aimed at a better estimation of the unstructured population covariance matrix 

Σ. Second, in our research Σ is a random effect that is considered real in practice and its 

distribution is used to model the adventitious error. All asymptotic results will be derived 

under this two-level replication framework. In contrast, in Chen’s model Σ is considered 

fixed and its prior distribution is used to induce shrinkage to stabilize its estimator. The 

consistency of Σ̂ was derived assuming a fixed Σ. Third, to obtain parameter estimates, we 

maximize a modified marginal likelihood directly by means of the Newton-Raphson 

algorithm, while Chen maximized the true marginal likelihood through an EM algorithm, 

treating Σ as missing data. In summary, our model is similar to that of Chen (1979) only 

1The notation of an inverted Wishart distribution differs across textbooks. We use the notation that Σ ~ IWp(Ω, m) if Σ−1 ~ Wp(Ω−1, 
m).
2Another measure ṽ = 1/(m−p+1) ∈ [0,∞) with no upper bound is introduced later for practical uses.
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mathematically. The purpose, motivation, computation, replication framework and 

interpretation are all different.

4. Analytical Properties

4.1. The Marginal Distribution

The hierarchical model as presented by Equations (2) and (3), involves two unknown 

quantities in the upper level, the structured covariance matrix Ω(ξ) and the dispersion 

parameter v (or, equivalently, m = 1/v), to be estimated from the data. Estimates of these 

parameters can be obtained by maximizing the likelihood function given by the marginal 

distribution of the sample covariance matrix (S|Ω, m) with the unknown population 

covariance matrix Σ integrated out. Because of our choice of a conjugate distribution for Σ, 

this marginal distribution (S|Ω, m), derived by Roux and Becker (1984), is of a known type

(4)

the second type of matrix variate beta distribution (see Gupta and Nagar, 1999, Chapter 5). 

This marginal distribution has pdf:

where Bp(a, b) = Γp(a)Γp(b)/Γp(a + b) is the multivariate beta function and Γp(a) is the 

multivariate gamma function (see Gupta and Nagar, 1999, Section 1.4). The negative twice 

beta log-likelihood is given by

where

(5)

(6)

(7)
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(8)

Note that Σ̄ denotes a function of m, n, Ω and S but not of Σ.

The parameter estimate (estimator) obtained from maximizing the beta marginal likelihood 

will be referred to as the maximum beta likelihood (MBL) estimate (estimator), or MBLE.

4.2. Asymptotic Behavior

The marginal distribution of S involves sample size n in the sampling error’s Wishart 

distribution and the precision parameter m in the adventitious error’s inverted Wishart 

distribution. Intuitively, as the sample size n → ∞, sampling error is diminished and the 

marginal distribution should become the inverted Wishart distribution assumed for the 

population covariance matrix; as precision parameter m → ∞, or dispersion parameter v → 
0, we expect the model to become the Wishart model for correctly specified covariance 

structures. These results are summarized in the proposition below.

Proposition 1—The marginal density function of (S|Ω, m) converges to that of (S|Σ = Ω) 

as v → 0 (m→∞) and to that of (Σ|Ω, m) as n→∞.

Proof: This follows from Lemma 7 in Appendix A.

In addition to the intuitive results above, we also have

Proposition 2—Assuming the model given by Equations 2 and 3, as n→∞ and m→∞ 
(i.e., v → 0),

where s = vecS, ω = vecΩ, and Mp is a p2 × p2 matrix of rank p(p + 1)/2 with typical 
element mij,rs = (δirδjs + δisδjr)/2. The rows and columns of Mp are doubly indexed as 11, 
12, · · ·, 1p, 21, 22, · · ·, 2p,· · ·, pp. (see, e.g. Gupta and Nagar, 1999, Section 1.2).

The proof of Proposition 2 is given in Appendix A. This result suggests that when both n 
and m are large enough, the marginal distribution of s can be approximated by N(ω, 2(v
+ε)Mp(Ω⊗Ω)), where for symmetry in presentation, we use the notation ε = 1/n, which 

should not be confused with RMSEA ε. This fact will be exploited later to derive the 

sampling distribution of the estimators.

The normal approximation to the marginal distribution is not surprising given that both the 

Wishart (likelihood) and the inverted Wishart (prior) distributions can be approximated by 

normal distributions when their precision parameters are large. In fact, as n → ∞ and m → 
∞, the sampling error s – σ has an approximate distribution N(0, 2εMp(Ω ⊗ Ω)) and the 
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adventitious error σ –ω has an approximate distribution N(0, 2vMp(Ω⊗Ω)). The normal 

approximation of the marginal distribution combines the effects of both sources of error 

because its covariance matrix is the sum of the two covariance matrices for the two 

approximations above.

4.3. The Inverted Wishart Distribution

Among the limiting distributions discussed above, the inverted Wishart distribution is the 

least investigated in the psychometrics literature and has never been used to fit a CSM. 

Given its special role in our approach, we briefly investigate the inverted Wishart model for 

the population covariance matrix Σ. Through this investigation we will correct a potential 

bias in the MIWL estimation of v by modifying the inverted Wishart log-likelihood function 

and also obtain an asymptotic relationship between the dispersion parameter v and the 

RMSEA ε.

4.3.1. Model for a Known Population—The distribution of Σ as specified by Equation 3 

has the inverted Wishart density (Gupta and Nagar, 1999, Section 3.4)

and we define

(9)

where

(10)

(11)

are the limits of F̃
1 and F̃

2 (see Equations (5) and (6)) as n→∞, respectively (see Lemma 7 

in Appendix A).

Given a known Σ, it is possible to estimate ξ and v by minimizing F̃IW. Since Ω is present 

only in the second term of , ξ can be estimated by minimizing
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(12)

which is a discrepancy function3 and a member of the Swain (1975) family4. However, it 

was not considered in Swain (1975) and has never been used before for the analysis of 

covariance structures. Shapiro (1985, p.80) very briefly mentioned it as a discrepancy 

function asymptotically equivalent to the MWL discrepancy function defined by Equation 

(1). The two discrepancy functions are related to each other through FIW(Σ,Ω) = FW(Ω,Σ) = 

FW(Σ−1,Ω−1). The EM algorithm of Chen (1979) minimizes Equation 12 to obtain an update 

of ξ in the M step.

Equation 12 can be minimized using a scoring algorithm with gradient and Fisher 

information matrix given by

where Δi = ∂Ω/∂ξi is a p × p matrix.

Once ξ has been estimated, the minimum MIWL discrepancy function value F̂IW = 

FIW(Σ,Ω( ξ̂)) can be determined, and the estimate of v can be obtained by minimizing F̃IW = 

f(m) + m F̂IW + c, or by solving

(13)

for m, where . Chen (1979) showed that for a given Σ, m̂IW 

exists and is unique on (p−1,+∞], with m̂IW = ∞ iff F̂IW = 0, or the dispersion parameter v 
is estimated at 0 iff Σ satisfies the model.

4.3.2. Bias Correction—Because f′(m) as in equation 13 has the expansion 

 (see Lemma 5 in Appendix A), Equation (13) implies 

 when Σ is close to Ω. Further because 

 as m → ∞, , which 

means v̂IW tends to underestimate v.

To correct this bias, we consider the following modified version of F̃IW defined in equation 9

3It should be noted that FIW is a discrepancy function for the covariance structure only. It does not involve m and does not correspond 
to F̃IW in the sense the MBL discrepancy function F (to be defined in Section 5.1) corresponds to F̃.
4This is because FIW(Σ, Ω) = FW(Ω, Σ) and FW is a member of the Swain family (Swain, 1975, p.317)
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(14)

in which α ≥ 0 is a constant serving as a tuning parameter. This family includes F̃IW as a 

special case (α = 1). Equation (13) now becomes

(15)

If , we have v̂IW = F̂IW/df + o( F̂IW) and is asymptotically unbiased.

Because the MIWL and MWL discrepancy functions are asymptotically equivalent, we 

further have

(16)

which gives the relationship between the dispersion parameter and the RMSEA.

The same modification can also be applied to the MBL procedure by defining the following 

family of functions

(17)

As will be shown later (see Equation 35), in a similar manner to the case of MIWL, the 

MBLE obtained by minimizing the original function F̃ = F̃
(α=1) underestimates v, while the 

choice of  corrects this bias.

5. The Maximum Beta Likelihood Estimate

5.1. The Saturated Covariance Structure

For a given sample covariance matrix S and a covariance structure Ω(ξ), the MBLE of the 

parameters can be obtained by maximizing the marginal likelihood of S. Before presenting 

the numerical algorithm for parameter estimation, we first examine the case of the saturated 

model.

To obtain the MBLE, F(̃α) = αF̃
1 + F̃

2 needs to be minimized, where the two terms are 

defined in equations (5) and (6) and α is a pre-specified tuning parameter. For any fixed 

value of m, F̃
2 can first be minimized to obtain a conditional minimizer of F̃. For m < ∞, 

from the concavity of ln |A| on {A ≻ 0}, F̃
2 ≥ −(n−p−1) ln |S|−mln |Ω|+mln |Ω|+n ln |S| = (p 

+ 1) ln|S|. The equality is achieved iff Ω = S. So for any finite m, F̃
2 (and therefore −2 lnL) is 
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minimized at Ω̂ = S for saturated Ω. The case of m = ∞ can be shown easily by noting that 

the likelihood function becomes that of a Wishart distribution. Note the minimizer does not 

depend on m.

Because the minimum of F̃
2 at Ω̂ = S does not involve m, for α > 0, we only need to 

minimize F̃
1 = f(n) + f(m) − f(m + n) to obtain m̂. From Lemma 5 in Appendix A, we have 

f(m) − f(m + n) → 0 as m → ∞. To prove m̂ = ∞, we only need to show that f is 

monotonically decreasing, which follows from the fact that f′(x) < 0 as proved by Chen 

(1979, Appendix).

If α = 0, for any given m, the minimum of F̃
(α) over ξ ∈ Ξ is a constant. As a result, 

parameter m cannot be estimated. This is the case with the choice  since df = 0 

for a saturated model. This apparently undesired property is not unreasonable: if the 

covariance structure is saturated, the amount of deviation between Σ and Ω cannot be 

determined as the covariance structure is not falsifiable. Note the RMSEA cannot be 

calculated either in this case.

Above we have proved that for the saturated model, Ω̂ = S and v̂ = 0 (if α > 0). In this case, 

F(α) achieves its minimum of αf(n)+(p+1) ln|S|. Because this minimum is finite, we can 

subtract this value from the function and obtain a discrepancy function

(18)

where

(19)

(20)

The two parts F1 and F2 correspond to F̃
1 and F̃

2 respectively. For α > 0, the function F(α) 

satisfies F(α) ≥ 0 and F(α) = 0 iff S =Ω and v = 0. Note F(α) is not a discrepancy function in 

the traditional sense as it involves sample size n and the non-structural parameter v.

5.2. Covariance Structures in General

For the general case where Ω = Ω(ξ) is structured with parameter vector ξ, a numerical 

procedure is needed for the estimation of both ξ and v. A Newton-Raphson algorithm with 

approximate Hessian matrix is adopted to minimize the modified discrepancy function F(α). 

The gradient of F(α) is given below. The Hessian matrix and its approximation are provided 

in Appendix B.
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For the structural parameter ξ, we remember that F1 does not involve Ω so its derivatives 

w.r.t the ξi’s are 0. Those of F2 are given by

(21)

(22)

where  is a p × p matrix and  is a p2 × q matrix. The derivative w.r.t v is 

given by , where

(23)

(24)

To better understand a property of v̂, we consider the value of  at v = 0. Lemma 5 in 

Appendix A gives  and therefore

(25)

For Equation (24), we first note . Applying Lemma 6 in 

Appendix A, we have

and
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(26)

When α > 0 and S satisfies the structure Ω(ξ), , so a search performed 

by the Newton optimization algorithm will “hit” the boundary of v = 0 and we get v̂ = 0. 

However, if the overall deviation Ω – S is present, but is small in terms of tr(Ω−1S – I)2, the 

limit of the derivative may still be positive and we still have v̂ = 0. This shows a different 

picture from the MIWL procedure in section 4.3, where v̂IW = 0 iff Σ satisfies the model. 

The reason is that the sample covariance matrix S used here involves sampling error. A 

sample that does not satisfy the model may still be regarded as coming from a population 

that satisfies the model.

5.3. Some Notes on Computation

It is interesting to note that the derivatives of F(α) are functions of the observed sample 

covariance matrix S only through , which is the posterior mode of Σ and the 

inverse of the posterior mean of Σ−1. This points to a relationship between our algorithm and 

the EM algorithm in Chen (1979), where the unobserved Σ was treated as missing data. For 

each iteration of his EM algorithm, Σ̄ is first calculated in the E-step and then the M-step 

essentially sets the derivatives of F(α=1) to 0 to obtain temporary estimates of the parameters. 

Since the EM algorithm is iterative with iterative procedures nested in each iteration, it is 

expected to be slower than the direct minimization of F proposed here. In addition, because 

the unmodified marginal likelihood function was used, the estimate of v = 1/m is expected to 

be biased downwards.

A technical issue in this algorithm is to take care of the computation for large m. Because 

the program is intended to search around values of v close to 0, the discrepancy function and 

its derivatives need to be evaluated for very large m or for m = ∞. Both cases require special 

treatment. We can see that the quantity  is present in F1. 

When m is very large, f(m) = O(1) but the first term increases with m superlinearly. This 

implies that cancellation errors will be present and become more serious as m increases. 

Similarly, F1 = f(m) − f(m+ n) = O(1/m) while f(m) = f(m+ n) = O(1), giving another source 

of such errors. The same problem is also present in the calculation of the derivatives of F1. 

To avoid this problem, Taylor expansions in Lemma 5 were used to construct formulae that 

minimize the aforementioned issues.

6. Consistency and Sampling Distribution

In frequentist statistics, consistency and sampling distribution are major issues in evaluating 

estimators and both are related to how the estimator varies from one realization to another as 

sample size increases. Because both issues concern the imaginary process of multiple 

realizations beyond the current observation, they both depend on the replication framework 

assumed.
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6.1. Replication Framework and Consistency

As has been stated in the Introduction, the motivation behind the current approach is the 

recognition of adventitious error as a distinct stochastic process. This assumption implies a 

replication framework in which both sampling error and adventitious error are random and 

vary across different realizations. In each realization, a Σ is first realized from the inverted 

Wishart distribution and an S is then sampled according to the Wishart distribution. Under 

this replication framework, the entire model can be regarded as a standard frequentist model 

in which the marginal type II matrix-variate beta distribution is the likelihood function, ξ 
and v are parameters in the model, and Σ is a random effect that has been integrated out.

Unsurprisingly, the estimators are not consistent as n→∞ alone under this replication 

framework. Note that both adventitious error and sampling error contribute to the variations 

among different realizations of S and the estimators. An infinite sample size only removes 

the variations due to sampling error, but those due to adventitious error are still present. In 

this case, S = Σ has an inverted Wishart distribution. As a result, the estimators as functions 

of S are still random quantities, and their randomness results from the uncertainty of the 

population covariance matrix due to adventitious error.

Alternatively, if we assume m→∞ in addition to n→∞, both types of error disappear and 

variations among realizations should also vanish. In fact, Proposition 2 implies that 

. The assumption of both large n and large m is similar to the Pitman drift 

assumption usually assumed in the traditional approach of CSMs. Both assumptions assume 

small misspecification. The differences between these two assumptions are: 1. The Pitman 

drift assumption handles a non-random misspecification, while in our model stochastic 

adventitious error is assumed; 2. The Pitman drift assumption assumes a particular rate of 

convergence, namely , which would correspond to m/n = O(1) as n→∞ 
and m→∞ for stochastic adventitious error, but this is not assumed in our approach.

To establish consistency5, we first note that the function F(α)(Ω(ξ), m, S, n) involves sample 

size n explicitly, so classical results for covariance structure analysis (e.g. Shapiro, 1984) 

where the discrepancy function does not involve sample size no longer apply. In addition, 

F(α) does not have a 4-variate limit at point (Ω, m = ∞, S = Ω, n = ∞), and consequently 

results that assume such limit (e.g. White, 1981, Lemma 3.1) do not apply. The following 

proposition establishes the consistency of the parameter estimates using Lemma 2.2 of 

White (1980). Note this Lemma concerns almost sure convergence, but a version for 

convergence in probability can similarly be proved.

Proposition 3—Suppose that the covariance structure Ω(ξ) is defined and identified on a 
compact set Ξ and is continuous, and its smallest eigenvalue is bounded away from 0. Then 
we have

1. F2(Ω(ξ), m, S, n) → F2(Ω(ξ), m,Ω*, n) uniformly in ξ and m as S → Ω*.

5Because of the assumption of v → 0, we only use the notion of consistency for the structural parameter ξ. In this case, v̂ has the 
desired properties such as v̂ → 0 and Ev̂0 = v + op(v + ε) (see Equation 35).
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2. F2(Ω = Ω(ξ), m, S = Ω(ξ0), n) → mFIW(Ω = Ω(ξ),Σ = Ω(ξ0)) uniformly for ξ ∈ 
Ξ and m < m0 given any m0 as n→∞.

3.  and  as n→∞ and m→∞.

Proof

1. Because

it is only necessary to prove that the second term converges to 0 uniformly. When 

this term is non-negative, following from the fact that ln(1 + x) < x,

Because the smallest eigenvalue of Ω(ξ) is bounded away from 0, convergence to 

0 is uniform. The situation when the term is non-positive can be similarly 

proved.

2. We define Ω(ξ)Ω(ξ0)−1 = R and its eigenvalues λi, i = 1, ···, p, for convenience.

Because

and the λi’s are bounded on the compact set of Ξ, uniform convergence is 

established.

3. The above result 1 implies 

uniformly in Ξ as . Result 2, along with identifiability of Ω(ξ), implies

or that the minimum of the limiting loss function is identifiably unique. Now the 

conditions of White (1980, Lemma 2.2) are satisfied and the conclusion follows.
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6.2. Sampling Distribution and Confidence Interval

In traditional CSMs, sampling distributions are derived for a large sample size, n, which 

reduces parameter estimates to a neighborhood of their corresponding true values, where the 

parametric model can be locally linearized. In our approach, both assumptions of large n and 

large m are needed to employ the same technique.

Proposition 4—Suppose the covariance structure Ω(ξ) is continuously differentiable and 
nonsingular in a neighborhood of ξ0, its derivative Δ has full rank at ξ0, the “true value” ξ0 

is not on a boundary, and conditions required for consistency of the MBLEs are satisfied. 
The MBLEs ξ̂ and v̂ are asymptotically independent and have asymptotic sampling 
distributions

(27)

and

(28)

as n → ∞ and v0 → 0, where V = Ω−1 ⊗ Σ̄−1 and the superscript * denotes evaluating the 
quantity at n = ∞, v0 = 0, ξ = ξ0 and s = ω*.

Proof: When no parameter is estimated on a boundary, we have . From Equation 

(22), we have (ω̂ − s)′V̂ Δ̂ = 0, which is equivalent to Δ̂′V̂(ω̂ − ω*) = Δ̂′V̂(s − ω*). As Δ is 

continuous in a neighborhood of ξ0, we have ω̂ −ω* = Δ̄(ξ−ξ0), where Δ̄ = Δ(ξ̄) with ξ̄ = ξ0 

+ t(ξ̂ − ξ0) and t ∈ (0, 1). So we have

Because , it must be nonsingular for large enough n and m, so

(30)

whose asymptotic distribution follows from Proposition 2.

Equation (27) implies , so
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where V|| = Δ(Δ′VΔ)−1(Δ′V) is idempotent, and

(31)

where V⊥ = I − V|| is also idempotent, and df is the degrees of freedom of the covariance 

structure and also the rank of V⊥*.

For parameter v, if v̂ > 0, we have . From Equations (23) and (24), we have

(32)

Multiplying both sides by  and applying Lemma 6 to the right hand side give

(33)

From Equation (31), the right hand side converges to ; from Lemma 5, the factor on the 

left hand side converges to , so the asymptotic distribution of v̂ follows. The 

asymptotic independence of ξ̂ and v̂ follows from that of (Δ′VΔ)*−1(Δ′V)*(s − ω*) and (s − 

ω*)′V⊥*(s − ω*).

It should be noted that the χ2 distribution of v̂ is derived for v̂ > 0. The actual asymptotic 

distribution has a point mass of size . To remove this problem, we may 

modify v̂ and define

(34)

so that
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(35)

Note the estimator v̂0 is asymptotically unbiased when .

Once the sampling distributions are obtained, CIs and CBs can be obtained by inverting the 

sampling distribution. This is straightforward for the parameter v, whose 90% upper and 

lower CBs are given by  and .

For the covariance structure parameter ξ, its sampling distribution involves unknown 

parameters. Replacing those unknown parameters with their estimates, we have

as n → ∞ and m → ∞. Note that the distribution is a t distribution and its degrees of 

freedom df is that of the covariance structure and is not related to sample size. The 95% CI 

of a parameter ξi is given by . For bounded parameters 

such as correlations, a likelihood based CI (Neale and Miller, 1997; Cheung, 2012; Wu and 

Neale, 2012) can be used.

To apply the asymptotic distributions derived above under the assumption of v → 0 and n 
→ ∞, one should note that it requires only a small v and a large n, in the same sense that 

only a large sample size n is required to use classic asymptotic results that assume n → ∞. 

Remember that weak convergence of distributions to a continuous asymptotic distribution is 

defined as the convergence of their cumulative distribution functions (cdf). In the case of v̂0, 

this implies that at any given x, the cdf of (v̂0 +ε)/(v0 +ε) can be made arbitrarily close to 

that of the scaled χ2 distribution by increasing n and decreasing v0. The criteria on the sizes 

of v and n for the asymptotic results to work well may depend on the specific model and its 

parametrization.

7. The Evaluation of Covariance Structures

In the sections above we discussed parameter estimation procedure and the properties of the 

MBLE. A remaining issue is the evaluation of the covariance structure Ω(ξ). The model is 

rejected if the adventitious error in the operational population is large. When the 

adventitious error is large, the single operational population is not representative of the 

theoretical population of interest and as a result any inference on the population of interest is 

doubtful. Because our procedure lies on the assumption that the covariance structure Ω(ξ) 

holds in the theoretical population, it is also possible that the operational population is a 

valid representation of the theoretical population but the covariance structure does not hold. 
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Under either possibility the model must be rejected as a suitable description of the 

population of interest.

A criterion must be chosen as the largest admissible amount of adventitious error to retain 

the model. Because we have established the relationship v ≈ ε2 between parameter v and 

population RMSEA ε, the cut off values of RMSEA can be used as a guideline for the size 

of . Because v has an upper bound of 1/(p−1), a better choice is ṽ = 1/(m−p+1). A value 

of  smaller than 0.05 can be interpreted as indicating a small amount of adventitious 

error, a value between 0.05 and 0.08 indicates an acceptable amount of adventitious error, 

and a value beyond 0.08 indicates an unacceptable amount. A 90% CI on  can be used for 

this purpose.

8. Simulation Studies

In this section, results from three simulation studies are presented. The first study 

demonstrates the relationship between  and RMSEA ε given a population covariance 

matrix Σ. The second study validates the asymptotic sampling distributions and the coverage 

probabilities of the CIs. The third study contrasts the performance of the MWL of the 

traditional approach and that of the MBL.

8.1. Study I: The Relationship between  and ε

As has been shown in Section 4.3, given a population covariance matrix Σ, the relationship 

v̂IW ≈ ε2 holds when both measures are small, which also implies . To 

demonstrate this relationship, 1000 population covariance matrices Σ were drawn from a 

structured covariance matrix Ω with dispersion parameter v uniformly chosen between 0 and 

0.01, which corresponds to the range between 0 and 0.1 for RMSEA. The sampled Σ’s were 

then fitted to the covariance structure using both MIWL and MWL, and both  and the 

population RMSEA ε were obtained.

Two covariance structures were used for this study. The first structure was a factor analysis 

model with 2 factors and 8 manifest variables. The factor loading matrix was chosen to be

(36)

and the factor correlation was chosen to be ρ = 0.5. Unique variances were chosen as

(37)
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such that the model implied covariance matrix is a correlation matrix. This structure has 19 

degrees of freedom. The second covariance structure was simply a 8×8 diagonal matrix, with 

28 degrees of freedom.

The results of the simulation are displayed in Figure 1, in which the RMSEA is plotted 

against  for the two covariance structures respectively. The solid line shows the 

deterministic relationship between  and  implied by Equation (15). It is 

closely approximated by the dashed line of equality when RMSEA ≤ 0.1, validating the 

relationship  implied by the Taylor expansion of function f. For both 

covariance structures, points lie closely around the solid line as implied by the asymptotic 

equivalence of FW and FIW and are also very close to the dashed line, demonstrating 

. Note the range ε ≤ 0.1 covers a wide range of misspecification. No difference 

can be detected between the two plots for different covariance structures because of the use 

of α = 2df/p(p + 1).

8.2. Study II: The Sampling Distributions of Estimates

This study validates the asymptotic sampling distributions and CIs as derived in section 6.2. 

Samples were drawn from the marginal beta distribution and then fitted using the modified 

beta discrepancy function Fα. The empirical sampling distributions and coverage 

probabilities of CIs were then obtained and compared to their theoretical counterpart. The 

true model is the two factor model with true values specified in Study I. When fitting the 

sample, the factor structure was assumed for the correlation matrix instead of for the 

covariance matrix, and the covariance structure was given by Ω = D(ΛΦΛ′ + Ψ)D, where D 
is a diagonal matrix of standard deviations and the diagonal elements of the expression in 

parentheses were constrained to be 1. Because parameters λ11 and λ21 are in symmetric 

positions, the sampling distributions of their estimates must be the same. Simulated 

parameter estimates for both parameters were combined for graphical and tabular summaries 

concerning the two parameters. Other pairs of parameters are treated in the same way. Four 

levels of 200, 500, 1000 and ∞ were chosen for both m and n, yielding 15 conditions 

(excluding the invalid n = m = ∞ condition). Conditions with infinite sample size were 

included for comparison purposes. N = 50, 000 replications were used.

8.2.1. The Two Extreme Cases—For the condition where n = m = 1000, Figure 2 

displays QQplots of the empirical sampling distribution against the theoretical asymptotic 

distribution derived in section 6.2 for each covariance structure parameter and v. The plots 

show that the analytical asymptotic distributions give very good approximations when both n 
= m = 1000.

Table 1 summarizes the missing rate (i.e. the complement of coverage rate) of CIs of 

covariance structure parameters (ξ) constructed using three methods: Type I CIs were 

constructed using the theoretical asymptotic normal distribution with true parameter values 

ξ0 and v0; Type II CIs were constructed using the asymptotic t distribution with true 

covariance structure parameter ξ0 and estimated dispersion parameter v̂0; Type III CIs were 
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constructed using the asymptotic t distribution with parameter estimates ξ̂ and v̂0. Only the 

type III CI is possible in practical applications. The first two types CIs are shown here only 

for comparison purposes.

For n = m = 1000, the missing rates of the type I and type II CIs are very close to 5%, 

reaffirming the accuracy of the analytical derivations as demonstrated in the QQplots. The 

missing rates of type III CIs, ranging from 5.3% to 5.6%, are slightly larger than the former 

two types of CIs, though they are still close to the nominal level. The poorer coverage rates 

of the type III CIs results from replacing the unknown ξ0 by its estimate ξ̂. For the 

dispersion parameter v, the missing rates of the CBs of v are 4.80% and 4.85%.

For m = n = 200, Figure 3 shows differences between the empirical and analytical 

distributions for parameters. For most covariance structure parameters, due to their natural 

boundaries, the empirical sampling distributions of their estimators have slightly shorter 

upper tails and longer lower tails than expected.6 This results in slightly larger missing rates 

of the type I CIs for the factor correlation, the first two factor loadings and the first two 

unique variances (Table 1). The missing rates of type III CIs are larger due to the use of 

parameter estimates ξ̂. For parameter v, the last panel of Figure 3 shows that its empirical 

sampling distribution has slightly shorter upper tail than its asymptotic distribution, leading 

to a missing rate of 4.33%, slightly smaller than 5% for the LCB. The missing rate for the 

UCB of v is 4.99%.

8.2.2. When n and m Vary—The Kolmogorov-Smirnov (KS) distance is used as a 

summary statistic to measure the discrepancy between two distributions. Table 3 gives the 

average KS distance between the simulated and asymptotic distributions across the 17 

covariance structure parameters for each sample size combination. We can see that the KS 

distance decreases as m increases. However, this trend cannot be generally observed for n. 

One possible explanation is that the bias of the asymptotic distribution only decreases when 

m becomes larger.

The missing rates for CIs of three parameters are tabled in Table 2. These are type III CIs 

computed using the parameter estimates. The first factor loading and the first unique 

variance are chosen as they generally have the largest missing rates. We can see the missing 

rates tend to be closer to the nominal value as both n and m increases. Although the missing 

rates of the type I and type II CIs (not shown here) assuming known ξ0 are close to 5%, 

those of the type III CIs are generally greater than their nominal level, with the largest 

missing rate being 8.45%. Again, such distortion of missing rates are generally due to the 

use of parameter estimates, which deviate from the unknown true values for finite sample 

sizes.

For the dispersion parameter v, The KS distances in Table 4 shows the χ2 based 

approximation works very well under all conditions. Table 5 gives the missing rates of upper 

6The authors observed that if a covariance structure instead of a correlation structure is assumed, the empirical distributions of the 
factor loading estimates are very close to the analytical asymptotic distribution.
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and lower CBs for different values of m and n. Missing rates are in general close to though 

slightly below the nominal level of 5%.

8.2.3. Brief Summary—The simulation study confirms the asymptotic distributions 

derived in section 6.2. For large n and m, the missing rates of the CIs of structural 

parameters are close to their nominal value of 5%; with either small n or small m, the 

missing rates can be inflated mainly due to the use of parameter estimates in calculation of 

the CIs and the bounded range of the parameters. These issues are not specific to our new 

model or our new asymptotic paradigm. In fact, they are the problems of Wald type CI in 

general. The use of likelihood based CIs (Neale and Miller, 1997; Cheung, 2012; Wu and 

Neale, 2012) can avoid them. The CBs of the dispersion parameter v perform well under all 

conditions.

8.3. Study III: Comparison with the Traditional Approach

In the third study we compare the new approach with the traditional MWL approach. The 

50,000 random samples obtained in the second simulation study for n = m = 1000 were used 

again and each of the samples was fitted to a MWL model to obtain point estimates and CIs.

The point estimates of the covariance structure parameters are compared in Figure 4. MBLE 

and MWLE are very close to each other, which is not surprising given the asymptotic 

normality of the two distributions. A real difference between the two procedures can be 

found when comparing the performance of the CIs. As can be observed from the first two 

columns of Table 6, the missing rates of the MBL CIs are only slightly greater than nominal 

value of 5%, while those of the MWL CIs are far beyond 5%, ranging around 32%. This 

failure of MWL CIs originates from the fact that they only take into account the randomness 

in the parameter estimates due to the sampling error, while that due to adventitious error is 

neglected. Because only a part of the randomness is addressed in the CIs, the CIs are shorter 

than they are supposed to be and therefore failed to cover the true parameter values with the 

designated probability.

9. Examples

We use two data sets to illustrate the MBL procedure. Both data sets are available in the R 

package psych. The first data set comes from the manual of Revised NEO Personality 

Inventory (NEO-PI-R, Costa and McCrae, 1992). It is a correlation matrix of the six facets 

of the Neuroticism factor from a sample of size 1,000. A single-factor model was fitted to 

the data using both the traditional MWL and the MBL methods. The parameter estimates 

and CIs are shown in Table 7. The point estimates of the loadings from the two procedures 

are very close to each other, but the CIs are very different. The CIs given by MBL are about 

2.7 times as wide as those given by MWL. This difference in variability comes from 

adventitious error. The amount of adventitious error is estimated at v̂ = 0.0044, more than 

four times the sampling error as measured by 1/999 = 0.0010.  is very close to 

the estimated RMSEA ε̂ = 0.0672 in the MWL procedure, which is not surprising given their 

asymptotic relationship as discussed in section 4.3. The CI of  is wider than that of 
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RMSEA due to the randomness of the adventitious error. A small amount of adventitious 

error is cannot be rejected, so the one factor model is retained.

The second data set comes from Tucker (1958) and was used as an example by Tucker and 

Lewis (1973). It is a correlation matrix of nine selected tests from two batteries studied by 

Thurstone and Thurstone (1941). Among the tests, five load on a word fluency factor and the 

remaining four on a verbal factor. For illustrative purpose, we fit a model in which factor 

loadings on the same factor are constrained to be the same. The parameter estimates and CIs 

are shown in Table 8. The relationship between estimates from the two procedures follows 

the same pattern as in the first example. The amount of adventitious error (v̂ = 0.0043) is 

about three times the sampling error (1/709 = 0.0014) and the CIs from MBL are twice as 

wide as those from MWL. A small amount of adventitious error is rejected.

10. Summary and Conclusions

Adventitious error is defined as the difference between the population from which 

observations are collected and the population for which the theory is hypothesized. The 

traditional approach to the analysis of CSMs does not account for uncertainty introduced by 

the adventitious error in both parameter estimates and the test statistic. It also shifts the 

focus of the theory behind the model, narrows its generalizability and affects the 

meaningfulness of the parameters. The technical assumption of Pitman drift employed in the 

traditional approach is implausible in practice.

To address these issues, we assume the deviation between the sample and the covariance 

structure are due to both sampling and adventitious error, and both are random quantities. 

This new replication framework allows us to account for the variations in parameter 

estimates due to adventitious error. In this approach, this error is modeled with an inverted 

Wishart distribution with a precision parameter m, whose inverse v measures the size of this 

error. In addition, the assumption of n → ∞ and v → 0 is assumed for derivations of 

consistency, sampling distributions and other properties of the model. This assumption is 

more plausible than the traditional Pitman drift assumption in that adventitious error is only 

assumed small, but not assumed to get smaller when the sample size increases.

Analytical derivations yielded several important results. First, the dispersion parameter v of 

Σ is related to RMSEA ε by v ≈ ε2 when both are small. Under the assumption of large 

sample size and small adventitious error, the estimators for covariance structure parameters 

are consistent and asymptotically normally distributed, and both adventitious error and 

sampling error contribute to their variances. The estimator v̂0 has an asymptotic distribution 

related to the χ2 distribution.

A Newton-Raphson algorithm is also provided for the MBL procedure. Simulation 

experiments confirmed the validity of the analytical asymptotic sampling distributions and 

the CIs were also found adequate for large n and m. They also demonstrated that the effect 

of a random adventitious error cannot be neglected as it contributes to the dispersion of the 

estimators and that a procedure neglecting this effect produces CIs that are too short and 

give poor coverage rates.
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The current research has opened a new framework for the analysis of uncertainty 

quantification in covariance structures. Because it is a first attempt to quantifying the 

stochastic adventitious error in covariance structures, it is not perfect. For example, the 

current procedure assumes a single group (i.e. one realization of the adventitious error) with 

no missing data or covariates. In addition, a Wishart distribution is assumed for the sampling 

error and its conjugate distribution is used for the adventitious error. Multi-group analysis 

with missing data and covariates and robust modeling methods can be subjects of future 

research.

Because models used in psychology are usually subject to adventitious error, the issue 

addressed in this research is more general than CSMs. The current research only considers 

this general issue in terms of a specific context. Quantifying adventitious error as well as 

other uncertainties in psychological models in general is a new area that deserves further 

research.

Computer Programs

The MATLAB programs for obtaining MBLE, MWLE and MIWLE are included in the 

attachment to this paper along with a description file.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Support was provided by NSF grant SES-0437251 and by the National Institute of Drug Abuse research education 
program R25DA026119 (Director: Michael C. Neale). We wish to thank Alexander Shapiro, Robert C. MacCallum, 
Steven N. MacEachern, Michael C. Edwards and the editor and reviewers for their thought provoking comments 
and suggestions.

References

Billingsley, P. Convergence of Probability Measures. John Wiley and Sons Inc; New York: 1999. 

Briggs NE, MacCallum RC. Recovery of weak common factors by maximum likelihood and ordinary 
least squares estimation. Multivariate Behavioral Research. 2003; 38:25–56. [PubMed: 26771123] 

Browne MW. Generalized least squares estimators in the analysis of covariance structures. South 
African Statistical Journal. 1974; 8:1–24.

Browne MW. Asymptotically distribution free methods for the analysis of covariance structures. 
British Journal of Mathematical and Statistical Psychology. 1984; 37:62–83. [PubMed: 6733054] 

Browne MW. Robustness of statistical inference in factor analysis and related models. Biometrika. 
1987; 74:375–384.

Browne MW, Cudeck R. Alternative ways of assessing model fit. Sociological Methods and Research. 
1992; 21(2):230–258.

Browne MW, Shapiro A. Robustness of normal theory methods in the analysis of linear latent variate 
models. British Journal of Mathematical and Statistical Psychology. 1988; 41:193–208.

Chen CF. Bayesian inference for a normal dispersion matrix and its application to stochastic multiple 
regression analysis. Journal of the Royal Statistical Society, Series B. 1979; 41:235–248.

Cheung MWL. Constructing approximate confidence intervals for parameters with structural equation 
models. Structural Equation Modeling. 2012; 16:267–294.

Wu and Browne Page 26

Psychometrika. Author manuscript; available in PMC 2017 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chun SY, Shapiro A. Normal versus noncentral Chi square asymptotics of misspecified models. 
Multivariate Behavioral Research. 2009; 44:803–827. [PubMed: 26801797] 

Costa, PT., McCrae, RR. (NEO PI-R) professional manual. Psychological Assessment Resources, Inc; 
Odessa, FL: 1992. 

Cudeck R, Henly SJ. Model selection in covariance structures and the “problem” of sample size: A 
clarification. Psychological Bulletin. 1991; 109:512–519. [PubMed: 2062982] 

Gupta, AK., Nagar, DK. Matrix Variate Distributions. Chapman & Hall/CRC; 1999. 

Lawley, DN., Maxwell, AE. Factor analysis as a statistical method. Elsevier; New York: 1971. 

Lee, S-Y. Structural Equation Modeling: a Bayesian Approach. John Wiley & Sons Ltd; England: 
2007. 

Kennedy MC, O’Hagan A. Bayesian calibration of computer models. Journal of Royal Statistical 
Society, series B. 2001; 63(3):425–464.

MacCallum RC. Working with imperfect models. Multivariate Behavior Research. 2003; 38:113–139.

MacCallum, RC. Exploring uncertainty in structural equation modeling. presented at the American 
Psychological Association Annual Convention; Washington, DC. 2011a. 

MacCallum, RC. A brief introduction to uncertainty quantification. presented at the annual meeting of 
Society of Multivariate Experimental Psychology; Norman, OK. 2011b. 

MacCallum RC, Browne MW, Sugawara HM. Power analysis and determination of sample size for 
covariance structure modeling. Psychological Methods. 1996; 1:130–149.

MacCallum RC, Tucker LR. Representing sources of errors in a common factor model. Psychological 
Bulletin. 1991; 109:502–511.

Neale MC, Miller MB. The use of likelihood based confidence intervals in genetic models. Behavior 
Genetics. 1997; 27:113–120. [PubMed: 9145549] 

Resnick, SI. A Probability Path. Birkhäuser; Boston: 2001. 

Roux, JJJ., Becker, PJ. On prior inverted Wishart distribution. Department of Statistics and Operations 
Research, University of South Africa; Pretoria: 1984. Research Report No. 2

Shapiro A. Asymptotic distribution theory in the analysis of covariance structures (a unified approach). 
South African Statistical Journal. 1983; 17:33–81.

Shapiro A. A note on consistency of estimators in the analysis of moment structures. British Journal of 
Mathematical and Statistical Psychology. 1984; 37:84–88.

Shapiro A. Asymptotic equivalence of minimum discrepancy function estimators to GLS estimators. 
South African Statistical Journal. 1985; 19:73–81.

Shapiro, A. Statistical inference in moment structures. In: Lee, S-Y., editor. Hand Book of Latent 
Variable and Related Models. 2007. p. 229-260.

Steiger, JH., Lind, JC. Statistically based tests for the number of factors. presented at the annual 
meeting of the Psychometric Society; Iowa City, IA. 1980. 

Swain AJ. A class of factor analysis estimation procedures with common asymptotic sampling 
properties. Psychometrika. 1975; 40:315–335.

Thurstone, LL., Thurstone, TG. Psychometric Monographs, No. 2. Chicago: Univ. Chicago Press; 
1941. Factorial studies of intelligence. 

Trucano TG, Swiler LP, Igusa T, Oberkampf WL, Pilch M. Calibration, validation and sensitivity 
analysis: What’s what. reliability engineering and system safety. 2006; 91:1331–1357.

Tucker LR. An inter-battery method of factor analysis. Psychometrika. 1958; 23:111–136.

Tucker LR, Lewis C. A reliability coefficient for maximum likelihood factor analysis. Psychometrika. 
1973; 38:1–10.

Tucker LR, Koopman RF, Linn RL. Evaluation of factor analytic research procedures by means of 
simulated correlation matrices. Psychometrika. 1969; 34:421–459.

Wardorp LJ, Grasman RPPP, Huizenga HM. Goodness of fit and confidence intervals of approximate 
models. Journal of Mathematical Psychology. 2006; 50:203–213.

White H. Nonlinear regression on cross-section data. Econometrika. 1980; 48:721–746.

White H. Consequences and detections of misspecified nonlinear regression models. JASA. 1981; 
76:419–433.

Wu and Browne Page 27

Psychometrika. Author manuscript; available in PMC 2017 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



White H. Maximum likelihood estimation of misspecified models. Econometrika. 1982; 50:126–150.

Wu H, Neale MC. Adjusted confidence intervals for a bounded parameter. Behavior Genetics. 2012; 
42:886–898. [PubMed: 22971875] 

Yuan KH. Noncentral chi-square versus normal distributions in describing the likelihood ratio statistic: 
The univariate case and its multivariate implication. Multivariate Behavioral Research. 2008; 
43:109–136. [PubMed: 26788974] 

Yuan KH, Bentler PM. On the asymptotic distributions of two statistics for two-level covariance 
structure models within the class of elliptical distributions. Psychometrika. 2004a; 69:437–457.

Yuan, K-H., Bentler, PM. Robust procedures in structural equation modeling. In: Lee, S-Y., editor. 
Hand Book of Latent Variable and Related Models. 2007. p. 367-397.

Yuan KH, Hayashi K, Bentler PM. Normal theory likelihood ratio statistic for mean and covariance 
structure analysis under alternative hypotheses. Journal of Multivariate Analysis. 2007; 98:1262–
1282.

A. Lemmas and Proofs

Lemma 5

Taylor expansions of function f as defined in Equation 7 and its derivatives are listed below.

where

Proof—Reference covered for blind review.

The following fact is used in a number of places in the paper.

Lemma 6

for any matrix A = O(1/n),

(38)

Proof—Write A in its spectral decomposition and the result follows from the Taylor 

expansion of ln(1 + x).

The next lemma is used to establish Proposition 1.
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Lemma 7

, limm F̃
1 = f(n), and limm F̃

2 = nFW + (p+1) ln|S|, 

where F ̃
1, F̃

2, , f and FW are defined respectively by Equations 5, 6, 10, 11, 7 and 
1.

Proof—We only prove the first two limits. The first limit follows from lemma 5. For the 

second limit, Lemma 6 gives

Proof to Proposition 2

Proof—As m → ∞, we have , and 

. Consequently, 

. On the other hand, conditional on Σ, as n → ∞,

Note the finite sample distribution on the left hand side does not depend on Σ, so this 

conditional distribution is also the unconditional distribution and the convergence in 

distribution is uniform w.r.t Σ. From the Skorokhod Representation Theorem (see, e.g., 

Billingsley, 1999, Theorem 6.7; Resnick, 2001, Section 8.3), there exist two sequences of 

random variables zn, n = 0, 1, ···, and xm, m = 0, 1, ···, defined on the same probability space, 

such that

and z0, . Now we have
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As a remark to the proof, the Skorokhod Representation Theorem represents the limiting 

distributions in terms of random variables defined on the same probability space. As such, 

their linear combination can be defined and investigated.

B. The Approximate Hessian Matrix

B.1. The Hessian Matrix

The typical element in the Hessian matrix corresponding to ξi and ξj is given by

The element corresponding to v and ξi is , where

The last element in the Hessian is ,

where , 

and 

B.2. Expected Values and Approximations

To approximate the Hessian matrix for positive definiteness and simplicity, we note that 

 implies , the type I matrix 

variate beta distribution, and (Gupta and Nagar, 1999, Chapter 6)
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Taking expected value of the second derivatives, we have

For , we note that

where c0 and c1 are defined in Lemma 5. So

In the approximate Hessian matrix, block Hξξ′ takes its approximate expectation. The off-

diagonal block hvξ′ is set to 0 because  is small compared to  and . 

The diagonal element hvv takes its exact value  unless it is not positive, in which case 

its approximate expectation is employed.

When v = 0, we have
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Figure 1. 

Plot of population RMSEA and MIWLE of .
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Figure 2. 
QQplots of the simulated and asymptotic distributions of ξ̂ for n = m = 1000. Only the 1st, 

2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 97.5th and 99th percentiles are plotted.
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Figure 3. 
QQplots of the simulated and asymptotic distributions of ξ̂ for n = m = 200. Only the 1st, 

2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 97.5th and 99th percentiles are plotted.
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Figure 4. 
Comparison of ξ̂ and ξ̂W. n = m = 1000.
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Table 3

The average 100×KS distances between the simulated and asymptotic sampling distributions of ξ̂.

m = 200 m = 500 m = 1000 m = ∞

n = 200 4.14 2.53 1.99 1.54

n = 500 4.26 2.60 1.84 0.98

n = 1000 4.33 2.69 1.71 0.79

n = ∞ 4.53 2.94 2.07 —
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Table 4

The 100×KS distances between the simulated and asymptotic unconditional sampling distributions for v0̂.

m = 200 m = 500 m = 1000 m = ∞

n = 200 0.96 0.61 0.42 0.60

n = 500 0.76 0.56 0.48 0.35

n = 1000 0.67 0.38 0.56 0.41

n = ∞ 0.82 0.32 0.54 —
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Table 6

The missing rates (%) of the MBL and MWL 95% CIs with n = m = 1000.

MBL MWL

λ11 5.49 32.09

λ31 5.30 32.05

λ52 5.34 31.79

λ72 5.39 31.83

ρ 5.59 32.22

ψ1 5.63 32.24

ψ3 5.43 32.15

ψ5 5.31 31.86

ψ7 5.37 31.87

Psychometrika. Author manuscript; available in PMC 2017 May 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu and Browne Page 42

Ta
b

le
 7

Pa
ra

m
et

er
 e

st
im

at
es

 a
nd

 C
Is

 f
ro

m
 b

ot
h 

M
W

L
 a

nd
 M

B
L

 p
ro

ce
du

re
s 

fo
r 

th
e 

lo
ad

in
gs

 o
f 

si
x 

fa
ce

ts
 o

n 
th

e 
N

eu
ro

tic
is

m
 f

ac
to

r 
of

 N
E

O
-P

I-
R

. T
he

 s
ix

 f
ac

et
s 

ar
e 

A
nx

ie
ty

, A
ng

ry
-H

os
til

ity
, D

ep
re

ss
io

n,
 S

el
f-

C
on

sc
io

us
ne

ss
, I

m
pu

ls
iv

en
es

s 
an

d 
V

ul
ne

ra
bi

lit
y.

 T
he

 s
am

pl
e 

si
ze

 is
 1

,0
00

. T
he

 c
on

fi
de

nc
e 

le
ve

l i
s 

95
%

 f
or

 

th
e 

st
ru

ct
ur

al
 p

ar
am

et
er

s 
an

d 
90

%
 f

or
 o

th
er

s.

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

ε
v

M
W

L
E

0.
77

0
0.

60
2

0.
83

7
0.

70
5

0.
46

8
0.

76
3

0.
06

72

M
W

L
C

I
0.

73
9

0.
55

8
0.

81
1

0.
66

9
0.

41
5

0.
73

1
0.

04
96

0.
80

2
0.

64
6

0.
86

3
0.

74
2

0.
52

1
0.

79
5

0.
08

61

M
B

L
E

0.
77

0
0.

61
2

0.
83

7
0.

70
7

0.
47

5
0.

76
4

0.
00

44
2

0.
06

73

M
B

L
C

I
0.

68
7

0.
49

5
0.

76
7

0.
61

0
0.

33
4

0.
67

9
0.

00
18

8
0.

04
36

0.
85

4
0.

72
9

0.
90

6
0.

80
5

0.
61

6
0.

84
9

0.
01

36
8

0.
12

12

Psychometrika. Author manuscript; available in PMC 2017 May 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu and Browne Page 43

Ta
b

le
 8

Pa
ra

m
et

er
 e

st
im

at
es

 a
nd

 C
Is

 f
ro

m
 b

ot
h 

M
W

L
 a

nd
 M

B
L

 p
ro

ce
du

re
s 

fo
r 

th
e 

da
ta

 s
et

 f
ro

m
 T

uc
ke

r 
(1

95
8)

. T
he

 n
in

e 
va

ri
ab

le
s 

ar
e 

Pr
ef

ix
es

, S
uf

fi
xe

s,
 F

ir
st

 

an
d 

L
as

t L
et

te
rs

, F
ir

st
 L

et
te

rs
, F

ou
r 

L
et

te
r 

W
or

ds
, V

oc
ab

ul
ar

y,
 S

en
te

nc
es

, C
om

pl
et

io
n 

an
d 

Sa
m

e 
or

 O
pp

os
ite

. T
he

 f
ir

st
 f

iv
e 

te
st

s 
lo

ad
 o

n 
a 

w
or

d 
fl

ue
nc

y 

fa
ct

or
, w

hi
le

 th
e 

re
m

ai
ni

ng
 f

ou
r 

on
 a

 v
er

ba
l f

ac
to

r. 
T

he
 s

am
pl

e 
si

ze
 is

 7
10

. T
he

 c
on

fi
de

nc
e 

le
ve

l i
s 

95
%

 f
or

 th
e 

st
ru

ct
ur

al
 p

ar
am

et
er

s 
an

d 
90

%
 f

or
 o

th
er

s.

λ
1

λ
2

ρ
ε

v

M
W

L
E

0.
69

8
0.

84
0

0.
46

6
0.

06
67

M
W

L
C

I
0.

67
3

0.
82

4
0.

39
6

0.
05

53

0.
72

3
0.

85
6

0.
53

5
0.

07
85

M
B

L
E

0.
69

9
0.

84
4

0.
48

0
0.

00
43

0
0.

06
68

M
B

L
C

I
0.

64
6

0.
81

0
0.

33
8

0.
00

25
7

0.
05

12

0.
75

1
0.

87
7

0.
62

3
0.

00
76

2
0.

09
01

Psychometrika. Author manuscript; available in PMC 2017 May 22.


	Abstract
	1. Introduction
	1.1. Adventitious Error and its Stochastic Nature
	1.2. The Traditional Approach to Model Misspecification
	1.3. Stochastic Approaches to Adventitious Error

	2. The Traditional Approach
	2.1. Correctly-Specified Covariance Structures
	2.2. Misspecified Covariance Structures
	2.3. Problems of the Traditional Approach

	3. A Model for Adventitious Error
	4. Analytical Properties
	4.1. The Marginal Distribution
	4.2. Asymptotic Behavior
	Proposition 1
	Proof

	Proposition 2

	4.3. The Inverted Wishart Distribution
	4.3.1. Model for a Known Population
	4.3.2. Bias Correction


	5. The Maximum Beta Likelihood Estimate
	5.1. The Saturated Covariance Structure
	5.2. Covariance Structures in General
	5.3. Some Notes on Computation

	6. Consistency and Sampling Distribution
	6.1. Replication Framework and Consistency
	Proposition 3
	Proof


	6.2. Sampling Distribution and Confidence Interval
	Proposition 4
	Proof



	7. The Evaluation of Covariance Structures
	8. Simulation Studies
	8.1. Study I: The Relationship between 
v∼^IW and ε
	8.2. Study II: The Sampling Distributions of Estimates
	8.2.1. The Two Extreme Cases
	8.2.2. When n and m Vary
	8.2.3. Brief Summary

	8.3. Study III: Comparison with the Traditional Approach

	9. Examples
	10. Summary and Conclusions
	Computer Programs
	References
	A. Lemmas and Proofs
	B. The Approximate Hessian Matrix
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

