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Abstract
The dogma that the heart is a static organ which contains an irreplaceable population of cardiomyocytes prevailed in the cardiovas-
cular field for the last several decades. However, the recent identification of progenitor cells that give rise to differentiated myocytes 
has prompted a re-interpretation of cardiac biology. The heart cannot be viewed any longer as a postmitotic organ characterized by a 
predetermined number of myocytes that is defined at birth and is preserved throughout life. The myocardium constitutes a dynamic 
entity in which new young parenchymal cells are formed to substitute old damaged dying myocytes. The regenerative ability of the 
heart was initially documented with a classic morphometric approach and more recently with the demonstration that DNA synthe-
sis, mitosis, and cytokinesis take place in the newly formed myocytes of the normal and pathologic heart. Importantly, replicating 
myocytes correspond to the differentiated progeny of cardiac stem cells. These findings point to the possibility of novel therapeutic 
strategies for the diseased heart. 
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Introduction
Historically, the adult human heart was considered an organ capable 
of increasing its muscle mass by hyperplasia and hypertrophy of 
existing myocytes.1 This view was based on the assumption that 
cardiomyocytes retain the ability to reenter the cell cycle and divide 
throughout the lifespan of the organ and organism. However, no 
evidence in favor of this possibility was provided. In the early 
1920s, more rigorous studies challenged this conviction and 
claimed that myocyte hypertrophy was the only growth reserve 
mechanism available to accommodate increases in pressure and/
or volume loads on the adult heart.2 This conclusion was dictated 
by the lack of observations of mitotic figures in myocytes, which 
prompted the claim that myocyte regeneration does not occur in 
the diseased human heart. The concept that cardiomyocytes are 
permanently withdrawn from the cell cycle gained support in the 
late 1960s from autoradiographic results of tritiated thymidine 
incorporation obtained experimentally in the myocardium 
during post-natal development and pathological overloads.3–6 
DNA synthesis in myocyte nuclei was shown to be negligible, 
strengthening the argument that myocytes can increase in volume 
but not in number.7

These important but qualitative data were contrasted by 
quantitative measurements collected by Linzbach and collabo-
rators in the 1940s and early 1950s documenting that myocyte 
proliferation constituted the major adaptive cellular response 
of the hypertrophied heart when cardiac weight reached a value 
equal to or greater than 500 g.8,9 From the 1970s to the 1990s, 
the debate concerning the regenerative potential of the heart 
was silent and the field was dominated by the search for the 
mechanical, biochemical, and coronary blood flow abnormalities 
present in the hypertrophied heart. Similarly, the explosion of 
molecular cardiology and cell signaling considered heart failure 
as the consequence of a defective myocyte hypertrophy in which 
alterations in the effector pathways regulating myocyte growth 
and contractility were responsible for the depression in organ, 
tissue, and cell function.10,11 The dogma that the heart is a static 
postmitotic organ in which cardiomyocytes cannot be replaced 
by division of a subpopulation of nonterminally differentiated 
myocytes or by activation and commitment of a pool of primitive 
cells, has profoundly conditioned basic and clinical research in 
cardiology for the last three decades.12,13 

The recognition that exogenous and endogenous progeni-
tor cells have the ability to promote myocardial regeneration 
is having an unprecedented impact on cardiovascular science 

and cardiology. A paradigm shift concerning the biology of 
the heart is in progress and this may change dramatically our 
understanding of cardiac homeostasis and pathology and may 
have extraordinary consequences on the treatment of the hu-
man disease.

Human Pathology
The possibility that myocyte hypertrophy is not the only cellular 
mechanism involved in the increase in myocardial mass of the 
human heart proposed in the 1940s and 1950s was reinforced 
by sporadic quantitative studies performed in the following 40 
years.14–16 The number of ventricular myocytes was found to 
nearly double in the decompensated human heart. Additionally, 
several reports have provided convincing evidence that DNA 
synthesis in myocyte nuclei occurs throughout life with the 
formation of ploidy,17 suggesting that the machinery for DNA 
replication is not irreversibly repressed in cardiomyocytes. A 
similar phenomenon was also documented experimentally in 
the overloaded heart.5 Two major daily observations of human 
cardiac pathology have not been properly appreciated and have 
failed to attract the attention of most experienced pathologists. 
At autopsy, human hearts weighing nearly two pounds or more 
are not uncommon and routine histological examination of 
myocyte dimension shows a striking lack of correspondence 
between myocyte size and the remarkable increase in ventricular 
muscle mass.8,14,18,19 The majority of myocytes is slightly hyper-
trophied or of normal volume, which is in sharp contrast with 
the unusual magnitude of organ hypertrophy (Figure 1). This 
simple finding points to myocyte formation as the prevailing cel-
lular growth mechanism capable of accounting for the massive 
increase in cardiac weight. Significantly enlarged myocytes with 
bizarre nuclei are also present but they constitute the exception 
rather than the predominant finding. 

The second important variable that has not been consid-
ered properly is the extent and characteristics of myocardial 
damage present in the diseased human heart, whether it is af-
fected by chronic coronary artery disease or idiopathic dilated 
cardiomyopathy.20,21 Scar formation, foci of replacement fibrosis 
scattered throughout the ventricular wall, diffuse interstitial fi-
brosis, and ongoing myocyte death by apoptosis and necrosis  
(Figure 2) are typically present in the hypertrophied failing heart.21,22  
Importantly, the deposition of 1 mm3 of collagen reflects the loss of 
50 × 103 myocytes.23 Even if we exclude the extensive magnitude of 
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established myocardial pathology, the degree of constant myocyte 
death in the absence of cell regeneration would rapidly lead to a 
dramatic reduction in myocyte number which would be incom-
patible with life in humans. 

In a man 45 years of age, there are 5.8 × 109 myocytes in the 
left ventricle.24 The rate of myocyte apoptosis and necrosis in the 
failing heart is 0.1% to 0.2% and 0.6% to 1.2%, respectively.25,26 
Since apoptosis is completed in approximately 2 hours and ne-
crosis in approximately 48 hours,27 the diseased heart would 
lose 0.1 × 109 myocytes per day. Irreversible cardiogenic shock 
occurs with a loss of 46% of myocytes,28 which would develop 
in 26 days. The entire left ventricle would disappear in 2 months. 
The levels of apoptosis and necrosis utilized in this computation 
are conservative and much higher values have been reported by 
several laboratories.29,30 Therefore, it is impossible to reconcile 
these pathological variables with the contention that the postnatal 
heart is composed of a fixed number of myocytes which, if they 
die, are permanently lost and the myocardium has to sustain its 
function with a reduced number of cells. Based on this belief, 
organism, organ, and myocyte aging should coincide, suggesting 
that the lifespan of the heart, approximately 80 years, is identical 
to the lifespan of ventricular myocytes. Occasionally, human be-
ings live 100 years and longer and myocytes 100 years of age and 
older should be present. These myocytes would have contracted 
3.7 billion times and still be functional in the senescent heart.31 
The discussion below tends to project a more realistic perspective 
of the biology of the heart and its compensatory mechanisms. 

Myocyte Regeneration
The majority of organs contain dividing and nondividing 
cells. Newly formed replicating cells are expected to replace 
the dying population as a result of the programmed turnover 
of cells that accompanies the progression of life and regulates 
tissue homeostasis. Cell regeneration would be anticipated to be 
enhanced in the presence of injury in an attempt to attenuate 

organ damage and restore its physiological function. These 
cellular growth processes have not been considered feasible 
in the myocardium, and the theory has been formulated that 
ventricular myocytes cannot be replaced once cell division ceases 
immediately after birth in the mammalian heart.32–35

Surprisingly, the promoters of myocyte proliferations also felt 
that the regeneration potential of the adult human heart could not 
be mediated by undifferentiated myocytes traversing the cell cycle 
and undergoing karyokinesis and cytokinesis.36 The dramatic 
increases in myocyte number documented morphometrically 
in the failing heart were not supported by images of myocytes 
in metaphase, early and late anaphase, or in the process of cell 
division. The general consensus was that matured hypertrophied 
myocytes could divide in half through longitudinal splitting of the 
cell cytoplasm, resulting in the generation of two cells with similar 
structural characteristics.14,18,19 How the nuclei would separate in 
the two forming cells, however, remained unresolved. For decades, 
several generations of pathologists and cardiovascular scientists 
have believed that mitotic myocytes are not to be found in the 
adult myocardium. Sadly, this view is still strongly engrained in 
part of the scientific community that vigorously opposes current 
knowledge and rejects published results.32–35 

In the last decade, seminal observations were made in favor 
of the notion that the human heart is not a postmitotic organ and 
myocyte regeneration may contribute to the increase in muscle 
mass of the adult myocardium. Mitotic images in myocytes have 
been identified unequivocally in the heart of patients affected 
by end-stage ischemic cardiomyopathy, idiopathic dilated 
cardiomyopathy, and chronic aortic stenosis36–39 (Figure 3). 
Additionally, the cell cycle protein Ki67 has been detected in a 
large fraction of myocytes located in proximity of the border zone 
of acute infarcts and in the distant myocardium.37 And similar 
results have been obtained in the pressure overloaded heart.38 
Ki67 is a nuclear antigen expressed in all phases of the cell cycle 
except in G0.40,41 Ki67 is apparent mainly in the late S phase, 
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Figure 1. Cardiac hypertrophy and myocyte size. Section of a normal (A, heart weight = 220 g) and hypertrophied (B, heart weight = 700 g) human myocardium. The 
boundary of myocytes is defined by laminin (green). Note that the myocyte cross-sectional area in both preparations is comparable, suggesting the presence of a higher 
number of myocytes in the heavier heart. α-SA, α-sarcomeric actin (red). 
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increases further in G2, persists during prophase and metaphase, 
and decreases in anaphase and telophase.42,43 Ki67 is preferable 
to thymidine, bromodeoxyuridine, and proliferating cell nuclear 
antigen for labeling of dividing cells, because it is not involved 
in DNA repair.44 Further evidence of myocyte division was also 
found. During mitosis, microtubules form the mitotic spindle, 
allowing each chromatid to be pulled toward the spindle pole by 
the kinetochore microtubules.45 This process occurs in anaphase 
and lasts only a few minutes.46 The arrangement of microtubules 
in the mitotic spindle of dividing myocytes was recognized by 
immunolabeling and confocal microscopy.37 In addition, the 
accumulation of actin and its assembly in the contractile ring 

were identified.37 Importantly, mitotic myocytes were detected 
in control human myocardium although their frequency 
was significantly lower than in the decompensated heart.36,37 
Importantly, similar data were obtained experimentally in small 
and large animal models,47–54 strengthening the human results. 
In a manner comparable to humans, acute and chronic heart 
failure induced by myocardial infarction48,49 or as a consequence 
of aging alone47,54 was associated with a remarkable increase in 
the number of dividing myocytes. 

Together, these findings began to challenge the perennial 
view of the heart as a terminally differentiated organ unable to 
replace parenchymal cells and raised the possibility that myocyte 
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Figure 2. Myocardial damage. Panels A–D represent various aspects of myocardial fibrosis. Replacement fibrosis is recognized 
by foci of accumulation of collagen type I and type III (yellow) in hearts affected by chronic ischemia (A and B). Interstitial 
fibrosis is documented by the presence of collagen in the interstitial space between neighboring myocytes (C and D). Panel 
E illustrates a myocyte undergoing necrosis. Blunt-end DNA strand breaks, typical of this type of cell death, are shown by in 
situ ligation of a Pfu oligonucleotide probe (yellow, arrow). Additionally, loss of plasmamembrane integrity (arrowheads) is 
visualized by a discontinuous vinculin staining (green). Panel E: modified from Ref. 26.
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proliferation may have to be regarded as a component of the 
growth reserve of the myocardium. The presence of cell division in 
the nonpathological adult heart also suggested that a continuous 
turnover of myocytes occurs during the lifespan of the organism. 
However, these results left unanswered the question concerning 
the origin of replicating myocytes in the normal and diseased 
human heart. 

Origin of Replicating Myocytes
The documentation that a class of myocytes can proliferate and 
expand significantly the muscle compartment of the overloaded 
myocardium imposed the inevitable question regarding the 
source of this pool of nonterminally differentiated cells. These 
replicating myocytes may reside in the heart or represent the 
committed progeny of circulating primitive cells that homed 
to the myocardium.55 Studies of cardiac chimerism following 
sex-mismatched heart transplantation have provided consistent 
results concerning the migration of progenitor cells from the 
host to the graft.56–74 Following engraftment, host progenitor 
cells undergo replication and differentiation generating 
cardiomyocytes and vascular structures.58,60,62,67,68 Although 
there is controversy on the magnitude of myocyte formation 
in the transplanted donor heart,75,76 there is no disagreement 
on the occurrence of this phenomenon. For cardiomyocytes, 
however, the published values vary from 18% to 0.02%,58,59,62 with 
numerous intermediate results between these two extremes. 

During cardiac transplantation, portions of the atria of 
the recipient are sutured to the partially dissected atria of the 
donor. The presence of hybrid atria raises the problem whether 
undifferentiated cells migrate from the host to the graft through the 
systemic circulation or homed to the ventricle from the native atrial 
myocardium.55 These two possibilities are not mutually exclusive 
but question the actual origin of the repopulating progenitor cell 
pool. Although this critical issue remains uncertain, the high 
degree of cardiac chimerism reported by us and others58,60,62,67,68 
is consistent with the needs of the donor heart to reverse the 
increased hemodynamic load and the clinical manifestations 
of heart failure in the recipient.77,78 These mechanical factors in 
combination with the synthesis and secretion of multiple growth 

factors may trigger the translocation of progenitor cells nested 
in the native atria and concurrently activate resident cells in the 
donor heart. Locally distributed primitive cells together with those 
migrated from the bone marrow via the systemic circulation to the 
host myocardium may contribute to optimizing the cardiac mass 
and restoring ventricular function in terminally ill patients. 

Cardiac Stem Cells
Nondividing cells can rest in G0 and reenter the cell cycle 
following growth activation or become terminally differentiated 
and die without undergoing further division.79 Because the 
majority of cardiomyocytes in the adult human heart are 
permanently withdrawn from the cell cycle and cannot divide, 
replicating myocytes may originate from transdifferentiation of 
bone marrow progenitor cells homed to the heart,62,70 from the 
residual growth of a subgroup of nonterminally differentiated 
myocytes,1,27 or activation of cardiac progenitor cells resident 
within the myocardium.38,39 

In the first case, the inevitable implication would be the 
recognition that hematopoietic stem cells retain a remarkable 
degree of developmental plasticity and differentiate into cell 
lineages distinct from the organ in which they reside. This 
possibility views the bone marrow as the critical determinant of 
tissue homeostasis and repair of “postmitotic” organs such as the 
heart and the brain.80–82 Experimentally, under physiological and 
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Figure 3. Myocyte proliferation. Myocyte generation in the diseased human heart. 
Metaphase chromosomes (arrow) are apparent in the dividing cardiomyocyte. 
Laminin (green) marks the boundaries between cells. Note the small size of the 
mitotic myocyte. Reprinted from Ref. 31.

Figure 4. Clonogenicity of human cardiac stem cells. (A) Growth of a clone from a 
single c-kit positive cell over a period of 9 days (d). The lower right panel documents 
that cells in the clone retain the c-kit antigen (green). (B) Higher magnification of 
a larger clone of human cardiac stem cells derived from a single c-kit positive cell. 
Panel A: reprinted from Ref. 96.
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pathological conditions, the spontaneous contribution of bone 
marrow cells to the turnover and replacement of cardiomyocytes 
has been found to be modest.83,84 Conversely, the local injection 
of bone marrow cells to the infarcted mouse heart results in 
significant reconstitution of the necrotic myocardium and 
remarkable improvement in ventricular function.85–87 Similarly, 
the delivery of bone marrow cells to the acutely and chronically 
infarcted human heart has significant health benefits88–90 but 
whether these positive effects are mediated by myocardial 
regeneration is open to question.91

In the second case, myocyte regeneration should be self-
limiting and restricted to the acute phases of growth adaptation. 
In the presence of an increased pressure and/or volume load on 
the myocardium, these quiescent but potentially proliferating 
myocytes would be expected to respond to the mechanical stress 
by reactivation of the cell cycle machinery, karyokinesis, and 
cytokinesis. Although the presence of dividing myocytes in animals 
and humans has been documented repeated ly,1,12,13,27,36–38,47,54 
evidence in favor of the ability of adult fully differentiated myocytes 
to replicate is lacking. Dividing myocytes are small, commonly 
one-tenth of adult cells,1,27,38,53 challenging the likelihood that a 
pool of matured myocytes can divide and increase the myocyte 
compartment of the heart. If this were possible, cardiomyocytes 
approximately 25,000 to 30,000 mm3 in volume should be able 
to traverse the S phase and enter mitosis. Before cell division, 
the replicating myocytes would have to acquire a volume of 
approximately 50,000 to 60,000 mm3 in order to generate two 
daughter cells, each approximately 25,000 to 30,000 mm3 in 
volume. So far, there is not a single demonstration of dividing 
myocytes of this size. In this regard, the overexpression of cyclins 
promoting S phase entry has been claimed to reestablish the 
proliferative potential of terminally differentiated myocytes.92,93 
Unfortunately, this study has failed to provide any form of 
documentation that this phenomenon actually occurs. Newly 
formed myocytes do not appear to represent the progeny of a 
class of differentiated proliferating myocytes.

In the third case, the human heart would be expected to 
contain primitive and early committed cells resulting from 
lineage differentiation of the stem cell compartment.12,13 Resident 
progenitor cells should be nested in niches, express typical stem 
cell antigens94–96 and telomerase,97,98 be negative for hematopoietic 
markers,94–96 divide rapidly upon stimulation98,99 and give rise 
to myocytes at various stages of maturation.12,13,38,39 Recently, 
a class of human c-kit-positive cardiac cells which possess all 
these fundamental properties of stem cells has been identified.96 
Additionally, these cells are self-renewing, clonogenic, and 
multipotent in vitro and in vivo (Figure 4). In vitro, human cardiac 
stem cells differentiate predominantly into cardiomyocytes and to 
a lesser extent into vascular smooth muscle cells and endothelial 
cells. Importantly, other laboratories have been able to isolate and 
expand progenitor cells from the human heart and show that they 
have a remarkable ability to grow and differentiate.100–102 

When locally injected in the infarcted myocardium of 
immunodeficient mice and immunosuppressed rats, human 
cardiac stem cells generate a chimeric heart, which contains human 
myocardium composed of myocytes, coronary resistance arterioles, 
and capillary profiles. Importantly, the differentiated human 
cardiac cells possess only one set of human sex chromosomes 
excluding cell fusion. Although the human myocardium shows 
an immature phenotype, it is functionally integrated with the 
rodent myocardium; it contracts regionally and contributes 
to the improvement in the hemodynamic performance of the 
infarcted heart. Thus, human cardiac stem cells can be isolated 

and expanded in vitro from samples of myocardium, which is a 
prerequisite for autologous stem cell therapy in humans. 

Conclusions
Collectively, the discussion above suggests that the human heart 
cannot be considered any longer a terminally differentiated 
postmitotic organ incapable of significant myocardial regeneration. 
Intense myocyte formation can occur through the commitment 
and differentiation of cardiac stem cells to the myocyte lineage. The 
recognition that the heart belongs to organs with self-renewing 
properties imposes that the theme of the controversy on myocyte 
regeneration be reexamined. Years ago, we proposed that a 
subpopulation of small developing myocytes in the adult heart is 
capable of reentering the cell cycle and undergoing cytokinesis.1,36,37 
This notion was opposed by negative results obtained after the 
in vivo injection of proteins interfering with cell cycle inhibitors.103 
Myocyte division was not detected and the attempts of the cells 
to replicate resulted in apoptotic death. Either position had valid 
points but could not provide a logical understanding of myocyte 
growth or its developmental block. At present, the controversy 
no longer exists. Dividing myocytes are amplifying cells that can 
experience a finite number of divisions before reaching terminal 
differentiation and growth arrest. Similarly, forced recall of 
differentiated myocytes into the cell cycle fails to trigger DNA 
synthesis and activate the endogenous cell death program. 
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