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Abstract

Purpose

To explore guidelines on the use of MRI and PET/CT monitoring primary tumor response to

neoadjuvant chemotherapy (NAC), taking breast cancer subtype into account.

Materials and methods

In this prospective cohort study, 188 women were included with stages II and III breast can-

cer. MRI and 18F-FDG-PET/CT were acquired before and during NAC. Baseline pathology

was assessed from tumor biopsy. Tumors were stratified into HER2-positive, ER-positive/

HER2-negative (ER-positive), and ER-negative/PR-negative/HER2-negative (triple-nega-

tive) subtypes, and treated according to subtype. Primary endpoint was pathological com-

plete response (pCRmic) defined as no or only small numbers of scattered invasive tumor

cells. We evaluated imaging scenarios using MRI only, PET/CT only, and combinations.

Results

pCRmic was found in 35/46 (76.1%) of HER2-positive, 11/87 (12.6%) of ER-positive, and

31/55 (56.4%) of triple-negative tumors. For HER2-positive tumors, MRI yielded the stron-

gest predictor (AUC: 0.735; sensitivity 36.2%), outperforming PET/CT (AUC: 0.543; p =

0.04), and with comparable results to combined imaging (AUC: 0.708; p = 0.213). In ER-

positive tumors, the combination of MRI and PET/CT was slightly superior (AUC: 0.818;

sensitivity 55.8%) over MRI alone (AUC: 0.742; p = 0.117) and PET/CT alone (AUC: 0.791).

However, even though relatively large numbers of ER-positive tumor patients were included,

no significant differences were yet found. For triple-negative tumors, MRI (AUC: 0.855;
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sensitivity 45.4%), PET/CT (AUC: 0.844; p = 0.220) and combined imaging (AUC: 0.868;

p = 0.213) yielded comparable results.

Conclusions

For HER2-positive tumors, MRI shows significant advantage over PET/CT. For triple-nega-

tive tumors, comparable results were seen for MRI, PET/CT and combined imaging. For

ER-positive tumors, combining MRI with PET/CT may result in optimal response monitoring,

although not yet significantly.

Introduction

Neoadjuvant chemotherapy (NAC) for breast cancer has the potential benefit of reducing

tumor size, enabling conversion from mastectomy towards breast-conserving surgery [1–3] as

well as reduction in the extent of axillary lymph node surgery [4–6]. In addition, the response

to chemotherapy can be monitored; which enables switching to alternative non-cross resistant

chemotherapy or ceasing treatment after insufficient response. Thus, patients may either bene-

fit from a more appropriate NAC regimen or they will be protected from undergoing further

ineffective toxic treatment [7].

Monitoring treatment response during NAC is typically performed using ultrasound or

dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). The latter has the

potential to discriminate between viable tumor cells and NAC-induced fibrotic tissue and has

shown to be a strong predictor for tumor response [8–10]. Although MRI has several advan-

tages over conventional imaging techniques, the predictive value of MRI is not perfect and it

strongly depends on the molecular subtype and morphologic appearances of tumors [11]. MRI

performs well in human epidermal growth factor receptor 2 (HER2)-positive tumors, and in

estrogen receptor (ER)-negative/progesterone receptor (PR)-negative/HER2-negative (triple-

negative) tumors, but it is less accurate in ER-positive tumors [12].

Hence, other imaging techniques are under investigation to monitor tumor response [13].

Currently, positron emission tomography using fluorodeoxyglucose, integrated with com-

puted tomography (18F-FDG PET/CT), is used for preoperative staging in patients scheduled

for NAC [14]. Also it has been investigated to monitor response of breast cancer to NAC

[15,16]. The results for PET/CT also showed dependence on breast cancer subtype, indicating

good performance in ER-positive and triple negative tumors, but relatively poor performance

in HER2-positive tumors [17].

MRI visualizes changes in morphology and vascularization of tumors whereas PET/CT

visualizes changes in the glucose metabolism of tumors. Therefore, a complementary value of

these techniques has been hypothesized. This complementary value for response monitoring is

important knowing both imaging techniques vary in accuracy depending on breast cancer

subtype. Recently, an explorative study showed a potential complementary value of MRI and

PET/CT. However, this study had an insufficient number of patients to determine how MRI

and PET/CT could be combined in the daily clinical workflow to benefit optimally from their

complementary value [18].

The aim of the present study is to explore guidelines on the use of MRI and PET/CT in the

clinical workflow to monitor response of the primary tumor to NAC, taking breast cancer sub-

type into consideration.
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Materials and methods

Patient cohort

Patients were included between September 2008 and June 2013 in this prospective cohort

study. Eligibility criteria included primary invasive breast cancer of at least 3 cm and/or at least

one tumor-positive axillary lymph node. This study was approved by the institutional review

board of the Netherlands Cancer Institute—Antoni van Leeuwenhoek hospital (METC AVL)

in Amsterdam and written informed consent was obtained from all patients. Of this current

study, 93 patients were reported earlier by Pengel et al. [18].

Pathology prior to NAC

Core-needle biopsies of the primary tumor were taken prior to NAC. Tissue was routinely pro-

cessed and stained using hematoxylin and eosin. Histopathology was assessed by an experi-

enced breast pathologist (J.W.). Tumor type was recorded as invasive ductal carcinoma (IDC),

invasive lobular carcinoma (ILC) or any ‘other’ tumor type. The estrogen receptor (ER), pro-

gesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status were

determined according to the Dutch guidelines (www.oncoline.nl). For ER and PR, immuno-

histochemistry was used. A 10% threshold was used to discriminate between negative (<10%

staining) or positive (�10% staining) hormone receptor status. Immunohistochemistry for the

HER2 was scored as 0, 1+, 2+ or 3+ to differentiate between negative (<2+) and positive (>2

+) HER2 receptor status. At score 2+, in-situ hybridization was used to differentiate between a

negative and positive status. Tumors were stratified into ER-positive and HER2-negative sub-

type (ER-positive), HER2-positive subtype (HER2-positive) and ER-negative/PR-negative/

HER2-negative (triple-negative) subtype.

NAC. The NAC regiment differed per subtype (18). In short, HER2-positive tumors were

treated in three cycles of eight weeks with paclitaxel, carboplatin and trastuzumab (day 1, 8, 15,

22, 29 and 36) [19]. ER-positive and triple-negative tumors were treated with three courses of

ddAC (doxorubicin and cyclophosphamide on day 1, every 14 days, with PEG-filgrastim on

day 2). Following these three courses, tumors were reported as ‘favorable’ or ‘unfavorable’

responders based on previously reported MRI response criteria by Loo et al. (8). In the context

of a larger study, a ‘favorable response’ was followed by three more courses of ddAC whereas

an ‘unfavorable response’ was followed by three courses of docetaxel and capecitabine, which

criteria were reported earlier by Rigter et al. [20].

Response imaging

MRI and PET/CT were performed at the start of chemotherapy (baseline imaging) and during

chemotherapy (interim imaging), specified as after the first cycle of eight weeks (in HER2-po-

sitive tumors) or after three courses of chemotherapy (in ER-positive and triple-negative

tumors) [21].

MRI

MRI was performed using a 3.0-T scanner (Achieva, Philips, Best, The Netherlands) with dedi-

cated bilateral seven-element SENSE breast coil. Patients were scanned in prone orientation.

Six consecutive coronal 3-D THRIVE SENSE T1-weighted sequences were acquired (1.1 x 1.1

x 1.1 mm3 voxels; 90s acquisition time; TR/TE 4.4/2.3 ms, flip angle 10˚, FOV 360mm); One

unenhanced series and five series following the intravenous injection (power injector; 3 mL/s)

of gadolinium-containing contrast (Dotarem 0.5 mmol/ml; Guerbet; Aulnay-sous-Bois,

France) which was followed by 30 mL of saline.
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MR imaging was assessed by radiologists with breast MR experience using a protocol as

previously described [8,22]. In short, a custom-built viewing station was used which enabled

simultaneous viewing of two series reformatted and linked in three orthogonal directions. Sub-

traction images for initial enhancement (90s after contrast agent injection), late enhancement

(450s after contrast agent injection), maximum intensity projections, and color-coded visuali-

zation of contrast curves were available. The latter visualized enhancement into persisting, pla-

teau or a wash-out curve in accordance with the definitions used by Kuhl et al. [23]. The

largest tumor diameter was assessed at initial (LD initial) and at late (LD late) enhancement.

The largest diameter spanned the total lesion-bearing region including seemingly normal tis-

sue in between and in any of the three orthogonal directions. Relative changes on MRI (MRI

Δ) between interim and baseline imaging were calculated separately for LD initial and LD late.

PET/CT

Imaging with PET/CT was performed after a six-hour fasting period at blood glucose levels of

<10 mmol/l. Ten milligrams of diazepam were administered orally to prevent brown adipose

tissue activation [24]. Depending on body mass index an intravenous dose of 180 or 240 MBq

FDG was administered. After a resting period of 60 ± 10 min, PET/CT (Gemini TF; Philips,

Cleveland, Ohio) was performed with the patient in prone orientation using a stripped mock-

up MRI coil. The CT scan (10 mAs, 2mm slices) preceded the PET scan (3 min per bed posi-

tion; 2 x 2 x 2 mm3 voxels). An additional standard supine whole-body PET/CT scan for dis-

tant staging was performed at baseline imaging prior to NAC. A panel of experienced readers

evaluated the images in an orthogonal multiplanar reconstruction; which simultaneously dis-

play PET, CT, and fused PET/CT imaging. FDG uptake was measured using maximum stan-

dardized uptake values (SUV-max) in a 3D region of interest containing the primary tumor

(SUV-max tumor) and, when present, in the lymph node (SUV-max lymph node) showing

the strongest uptake [17]. Relative changes on PET/CT (PET/CT Δ) between interim and base-

line imaging were calculated separately for the SUV-max tumor and the SUV-max lymph

node.

Pathology after NAC

In this study, according to the definition of Sataloff et al. [25], pathological complete response

(pCRmic) after completion of NAC, was defined as either complete absence of tumor cells or

presence of only a small number of scattered invasive cells in the breast resection specimen

(ypTmic). Pathological non-complete response (non-pCRmic) was defined as any remaining

viable residual disease in the breast due to partial tumor response, stable or progressive

disease.

Analyses

Baseline characteristics. Analyses were performed using SPSS (version 20.0; Chicago, Illi-

nois). Associations were assessed between pCRmic and patient age, tumor histology, tumor

subtype, MRI curve-type prior to NAC, MRI LD initial, MRI LD late, SUV-max tumor, SUV-

max lymph node, as well as the change of these latter four characteristics during NAC. Two-

sided Pearson’s chi squared, Fisher’s exact, and Mann-Whitney U tests were used for this

purpose.

Imaging scenarios. At the interim-imaging stage, post-hoc analysis was performed to sys-

tematically evaluate and compare six different imaging scenarios for response monitoring per

subtype: MRI only, PET/CT only, MRI and PET/CT at baseline with MRI only or PET/CT

only at interim imaging, MRI followed by PET/CT, or MRI followed by PET/CT only under
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certain conditions (Fig 1). For every imaging scenario, the patient, tumor and scenario-specific

imaging characteristics were entered into multivariate analyses (binary logistic regression with

backward feature selection, p-to-remove: 0.10). Receiver operating characteristics (ROC)

curves were acquired and areas under the curve (AUC) were assessed. Subsequently, patients

were stratified according to breast cancer subtype. The AUC of the different scenarios were

compared using the DeLong test [26]. For this purpose, the scenario to monitor response

using MRI only was used as a reference. ROC-curves were fitted using bi-exponential fitting

[27], and an operating point at 90% specificity was selected to assess the accompanying sensi-

tivity. In other words, the probability of correctly predicting a non-pCRmic was determined

under the condition that the probability to correctly predict a pCRmic is at least 90%.

Results

Baseline patient and pathology characteristics

A total of 188 patients were included (mean age 47 years, range 25–73 years), baseline charac-

teristics are shown in Table 1. According to ypTmic, which was used as pCRmic in this current

study, overall 77/188 of patients (41%) achieved a pCRmic and a non-pCRmic was seen in

111/188 of patients (59%). Patients with pCRmic were significantly (p<0.001) younger (mean

age: 44 years) than patients with non-pCRmic (mean age: 50 years).

Considering subgroups, for the ER-positive subgroup a pCRmic was seen in 11/87 patients

(12.6%). Conversely, pCRmic was seen in 35/46 patients (76.1%) with HER2-positive tumors

and in 31/55 patients (56.4%) with triple-negative tumors. No residual disease in the breast or

axilla (ypT0/is ypN0) was seen in 26/46 (56.2%) of HER2-positive tumors, 4/87 (4.6%) of ER-

positive tumors, and 22/54 (40%) of triple-negative tumors.

Baseline imaging

On baseline MRI, the mean tumor size was 47 mm (LD initial) and 39 mm (LD late) (Table 2).

No significant differences in size were observed between tumors where pCRmic was attained

versus non-pCRmic. On baseline PET/CT, a significant difference was found between SUV-

max in the tumor and response at pathology; tumors resulting in pCRmic had higher SUV-

max (10.3) compared to those not leading to pCRmic (8.2) (p = 0.029). In addition, baseline

Fig 1. The six potential imaging scenarios investigated to monitor response of tumors during neoadjuvant chemotherapy.

https://doi.org/10.1371/journal.pone.0176782.g001
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SUV-max in the lymph nodes was higher in tumors resulting in pCRmic (5.7) than in those

resulting in non-pCRmic (4.5), although this was not significant in the overall patient group

(p = 0.056).

Interim imaging

During NAC, the relative change in size of tumors on MRI that reached pCRmic after NAC

was significantly larger than the change in those that did not reach pCRmic (p<0.001)

(Table 3). This was observed at initial enhancement (-66% change versus -26% change) as well

as at late enhancement (-82% versus -42%) (Table 3). On PET/CT, the relative change in SUV-

max of tumors resulting in pCRmic after NAC versus those resulting in non-pCRmic was sig-

nificantly larger (-67% versus -43%; p<0.001). A comparable observation was made for

changes in SUV-max in the lymph nodes (-74% versus -57%; p = 0.001). Examples of MRI and

PET/CT imaging are shown in Fig 2.

Scenarios

An overview of the optimal model per scenario is given in Table 4. At interim imaging, the

models resulting from scenarios 1 and 2 are identical, suggesting that baseline information

from PET/CT does not add value to response monitoring without interim PET/CT. Compara-

ble observations were found for scenarios 5 and 6: without interim MRI, baseline MRI does

not add complementary information.

The AUC and confidence intervals of the models are shown in Table 5. At interim imaging,

in the overall group, MRI appears to yield the strongest predictor of tumor response to NAC.

Table 1. Baseline patient and tumor characteristics prior to neoadjuvant chemotherapy (NAC). Patient and tumor characteristics of all 188 patients

versus pathological complete response (pCRmic) after NAC. sd: Standard deviation. IDC = Invasive ductal carcinoma. ILC = Invasive lobular carcinoma.

ER = Estrogen receptor. HER2 = Human epidermal growth factor receptor 2.

Characteristic Overall pCRmic Non-pCRmic p-value

Total (%) 188 77 (41%) 111 (59%)

Age (years), mean (sd) 47 (11) 44 (11) 50 (10) <0.001

Tumor stage prior to NAC

T1 20 11 9 0.391

T2 116 47 69

T3 43 17 26

T4 9 2 7

Nodal stage prior to NAC

N0 40 15 25 0.862

N1 105 43 62

N2 12 5 7

N3 31 14 17

Histology

IDC 167 72 95 0.222

ILC 18 4 14

Other 3 1 2

Clinical Subtype, n (%)

ER-positive/HER2-negative (%) 87 11 (12.6%) 76 (87.4%) <0.001

HER2-positive (%) 46 35 (76.1%) 11 (23.9%)

Triple negative (%) 55 31 (56.4%) 24 (43.6%)

https://doi.org/10.1371/journal.pone.0176782.t001
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When considering MRI as the reference, no other scenario yielded obviously superior

performance.

In Fig 3 the fitted ROC curves are shown of the optimal imaging scenario for HER2-posi-

tive, ER-positive and Triple-negative tumors. An operating point at 90% specificity was

selected to assess the corresponding sensitivity, in other words, the probability of correctly pre-

dicting a non-pCRmic was determined under the condition that the probability to correctly

predict a pCRmic is at least 90%.

For HER2-positive tumors, MRI was also the strongest predictor, performing significantly

better than PET/CT. For this subtype, PET/CT was not found to have additional value. With

scenario 1 (MRI only), at an operating point of 90% specificity, a sensitivity of 36.2% was

achieved (Fig 3).

For ER-positive tumors, a favorable performance was seen from adding PET/CT to MRI,

although no significant difference was seen to the MRI only scenario. Monitoring using PET/

CT only also yielded favorable performance over that using MRI only. With scenario 4 (MRI

combined with PET/CT in incomplete responders), at the 90% operating point, a sensitivity of

55.8% was achieved.

For triple-negative tumors only very small differences were seen between the different sce-

narios. With scenario 1 (MRI only), at a 90% specificity, a sensitivity of 45.5% was achieved.

Discussion

The aim of this study was to explore guidelines in monitoring tumor response to NAC, taking

breast cancer subtype into account and using different imaging scenarios: MRI only, PET/CT

Table 2. Imaging characteristics prior to neoadjuvant chemotherapy. Imaging characteristics at MRI and PET/CT plotted versus the pathological com-

plete response (pCRmic) and non-pCRmic of tumors to neoadjuvant chemotherapy. LD initial = Largest tumor diameter on initial enhancement. LD

late = Largest tumor diameter on late enhancement. SUV-max = Maximum standardized uptake value.

Characteristic Overall pCRmic Non-pCRmic p-value

MRI baseline; curve type 0.212

Persisting 0 0 0

Plateau 81 30 51

Wash-out 107 47 60

MRI baseline; tumor size

LD initial (mm); mean (sd) 47 (24) 46 (23) 47 (25) 0.691

LD late (mm); mean (sd) 39 (21) 38 (18) 40 (22) 0.608

PET/CT baseline; SUV-max

SUV-max tumor; mean (sd) 9.1 (6.0) 10.3 (7.2) 8.2 (4.7) 0.029

SUV-max lymph node; mean (sd) 5.0 (5.1) 5.7 (5.3) 4.5 (4.8) 0.056

https://doi.org/10.1371/journal.pone.0176782.t002

Table 3. Imaging characteristics during NAC. Relative change (Δ) of largest tumor diameter on initial (LD initial) and late (LD late) enhancement on MRI

([LD interim–LD baseline / LD baseline] x 100%) and relative change of the maximum standardized uptake value (SUV-max) on PET/CT ([SUV-max interim–

SUV-max baseline / SUV-max baseline x 100%] plotted versus pathological complete response (pCRmic) after NAC.

Characteristic Overall pCRmic Non-pCRmic p-value

MRI Δ
LD initial Δ (%); median (sd) -42 (34) -66 (33) -26 (24) <0.001

LD late Δ(%); median (sd) -58 (38) -82 (28) -42 (35) <0.001

PET/CT Δ
SUV-max tumor Δ (%); median (sd) -53 (27) -67 (17) -43 (28) <0.001

SUV-max lymph node Δ (%); median (sd) -65 (32) -74 (31) -57 (31) 0.001

https://doi.org/10.1371/journal.pone.0176782.t003
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only, or a combination thereof. To pursue this aim, MRI and PET/CT were performed both

prior to NAC as well as during NAC. Post-hoc analyses were performed to assess and compare

the efficacy of scenarios. By systematically considering all combinations at different therapeu-

tic windows in the clinical workflow, we found that the optimal imaging scenario depends

considerably on breast cancer subtype.

For HER2-positive tumors, monitoring of tumor response to NAC was most accurately

accomplished using MRI only. Approximately one third of the patients (36.2%) who did not

achieve pCRmic could be identified at the cost of incorrectly assuming residual disease in 10%

of the patients. PET/CT performed significantly less accurately (p = 0.04), while the combina-

tion of these techniques did not show obvious improvement.

For triple-negative tumors, monitoring of response was also most accurately accomplished

using MRI only. Approximately half the number of patients (45%) who did not achieve

pCRmic could be identified, at the cost of incorrectly assuming residual disease in 10% of

patients. For these tumors, little difference was seen between the performance of PET/CT and

MRI. This suggests that PET/CT is an appropriate alternative to MRI for patients with triple-

negative tumors with contraindications for MRI.

For ER-positive tumors, PET/CT showed slightly favorable performance compared to MRI,

and results suggest that response monitoring of ER-positive tumors may be optimized by com-

bining MRI with PET/CT. Using this latter scenario, half the number of patients without

pCRmic could be identified while residual disease was incorrectly assumed in 10% of the

patients. However, even though relatively large numbers of ER-positive tumor patients were

included, no significant differences were found between the scenarios.

Fig 2. MRI and PET/CT imaging of different breast cancer subtypes. The top row shows MR subtraction images with color-coded

visualization of contrast curves (persisting/green; plateau/blue; wash-out/red), the middle row shows maximum intensity projection of MR

subtraction imaging, and the bottom row shows standardized uptake values on PET/CT imaging. For each example, imaging prior (left) and

during (right) neoadjuvant chemotherapy is shown. (A) A 48-year-old women with an ER-positive invasive ductal carcinoma (IDC) showing a

moderate response on MRI and PET/CT imaging, with a non-pathologic complete response (non-pCRmic) on final pathology. (B) A 52-year-

old woman with a HER2-positive IDC showing a good response on MRI but a moderate response on PET/CT imaging, with a pCRmic on final

pathology. (C) A 28-year-old woman with a triple-negative IDC showing a good response on MRI and PET/CT, with a pCRmic at final

pathology.

https://doi.org/10.1371/journal.pone.0176782.g002
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It is widely recognized that the different breast cancer subtypes prompt different treat-

ments, variant responses to treatment, and that they are linked to different prognosis. As seen

seen in this current study, different subtypes are also linked to different optimal imaging

scenarios.

In prior studies, the strictest definition of pCRmic (i.e., no residual invasive disease in the

breast or axilla: ypT0 ypN0) was found to be associated with increased disease-free and overall

Table 4. Characteristics remaining in the scenario models. Characteristics remaining in scenario 1 to 6, with corresponding odds ratios (OR) and 95%

confidence intervals (CI). B = Baseline imaging. I = Interim imaging. LD initial = Largest tumor diameter on initial enhancement. LD late = Largest tumor diame-

ter on late enhancement. SUV-max = Maximum standardized uptake value. Δ = Relative change.

Characteristics OR 95% CI

Scenario 1 Age 0.961 0.925–0.998

B: MRI Clinical subtype

I: MRI Triple-negative reference

ER-positive 0.150 0.056–0.402

HER2-positive 1.147 0.401–3.282

LD initial Δ 0.171 0.030–0.975

LD late Δ 0.126 0.027–0.580

Scenario 2 Age 0.961 0.925–0.998

B: MRI & PET/CT Clinical subtype

I: MRI Triple-negative reference

ER-positive 0.150 0.056–0.402

HER2-positive 1.147 0.401–3.282

LD initial Δ 0.171 0.030–0.975

LD late Δ 0.126 0.027–0.580

Scenario 3 Clinical subtype

B: MRI & PET/CT Triple-negative reference

I: MRI & PET/CT ER-positive 0.200 0.063–0.633

in all patients HER2-positive 2.208 0.607–8.028

SUV-max tumor Δ 0.032 0.003–0.359

LD late MRI 0.100 0.023–0.434

Scenario 4 Clinical subtype

B: MRI & PET/CT Triple-negative reference

I: MRI & PET/CT ER-positive 0.235 0.069–0.803

in patients with HER2-positive 3.277 0.689–15.592

incomplete LD late Δ 0.155 0.030–0.801

response on MRI SUV-max tumor Δ 0.017 0.001–0.324

Scenario 5 Age 0.961 0.918–1.006

B: MRI & PET/CT Clinical subtype

I: PET/CT Triple-negative reference

ER-positive 0.256 0.089–0.740

HER2-positive 4.902 1.484–16.195

SUV-max tumor Δ 0.017 0.002–0.157

Scenario 6 Age 0.961 0.918–1.006

B: PET/CT Clinical subtype

I: PET/CT Triple-negative reference

ER-positive 0.256 0.089–0.740

HER2-positive 4.902 1.484–16.195

SUV-max tumor Δ 0.017 0.002–0.157

https://doi.org/10.1371/journal.pone.0176782.t004
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survival in subgroups of patients, mostly so in HER2-positive and triple-negative tumors [28].

However, in this study we chose pCRmic: complete absence of tumor cells or presence of only

a small number of scattered invasive cells in the resection specimen (ypTmic) as the endpoint

of this study was not survival, but rather assessment of sensitivity and specificity of imaging for

response monitoring. Second, the association between ypT0 ypN0 and survival has not been

shown for luminal A tumors, which comprise the largest subgroup of breast cancers, including

the ER-positive tumors. Thirdly, as comparable numbers of ypT0 ypN0 were found compared

to the results of other studies: 5–10% of ER-positive tumors, 20–30% of triple-negative tumors,

and 30–65% of HER2-positive tumors (treated with a combinations of NAC and trastuzumab)

[28–31], there was insufficient power to use ypT0 ypN0 as endpoint in ER-positive tumors In

this study. Using ypTmic, tumor response was found in 11/87 ER-positive tumors (12.6%),

providing sufficient power to assess the sensitivity of MRI, PET/CT and combination thereof.

In future studies, other study endpoints could be considered, such as the possibility for breast

conserving surgery following NAC, as improvement of surgical options is still one of the major

reasons to consider NAC [32].

Future studies could also consider the inclusion of diffusion-weighted MR imaging

(DW-MRI), as promising results have been shown in the use of DWI to monitor early tumor

response of breast cancers to NAC [33]. For PET/CT imaging, the SUV-max of tumors and

Table 5. Area under the curve (AUC) and 95% confidence interval (95% CI) of all scenario models. The AUC of the interim scenarios were compared

using scenario 1 (MRI only) as a reference. *Significant difference compared to scenario 1.

AUC (95% CI) Overall p-value HER2-positive p-value ER-positive p-value Triple-negative p-value

Scenario 1 0.894 (0.847–0.942) 0.735 (0.534–0.936) 0.742 (0.571–0.912) 0.855 (0.758–0.952)

versus

Scenario 2 0.894 (0.847–0.942) 0.250 0.735 (0.534–0.936) 0.250 0.742 (0.571–0.912) 0.250 0.855 (0.758–0.952) 0.250

Scenario 3 0.890 (0.843–0.936) 0.227 0.688 (0.508–0.868) 0.183 0.795 (0.674–0.917) 0.155 0.864 (0.768–0.961) 0.224

Scenario 4 0.892 (0.846–0.937) 0.238 0.708 (0.513–0.903) 0.213 0.818 (0.704–0.933) 0.117 0.868 (0.775–0.962) 0.213

Scenario 5 0.868 (0.816–0.920) 0.118 0.543 (0.362–0.724) 0.041* 0.791 (0.668–0.914) 0.162 0.844 (0.737–0.952) 0.220

Scenario 6 0.868 (0.816–0.920) 0.118 0.543 (0.362–0.724) 0.041* 0.791 (0.668–0.914) 0.162 0.844 (0.737–0.952) 0.220

https://doi.org/10.1371/journal.pone.0176782.t005

Fig 3. Fitted receiver operating characteristics (ROC) curves of the optimal imaging scenario for HER2-positive, ER-positive and Triple-negative

tumors. A) ROC-curve of scenario 1 (MRI only) in HER2-positive tumors. B) ROC-curve of scenario 4 (MRI combined with PET/CT in incomplete

responders) in ER-positive tumors. C) ROC-curve of scenario 1 (MRI only) in triple-negative tumors. For all ROC-curves an operating point at 90% specificity

was selected to assess the corresponding sensitivity.

https://doi.org/10.1371/journal.pone.0176782.g003
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lymph nodes were evaluated because these are most commonly assessed in clinical practice.

However, future study could consider other imaging characteristics such as the total lesion gly-

colysis [34]. Also, the use of 18F-fluoroestradiol or 89ZR-trastuzumab could be considered for

PET/CT response monitoring in certain breast cancer subtypes [35,36]. Future study could

also consider whether subtle changes in breast tissue, for example due to age-related changes

in breast structure and density, is of influence to the sensitivity of MRI and PET/CT imaging

in the current study setting. Currently, this was not assessed due to limited patient numbers

within the different subgroups. For the MRI and PET/CT parameters we did not address

inter- or intra-observer variation. The parameters were assessed under realistic clinical condi-

tions to obtain their value in routine clinical practice. However, future studies could focus on

automated techniques to extract complementary information from MRI and PET/CT to moni-

tor breast cancer response [37].

Conclusions

For imaging response of breast cancer to neoadjuvant chemotherapy, MRI was found optimal

to monitor response for HER2-positive and triple-negative tumors. For HER2-positive tumors,

MRI has an advantage over PET/CT imaging as well as over combined techniques. However,

for triple-negative tumors, PET/CT is an appropriate alternative in patients with contraindica-

tions for MRI. For ER-positive tumors, PET/CT shows favorable performance over MRI, and

combining PET/CT with MRI could provide optimal response monitoring. However, even

though relatively large numbers of ER-positive tumor patients were included, significant dif-

ferences could not yet be shown.
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