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Abstract

Drugs interact with their targets in different ways. A diversity of modeling approaches exists to 

describe the combination effects of two drugs. We investigate several combination effect terms 

(CET) regarding their underlying mechanism based on drug-receptor binding kinetics, empirical 

and statistical summation principles and indirect response models. A list with properties is 

provided and the interrelationship of the CETs is analyzed. A method is presented to calculate the 

optimal drug concentration pair to produce the half-maximal combination effect. This work 

provides a comprehensive overview of typically applied CETs and should shed light into the 

question as to which CET is appropriate for application in pharmacokinetic/pharmacodynamic 

models to describe a specific drug–drug interaction mechanism.
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Introduction

Drugs interact with their targets in many different ways, e.g. compete for the same receptor, 

aim on different targets or act as antagonists to name a few. Understanding interactions is 

crucial to develop beneficial combination therapies but also to decode undesired effects. A 

wide range of diverse methodologies were developed to describe different drug–drug 

interaction (DDI) mechanisms. This work investigates and summarizes typically applied 

DDI mechanisms in pharmacokinetic/pharmacodynamic (PKPD) modeling [1].

In PKPD modeling the effect of a single dose is usually described by the Hill equation [2–4], 

also called sigmoidal function or Emax model. The Hill equation can be derived from first 

principles of drug-receptor binding kinetics [5] and describes a non-linear profile with 

saturation behavior. The equation has simple characteristics such as a maximal effect 

parameter to denote the saturation, a parameter to describe the concentration producing the 

half-maximal effect, and a coefficient to alter the shape towards sigmoidal profiles.
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The effects of two drugs administered in combination depend on the interaction mechanism 

of the drugs. Ariëns and colleagues [6–8] presented mathematical expressions related to the 

Hill equation to describe different DDI mechanisms where we will focus on competitive, 

uncompetitive and non-competitive interaction. Other commonly used combination effect 

terms (CETs) are based on statistical assumptions such as Bliss Independence [9, 10], 

Loewe Additivity as in Greco’s model [9], simple summation of Hill equations, indirect 

response models [10], generalized surface response models [11–13] and sometimes 

equipped with additional interaction parameters [14, 15].

Although many of these CETs are extensively presented in the literature, a clear derivation 

of the CETs is often missing and therefore the underlying interaction mechanism is not 

obvious.

In this manuscript, we focus on CETs derived from drug-receptor binding kinetics, empirical 

or statistical summation principles, and interactions received from an indirect response 

model. We reveal the underlying mechanisms, rigorously derive the CETs, and investigate 

their properties. Some CETs are compared regarding the intensity of their predicted effects. 

Finally, we provide for selected CETs the optimal minimal drug concentration pair 

necessary to achieve the half-maximal effect.

In general, CETs are subunits which can be incorporated at any level of the full model 

complexity, e.g. in semi-mechanism based PKPD models, in more mechanistic approaches 

such as cell cycle based models or even in quantitative systems pharmacology models. To 

build a realistic model, CETs have to be chosen accordingly to the underlying interaction 

mechanism and positioned in the right spot of the interaction. Altogether this work should 

shed light into the question as to which CET is appropriate for application to describe a 

specific drug–drug interaction mechanism.

Derivation and properties of combination effect terms for drug–drug 

interaction

Introduction to combination effect terms

Single effect terms—A single drug effect of concentration C based on the Hill function 

reads

(1)

(2)
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where Emax is the maximal effect, EC50 the concentration necessary to produce the half-

maximal effect , and γ the Hill-coefficient. Equation (1) is the classical dimensionless 

representation whereas Eq. (2) is more common in PKPD modeling. The inhibitory form is

(3)

with the restriction Imax≤1.

Pharmacokinetic/pharmacodynamic drug–drug interaction modeling 
situations—In PKPD modeling roughly two categories of models are applied to describe 

data from drug–drug interaction (DDI) experiments. Data measured at two time points, i.e. 

at start and end of the experiment, are typically modeled by an effect surface without a time 

dimension of the form

(4)

where P0 is the response, e.g. proliferating cells, if no drug is present, and P the response 

after drug administration; see [14] or [16] for more details. The inhibition mechanism of the 

two drugs is specified by the CET I(CA, CB). From Eq. (4) restriction I(CA, CB)≤1 is 

obvious. For models characterizing dynamic growth over time, first a growth function g [17, 

18] needs to be specified. Then cytostatic DDI effects can be modeled by inhibition of 

growth

and cytotoxic effects by a killing term

where the CET is E(CA, CB).

In the above models, CA and CB can be the drug concentration in plasma [15] or delayed 

concentration effects [19], e.g. due to signaling pathways. A general PKPD structure with 

cytotoxic drug effects is shown in Fig. 1, to visualize a typical spot of DDI. Modified or 

extended formulations of this structure are frequently applied in drug development, see e.g. 

[15, 19–26]. Moreover, also in more mechanism-based models, such as cell cycle models 

[27, 28], appropriate CETs are necessary to model DDI at specific interaction targets, e.g. on 

different cell phases or induction of apoptosis [26]. The major task when developing a DDI 
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model of the above forms is to incorporate an appropriate CET at a specific spot in the 

PKPD model that describes the underlying DDI mechanism.

Combination effect terms—In general, a CET is a mathematical function that combines 

the single drug concentrations CA and CB together with their individual parameters (EmaxA, 

EC50A, γA) and (EmaxB, EC50B, γB). More precisely, the parameters of a CET are those 

from the individual drugs and the maximal combination effect EmaxAB of the CET is then a 

result from the specific structure of the CET. We call a CET symmetric if interchanging the 

roles of drugs A and B leads to the same CET. Let us state and formalize the desirable 

properties of CETs that one somehow implicitly takes for granted:

Positivity: The effect of a CET should be bounded from above and below:

Scaling: The CET should be linear in the maximal single effects, i.e. a doubling of Emax or 

EmaxA and EmaxB simultaneously should result in a doubling of the CET effect.

Diagonality: Symmetric CETs applied to drugs A and B with similar properties and γA = 

γB = 1, should be describable as a single effect term, i.e.

where σ is a CET-specific constant. Hence, a symmetric CET acts like a single effect term 

with the double concentration plus perhaps some quadratic deviation.

In this work, CETs are derived from three structurally different underlying mechanism 

categories:

1. Drug-receptor binding kinetics

2. Empirical and statistical summation principles

3. Interactions from an indirect response model

CETs based on drug-receptor binding kinetics

Ariëns and colleagues [6] presented the competitive, uncompetitive and non-competitive 

CETs but, to our knowledge, omitted the derivations in their publications. In this section we 

deduce these three CETs from drug-receptor binding kinetics. The construction consists of 

two components: (i) establishing the underlying drug-receptor binding system, and (ii) 

defining the effect based on the drug-receptor complexes.

A general drug-receptor binding system is based on the following mechanisms. Molecules 

CA of drug A bind to a receptor R and produce a drug-receptor complex RCA. Drug 

molecules CB of drug B also bind to this receptor R producing a drug-receptor complex RCB 

and additionally bind to RCA resulting in a third complex RCAB: A necessary assumption 
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for Ariëns CETs is that the binding and dissociation rates of drug B to produce RCA or 

RCAB are equal. The ordinary differential equations [29] are:

(5)

(6)

(7)

(8)

(9)

(10)

The binding rates are konA and konB, and the dissociation rates are koffA and koffB. The total 

amount of receptors Rtot = R + RCA + RCB + RCAB implies

(11)

and therefore a constant number of total receptors  exists. For drugs following target-

mediated drug disposition the total receptor is additionally modulated. The resulting CETs 

due to Ariëns can be compared with TMDD models in baseline (see Eq. (21) in [30] for the 

competitive CET).

Typically, rapid binding of the drug with the receptor is assumed to produce the complex, 

see originally [5, 29]. From this assumption, konX and koffX, where X stands for A or B, can 

be replaced by their dissociation constant . Under such steady state assumptions 
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and observing that the total concentration of receptors  is constant, the equation system 

for the complexes RCA, RCB, and RCAB is

(12)

This equation system (12) can be adjusted depending on which complexes are involved in 

the specific drug combination mechanism. The resulting equation system can then be solved 

with respect to the complexes. In the second step, the CETs are constructed by summation of 

the complexes driving the combination effects. For this purpose the intrinsic activity (the 

ability of a complex to produce maximum functional response) is applied. Let α and β 
denote the intrinsic activities of drugs A and B varying from 0 to 1 when acting as single 

drug. We define the functions

and the general summation form becomes

(13)

Hence, the complexes RCA and RCB are either included or not depending on their 

contribution to the total effect. The function f(α, β) ≥ 0 combines the intrinsic activities α 
and β and describes how the interaction of the intrinsic activities of drug A and B drive the 

contribution of the complex RCAB to the total effect. Ariëns presented the summation rules 

for the competitive, uncompetitive and non-competitive mechanisms. Using the solution of 

complexes RCA, RCB and RCAB from Eq. (12), Eq. (13) can be reformulated to the general 

form of a CET

(14)

See Appendix 1. From Eq. (14) it can be directly seen that any CET based on drug receptor 

binding kinetics can be written with dimensionless variables  and , i.e. in a fraction 

of the drug concentration and the dissociation constant.
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Based on Eq. (14) we obtain the Emax-formulation E(CA, CB) for appropriate assignment of 

the total receptors  and the intrinsic activities. Further system (5)–(10) ensures that the 

effect EAB is never negative and bounded by a maximal effect EmaxAB, i.e. EmaxAB≥EAB≥0 

for CA, CB≥0. For the inhibitory formulation I(CA, CB) we have a; b; f(α, β)≤1 and, thus, 

ImaxAB≤1.

Competitive CET—For a competitive interaction, two drugs A and B exhibit an affinity 

for the same receptor system R [6]. More precisely, if a receptor is occupied by molecules of 

drug A, then molecules of drug B cannot bind to this receptor, see Fig. 2a for the binding 

schematic. The complex RCAB is not present in this mechanism and equation system (12) 

reduces to

(15)

The two complexes RCA and RCB are added together with their intrinsic activity α, β as 

weights by

(16)

resulting in

(17)

See Appendix 2. With the single maximal effects  and , and the 

Hill coefficients γA, γB > 0 the Emax-formulation reads

(18)

where EC50A = KDA and EC50B = KDB are the single drug concentrations producing half-

maximal single effects. The maximal combination effect is the maximal single effect
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The CET is symmetric and an inhibitory formulation exits. All properties are summarized in 

Table 1. The competitive term ECom(CA, CB) with γA = γB = 1 was also presented in [31] 

and Eq. (18) was simplified to a single maximal effect  in [32]. If 

drug B is an antagonist, i.e. binding of drug molecules only cause a blockage of the 

receptors and does not produce an effect, i.e. β = 0, EmaxB = 0 one obtains

which is also called the Gaddum equation [33].

Uncompetitive CET—In uncompetitive interaction, drug B binds to the complex RCA. 

Binding of drug B to R does not occur and therefore no complex RCB exists; see Fig. 2b. 

Hence, drug B only produces an effect if drug A forms the complex RCA. If drug B is 

administered alone no effect occurs, whereas if drug A is given alone, the effect corresponds 

to the single case. This is a non-symmetric behavior. The equation system for the complexes 

is

(19)

and the summation of the complexes [6] becomes

(20)

where −1≤β′ Depending on the sign of β′ the appearance of drug B increases or decreases 

the combination effect with drug B. With the complexes from Eq. (19), Eq. (20) is

(21)

See Appendix 3. We then obtain the Emax formulation
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(22)

Since β′ and not EmaxB is present in Eq. (22), the actual value of β′ has to be determined 

from the combination data and describes a synergistic or antagonistic influence on the 

combination effect. The maximal combination effect is

For β′ ≤ 0 a reasonable inhibitory formulation exists.

Non-competitive CET—The non-competitive situation corresponds to the general 

scenario represented by Eqs. (5)–(10) where all complexes are involved see Fig. 2c for 

schematic. According to Ariëns [6] the complex RCB does not contribute to the effect and 

the summation reads

resulting in

(23)

Note the appearance of  in the denominator of Eq. (23) in contrast to Eq. (21). The 

Emax-formulation reads

(24)

In “Discussion” section we additionally discuss a non-competitive term from [14].

CETs from empirical and statistical summation principles

In this section, CETs are considered that are derived under an additivity or no-interaction 

assumption. However, we emphasize that the term “additivity” is used to describe different 
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approaches [34–37], and therefore we cover all the different additivities as summation 

principles in the following.

Loewe Additivity CET—Loewe Additivity [34, 38] assumes that two drugs act additively 

through a similar mechanism on the same target [39, 40], see Fig. 2d. Given the single drug 

EC50’s, the concentrations CA and CB necessary to produce the half-maximal combination 

effect have to fulfill

(25)

Extending Eq. (25) for an arbitrary effect E ranging from 0 to EmaxAB gives

(26)

where DCX is the concentration that produces for the single drug the given effect E and X 
either represents A or B. Greco and colleagues [9] applied the single drug Hill Eq. (1) of the 

form

(27)

and rearranged Eq. (27) with respect to DCX. Then substituting in Eq. (26) gives

(28)

See Appendix 4. For γA = γB = γ, Eq. (28) can be solved explicitly with respect to E and 

we obtain the Loewe CET

(29)

See Appendix 4. In Eq. (29) both drugs have the same single maximal effect. Note that the 

Loewe CET Eq. (29) corresponds to the competitive CET for EmaxA = EmaxB = Emax and γA 

= γB = 1. Further if we insert the basic Loewe Eq. (25) into Eq. (29) we obtain the half-

maximal effect  again.
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Bliss Independence CET—Bliss Independence [41] describes the additive effect of two 

drugs at different targets with independent mechanisms and no interaction between the drug 

action exists [39], see Fig. 2e. Bliss Independence is derived from probability theory. The 

probability for non-mutually exclusive events that either drug A or drug B acts is

(30)

Following Jonker et al. [42] we set the probability of a single effect based on the single Hill 

function Eq. (1) with Emax = 1 and γ = 1 as

(31)

where X represents either A or B. Equation (31) ranges from 0 to 1. Substituting Eq. (31) in 

Eq. (30) gives

(32)

We multiply Eq. (32) with Emax, introduce the Hill parameters, and obtain

(33)

(34)

where a similar maximal effect of both drugs is assumed. Substituting

(35)
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with γA = γB = 1 in Eq. (33) provides the half-maximal effect . Equation (35) 

corresponds to arguments from Chou and Talalay [40] for mutually nonexclusive drugs 

acting on different targets.

Greco’s model CET—Greco et al. [9] further extended Eq. (28) by adding an additional 

term resulting in

(36)

See Fig. 2f. In Eq. (36) an interaction parameter α is applied to indicate antagonism (α <0) 

and synergism (α > 0). For γA = γB = γ Eq. (36) could be solved explicitly with respect to 

E and Greco’s CET reads

(37)

As shown before for α = 0, Eq. (37) is the Loewe CET as presented in Eq. (29). For α = 1 

Eq. (37) formally results in the Bliss CET with γA = γB = 1. But keep in mind that the Bliss 

CET describes the effect when the two drugs act on different targets whereas the Greco CET 

is based on the Loewe Additivity assuming one target.

However, allowing negativity of the interaction parameter α could lead to a negative effect. 

As example we set γ = 1, CA = EC50A and CB = EC50B. Then we have

which is negative for α from −3 to −2.

Summation CET—An empirical approach to construct a CET with an increased maximal 

combination effect is to simply sum up the single drug effect terms, compare [15] for a 

linear CET and [19] for delayed effects of non-linear CETs, and see Fig. 2g. Assuming that 

the drugs act at different targets the summation CET reads

(38)
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(39)

In contrast to all derived CETs before, the maximal combination effect is now the sum of the 

single maximal effects:

CETs from indirect response models

Indirect response models (IDR) [43] are probably the most frequently applied components in 

PKPD and are also important parts in complex systems pharmacology models. In this 

Section, we derive CETs from IDR models where the drugs either act on the inhibition or 

the stimulation of the production rate [10].

IDR inhibition CET—The first form is

(40)

where Res denotes a response, kin is the production rate, kout the loss rate, and i(C) the 

single drug inhibition model Eq. (3), compare Fig. 2h for schematic. Rearranging Eq. (40) 

gives

(41)

and the CET is obtained by calculating

(42)

It is clear from Eq. (39), that an inhibitory formulation of the summation CET does not exist. 

The scaling condition is fulfilled but diagonality is violated, see Appendix 6.

See Appendix 7. In [14, 16], Eq. (42) was applied to non-dynamic models, compare Eq. (4). 

In the literature [10, 14, 16], Eq. (42) was thought to be the non-competitive CET from 

Ariën’s approach. Although Eq. (42) looks structurally similar to the CETs from Ariën’s 
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theory, Eq. (42) does not match into the Ariëns formalism, since multiplication of the single 

maximal values

produces a quadratic amount of total receptors whereas the Ariëns concept implicitly 

assumes a fixed number  of receptors, see Eq. (11). The scaling property is violated by 

Eq. (42) due to ImaxAImaxB. However, for ImaxA and ImaxB close to identity, Eq. (42) reduces 

to the inhibitory form of the Bliss Independence CET Eq. (33). Hence, Eq. (42) can be 

interpreted to act on two different targets and colloquially considered as non-competitive.

In the Emax-formulation of Eq. (42) the effect could become negative which can simply be 

seen from

if EmaxA, EmaxB>4. Hence, Eq. (42) is only useful in the inhibitory formulation Eq. (42).

IDR stimulation CET—If the production rate is stimulated in IDRs

compare Fig. 2i for schematic, then by similar calculations the corresponding CET reads

(43)

Summary of CET properties

Properties of the presented CETs are summarized in Table 1. We indicate the construction 

principles and symmetry of CETs. Validity of the desired properties namely positivity, 

scaling and diagonality are stated. The maximal combination effect EmaxAB is listed and we 

indicate whether the CET can be written in an inhibitory form, i.e. can be applied as 

(1−I(CA, CB)), compare e.g. Equation (4). In Fig. 3, a comparison of the presented CETs 

with respect to the maximal effect and the number of targets is shown.

(44)
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In [44], Eq. (43) was applied in non-dynamic models describing stimulatory effects. Note 

that no negativity occurs because of the summation of the term EmaxAEmaxB in Eq. (43). 

Nevertheless, justification based on Ariën’s approach also does not hold, because of the 

quadratic amount of receptors and also the scaling property is violated. Equation (44) can be 

considered as an extension of the summation CET Eq. (38) with an additional build-in 

synergism term e(CA)e(CB) to produce a higher maximal combination effect. In [20] a 

structurally similar approach to Eq. (44) with linear CETs was applied.

Relationship of CETs and the optimal concentration pair for half-maximal effect

We investigated several DDI mechanisms and derived the corresponding CETs. Hence, if the 

underlying DDI mechanism is known in application, the appropriate CET can be applied 

directly at the specific interaction position in the PKPD model. For example, often the 

combination of endogenous substances with exogenous agents acts in a competitive manner 

on the same receptor [30]. However, if the underlying DDI mechanism is not known, e.g. in 

early drug development, different CETs have to be tested and selection criteria need to be 

formulated.

First, we present relationships of the symmetric CETs regarding their effect, if the same drug 

concentration is applied, which may help to identify the corresponding DDI mechanism. 

Second, we investigate selected CETs regarding the optimal drug concentration pair to 

achieve the half-maximal effect. In contrast to the single case, where a unique concentration, 

the EC50, exists to produce the half-maximal effect, for CETs several concentration 

combinations are possible for the half-maximal combination effect . Based on a 

pharmacological reasonable objective function, we determine the optimal concentration pair 

for each CET and classify the interaction of the two drugs into synergistic, additive and 

antagonistic.

Relationship and ranking of the symmetric CETs—A ranking of the presented 

symmetric CETs is established with respect to their effect for the same drug concentrations. 

In the case of arbitrary EmaxA, EmaxB, γA, γB> 0 one can show (Appendix 8)

(45)

For EmaxA=EmaxB and γA, γB> 0 we obtain

(46)

If EmaxA=EmaxB and γA=γB=1 the realtions

(47)
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hold where  and 

. Exemplarily we visualized the relations from Eq. (45) as 

heat map in Fig. 4.

Optimal concentration pair for the half-maximal effect of CETs—For CETs the 

discussion about the necessary concentrations to produce the half-maximal combination 

effect  is much more extensive than for single effect terms, since the concentration 

pair to produce  is no longer unique and, in addition, every CET has to be treated 

separately. This provides the opportunity to compute the optimal concentration pair 

 (denoted by bars) to produce  for every CET.

For single effect terms the equation defining the unique half-maximal effect reads

that is equivalent to

(48)

and the necessary concentration C = EC50 can be directly seen from Eq. (48). However, for 

CETs the drug concentration pairs (CA, CB) satisfying

form a curve in the 2-dimensional (CA, CB)-space that we call the half-maximal effect 

curve.

To calculate the optimal concentration pair for a CET, two steps are necessary: (i) establish 

the half-maximal effect curve, and (ii) optimize the concentration pair with respect to an 

appropriate objective function.

Any presented CET in this work could be written with the dimensionless variables, i.e. as a 

fraction of actual concentration and the concentration necessary to produce half-maximal 

single effect:
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For example, compare Eqs. (18), (22), (24), (29), (33), (37), (39), (42) and (43). For 

simplicity we assume γA = γB = 1 in this Section. The half-maximal effect curve of all 

possible concentration pairs (CA, CB) for the given single EC50A and EC50B reads

where φ is a function being specific for the underlying CET.

To calculate the optimal concentration pair  to achieve  for given 

single EC50’s, we utilize as objective function either the Loewe Additivity Eq. (25) or the 

Bliss Independence Eq. (35) depending on the underlying mechanism. If the drugs act at the 

same target, we apply as objective function in our optimization task an extended version of 

Eq. (25) with a combination index CI [45]

(49)

If it is assumed that the two drugs do not share the same target, do not interfere with each 

other, and are mutually non-exclusive the resulting combination index is

(50)

See [40]. However, both approaches Eqs. (49), (50) assume an equal maximal single effect 

and due to their own symmetry they are only applicable to symmetric CETs. In both 

scenarios, we are looking for a solution pair  on the half-maximal effect 

curve generating the minimal CILoewe or CIBliss. The CET specific functions φ are 

independent of the actual values of EmaxA and EmaxB. Additionally, based on Eqs. (49) or 

(50) the area of antagonistic (CILoewe or CIBliss> 1), additive (CILoewe or CIBliss= 1), or 

synergistic (CILoewe or CIBliss< 1) behavior of a CET can be classified.

For all necessary calculations of the following see Appendix 9. For the competitive CET Eq. 

(18) with EmaxB = EmaxA all pairs on the half-maximal effect curve are optimal, i.e.

compare Fig. 5a. For the Greco CET Eq. (37) with |α| ≤1 the optimal solution pair is
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See Fig. 5b. Hence, for 0<|α| ≤1 we have a unique optimal solution. For the Bliss CET Eq. 

(33) the optimal solution with respect to Eq. (50) is

with

and again all pairs on the half-maximal effect curve are optimal, see Fig. 5c.

Comparing Eq. (25) with Eq. (49) and Eq. (35) with Eq. (50) directly shows that the Loewe 

and Bliss-CET satisfy CILoewe = 1, CIBliss = 1 on their entire half-maximal effect curve. 

Hence, symmetric CETs whose drugs share the same (not the same) target behave 

synergistic, additive or antagonistic, if they perform better, equal or worse than the Loewe 

(Bliss) CET.

More care is necessary for CETs with higher maximal combination effects than the maximal 

effect from the single drug, since the objective functions Eqs. (49), (50) defining the 

classifications have to be scaled appropriately with EmaxA and EmaxB. For the summation 

CET Eq. (39) application of our minimization method leads to the optimal solution

if EmaxA = EmaxB.

For more general assumptions, such as different maximal single effects and individual Hill 

coefficients, the presented method in the Appendix can be applied but more detailed 

investigations and calculations are necessary.

Discussion

CETs are important components to construct PKPD models with DDI effects. Therefore, it 

is essential to have a rigorous knowledge about their underlying pharmacological 

mechanism and mathematical properties.
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We investigated CETs based on drug receptor binding kinetics, statistical and empirical 

summation principles, and indirect response models. The presented CETs could be 

categorized based on different criteria. First, for some CETs the maximal combination effect 

EmaxAB, is the maximal single effect, whereas for others it is a combination of the two single 

maximal effects. Second, most CETs are symmetric, i.e. interchanging the roles of A and B 
leads to the same CET. However, we also presented non-symmetric CETs where only an 

effect exists, if drug A is an agonist and drug B an antagonist. Third, some CETs describe 

the DDI on one target, whereas others assume action on two targets.

A general drug-receptor binding kinetic concept is presented according to Ariëns who 

derived the competitive, uncompetitive and non-competitive CETs from first principles. 

These three CETs fulfill positivity and scaling, and the symmetric competitive CET also 

diagonality.

Additive interaction is usually defined based on two different principles. The Loewe 

Additivity assumes that the two drugs act on one target whereas Bliss Independence assumes 

two independent mechanisms on two different targets. From these two fundamental 

principles we also derived CETs which describe two different types of additivity. The 

constructed Loewe CET becomes equal to the competitive CET, derived from drug-receptor 

binding kinetics, if the single maximal effects are equal and the Hill coefficients have the 

value 1. Further we investigated Greco’s model that is based on the Loewe Additivity. This 

model is equipped with an interaction parameter α to account for antagonistic or synergistic 

behavior but surprisingly can produce negative effects, if the interaction parameter indicates 

antagonism and the CET is used with sufficiently large concentrations. This is not an issue 

when fitting data only but may produce paradox results for simulations. However, the 

interaction parameter α in the Greco model connects the Loewe Additivity for α = 0 with 

the Bliss Independence for α = 1, which explains the flexibility of Greco’s model. All these 

CETs are symmetric and fulfill the diagonality condition but CETs with two targets have 

some deviation in contrast to CETs describing one target. The summation CET is 

structurally different since it realizes a maximal combination effect which is the sum of the 

single maximal effects and it does not fulfill the diagonality criteria.

Finally, we investigated CETs derived from indirect response models. These CETs are 

fundamentally different to the previous ones from Ariëns, Loewe and Bliss due to a 

multiplication term of the single maximal drug effects in the enumerator. They do not fulfill 

the scaling and diagonality conditions. However, interestingly the frequently applied CET 

Eq. (42) is structurally close to the Bliss CET if the two single maximal inhibition 

parameters are nearly unity.

For comparison of the different symmetric CETs, a ranking regarding their combination 

effect for the same drug concentrations was established. Depending on the relations of single 

maximal effect parameters among each other and the Hill coefficients, orderings of different 

CETs can be shown. Such relationships may open the route to identify an appropriate CET 

regarding its predicted effect.
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The last part of this work was dedicated to the computation of an optimal concentration pair, 

which is essential in application. In general, optimization can be performed at different 

levels of the model. For example, Gabrielsson et al. [46] presented the optimal concentration 

pair for a cytotoxic and a cytostatic drug to achieve tumor stasis for a specific tumor growth 

PKPD model. Since we are interested in different CETs and do not consider a specific 

PKPD model, the optimal drug concentration pair to achieve the half-maximal effect 

was investigated. In general, to apply optimization techniques, an objective function 

representing reasonable pharmacological evaluation criteria has to be chosen. Since one part 

of the CETs deal with one target and the others describe two targets, we either chose as 

objective function the Loewe Additivity or the Bliss Independence, both equipped with a 

combination index. Because every CET has to be treated separately, we selected the 

competitive, Bliss, Greco and the summation CET to introduce the optimization method and 

to present the optimal concentration pair for half-maximal effect. To simplify the 

calculations and to avoid distinction of cases, we investigated only Hill coefficients equal to 

one. Additionally, we focused our investigations to equal maximal single effects due to the 

properties of Eqs. (49)–(50). But we would like to emphasize that the objective functions 

based on Loewe or Bliss principles can be generalized for varying maximal single effects 

and Hill coefficients.

The Loewe, summation and IDRCETs can be straightforward extended for more than two 

drugs. An example of the Loewe CET for three drugs is shown in [47]. The competitive and 

Bliss CET have to be re-derived from their basic principles. In the non-symmetric 

uncompetitive and non-competitive situation more knowledge about the desired interaction 

mechanisms is necessary.

Obviously, several other CETs exist to describe DDI. To obtain more flexibility, additional 

parameters were introduced, e.g. based on polynomials [13], multi-parametric models with 

varying potencies [11] were developed, and approaches to cover wider ranges of 

combination behavior [12] were constructed. However, methods of such types were out of 

the scope of this manuscript.

In conclusion, the presented CETs are crucial components to describe a certain DDI 

mechanism in a PKPD model, and the presented and derived knowledge about CETs is 

essential to construct more mechanism-based PKPD models for DDI.
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Appendix 1: Drug receptor binding kinetics

General derivation

From the conservation of receptors and complexes Eq. (11) we obtain the receptor 

representation
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(51)

Rewriting the complexes Eqs. (8)–(10) with Eq. (51)

(52)

(53)

(54)

Pseudo steady-state analysis of Eqs. (52)–(54) for the complexes and substituting Eq. (54) 

into Eq. (52) then leads to

With  and  we obtain

(55)

(56)

(57)

Dividing Eq. (55) by KDA and Eqs. (56)–(57) by KDB we obtain the matrix notation Eq. (12)
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We apply Cramer’s rule and obtain

Note that M0 is strictly positive and Mi, i = 1, 2, 3 are non-negative for CA, CB≥0. The 

complexes then read

(58)

(59)

(60)

Inserting Eqs. (58)–(60) in Eq. (13) then results in Eq. (14).
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Appendix 2: Competitive CET

Derivation

Applying Cramer’s rule to Eq. (15) gives

The complexes then read

(61)

(62)

Inserting Eqs. (61)–(62) in Eq. (16) then results in Eq. (17).

Maximal effect

Diagonality

If drug A equals drug B, we have
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Agonistic-antagonist

For an antagonistic drug B we have e(CB)=0 for CB≥0 and therefore EmaxB = 0. Hence, we 

obtain with Eq. (18)

Appendix 3: Uncompetitive CET

Derivation

The determinants for Cramer’s rule applied to Eq. (19) are

The complexes then read

(63)

(64)

Inserting Eqs. (63)–(64) in Eq. (20) then results in Eq. (21).

Appendix 4: Loewe CET

Derivation

Rearranging Eq. (27) with respect to DCX gives
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(65)

Substituting Eq. (65) in Eq. (26) gives Eq. (28). Equation (28) can be written with γA = γB 

= γ as

resulting in

(66)

Rearranging of Eq. (66) gives the Loewe CET Eq. (29).

Appendix 5: Bliss CET

Diagonality

We have

Hence, the diagonality condition is satisfied with .

Appendix 6: Greco and Summation CET

Diagonality of the Greco CET

For γA = γB = 1 we obtain with Eq. (37)
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and the diagonality condition is fulfilled with .

Diagonality of the summation CET

For equal drugs we can compute

Thus,  cannot be written in the form assumed in the diagonality condition. 

To see the last inequality please note that with

we have

Since e′(x)> 0 and e′ monotone decreasing, f1(x)> f2(x), x > 0 follows and with  the 

inequality.

Appendix 7: IDR CETs

Equivalent formulation for the inhibitory CET

To demonstrate the equivalence of Eq. (40) with Eqs. (41)–(42), we have to show

The denominator from Eq. (42) can be written as

and the numerator reads

Hence, we obtain
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Diagonality of the stimulation CET

If drug A equals drug B, we have

Eq. (46). In the case of EmaxA = EmaxB = Emax and γA = γB = 1 we obtain Eq. (47) with 

evaluation of Eq. (67) at η ∈ (0,1), η = 1 in Eq. (68).

Hence,  cannot be written in form of a single drug effect term. With similar 

calculations we obtain the same conclusion for IIDR

Appendix 8: Relationships

To simplify the notation we set

For EmaxA, EmaxB, γA, γB> 0, Eq. (45) follows from

In the case of EmaxA = EmaxB = Emax> 0 and γA, γB> 0 we have

(67)

(68)
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where η > 0 indicates existence of the multiplicative term xy. In Eqs. (46)–(47) the last 

inequality is obvious. Evaluation of Eq. (67) at η = 1 and Eq. (68) at η = 1 yields

Appendix 9: Optimal concentration pair for half-maximal combination effect

In the following calculation we assume γA = γB = γ = 1 and set

(69)

Competitive CET

We assume EmaxB = EmaxA = Emax> 0. Using Eq. (18) by definition of the half maximal 

effect curve we have to solve

which is equivalent to

This leads to

and the CET specific function for the half-maximal effect curve reads

(70)

The next step is to investigate the CI values on the half-maximal effect curve which is due to 

Loewe Additivity Eq. (49) given by the objective function

(71)

with its specific φ under the constraints x≥0; φ(x) ≥0. In case of the competitive CET we 

obtain

(72)

which gives the solution CILoewe = 1 and optimal concentration pairs are given by
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Greco CET

With Eq. (69) we obtain from Eq. (37) with 

resulting in

With Eq. (71) the objective function reads

and we calculate

if and only if

This leads to

Using

we obtain
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For α = 0 we have hGreco(x) = x + φGreco(x)=1 which leads to CILoewe = 1.

Bliss CET

Using Eq. (33) we obtain

which is equivalent to

(73)

This leads to

According to Eq. (50) and Eq. (73) the objective function reads

We obtain the solution

with CIBliss = 1.

Summation CET

With Eq. (69) and EmaxA = EmaxB = Emax we obtain from Eq. (38)

Rearranging with respect to y

results in
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We set with Eq. (50)

and obtain

and therefore

Hence, we obtain

and the optimal pair is

with CIBliss = x+y+1=3. Please note that a classification of the area of antagonistic, additive, 

or synergistic does not hold since the objective functions Eqs. (49), (50) defining the 

classifications have to be scaled appropriately, if EmaxAB > max{EmaxA, EmaxB}.
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Fig. 1. 
A schematic of a typical semi-mechanistic PKPD model with possible delayed drug effects 

and apoptotic cell population. The interaction of the two drugs is indicated by E denoting an 

appropriate combination effect term
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Fig. 2. 
Mechanistic representation of presented CETs
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Fig. 3. 
Comparison of presented CETs with respect to the maximal effect and the number of targets
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Fig. 4. 
Heat maps visualizing the effect of the competitive (EmaxAB = 2) Eq. (18), summation 

(EmaxAB = 3) Eq. (39), and stimulation (EmaxAB = 5) Eq. (43) CET are shown. Brighter 
color denotes a higher combination effect. The single maximal effects were set to EmaxA = 2 

and EmaxB = 1 (Color figure online)
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Fig. 5. 
For the competitive (a) Eq. (18), Greco (b) Eq. (37) and Bliss Eq. (33) (c) CET optimal 

concentration pairs from Loewe Additivity (a, b) and Bliss Independence (c) are indicated 

(solid black line and yellow area). Green surface denotes area of synergism and red surface 
is area of antagonism. Additionally, for the Greco CET (b) half-maximal effect curves for α 
= 0.75 (dashed dotted line) and α = −0.75 (dashed line) are shown, and the corresponding 

unique optimal concentration pair is indicated (circles) (Color figure online)
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