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Abstract

Metabolomics uses advanced analytical chemistry techniques to comprehensively measure

large numbers of small molecule metabolites in cells, tissues and biofluids. The ability to rap-

idly detect and quantify hundreds or even thousands of metabolites within a single sample is

helping scientists paint a far more complete picture of system-wide metabolism and biology.

Metabolomics is also allowing researchers to focus on measuring the end-products of com-

plex, hard-to-decipher genetic, epigenetic and environmental interactions. As a result, meta-

bolomics has become an increasingly popular “omics” approach to assist with the robust

phenotypic characterization of humans, crop plants and model organisms. Indeed, metabo-

lomics is now routinely used in biomedical, nutritional and crop research. It is also being

increasingly used in livestock research and livestock monitoring. The purpose of this sys-

tematic review is to quantitatively and objectively summarize the current status of livestock

metabolomics and to identify emerging trends, preferred technologies and important gaps in

the field. In conducting this review we also critically assessed the applications of livestock

metabolomics in key areas such as animal health assessment, disease diagnosis, biopro-

duct characterization and biomarker discovery for highly desirable economic traits (i.e., feed

efficiency, growth potential and milk production). A secondary goal of this critical review was

to compile data on the known composition of the livestock metabolome (for 5 of the most

common livestock species namely cattle, sheep, goats, horses and pigs). These data

have been made available through an open access, comprehensive livestock metabolome

database (LMDB, available at http://www.lmdb.ca). The LMDB should enable livestock

researchers and producers to conduct more targeted metabolomic studies and to identify

where further metabolome coverage is needed.

Introduction

Metabolites are sometimes referred to as the “canaries” of the genome [1]. Just as canaries

for coalminers served as sensitive indicators of problems in coal mines, metabolites can be

exquisitely sensitive indicators of problems in the genome (as well as the transcriptome or
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proteome). Metabolites are effectively the end products of complex interactions occurring

inside the cell (the genome) and events, exposures or phenomena occurring outside the cell or

organism (the environment). As a result, the comprehensive measurement of metabolites (via

metabolomics) allows one to determine interactions between genes and the environment. In

other words, metabolomics allows researchers to obtain a highly sensitive and more complete

description of the phenotype [2; 3]. This metabolic readout of the phenotype is often called the

“metabotype” [4]. Recent advances in both analytical chemistry and metabolite data analysis

techniques are now making metabolomics far more accessible to a wider range of research dis-

ciplines. Indeed, metabolomics is now routinely used in biomedical research (for biomarker

discovery and disease mechanism research), food and nutritional analysis, crop characteriza-

tion and environmental monitoring [5; 6; 7; 8]. As a result, the field of metabolomics has expe-

rienced very rapid growth with just two papers published on the subject in 1999 to more than

2400 in 2015.

However, unlike in other areas of agriculture research where metabolomics is widely used

in crop trait selection, pesticide monitoring, crop breeding or crop evaluation [9; 10; 11; 12],

the application of metabolomics to livestock research is somewhat less widely used or appreci-

ated. This is surprising given the potential of metabolomics to address many important ques-

tions in livestock and animal science. In particular, the power of metabolomics to non-

invasively detect subtle phenotypic changes, innate phenotypic propensities and dietary

responses makes it an ideal tool for livestock research, breeding and assessment [13; 14; 15; 16;

17; 18; 19]. Recently, there have been a number of papers in livestock metabolomics that have

generated compelling results showing how metabolomics and metabolite-based phenotyping

(metabotyping) can help farmers, veterinarians, livestock researchers and the livestock indus-

try. These include papers demonstrating how metabolomics can be used to predict feed effi-

ciency and residual feed intake (RFI) [20], ascertain disease propensity [21; 22; 23], evaluate

dietary responses to different feeds [24; 25], assess carcass merit [26; 27; 28], fertility [29], milk

quality [30; 31], determine bioproduct content [32] and ascertain other important economic

or breeding traits associated with livestock.

Fast, effective, and quantitative phenotyping is critical for farm trials dealing with animal

selection and breeding. Many traditional phenotypic measurements such as those related to

animal feed consumption and RFI are expensive, time consuming and require specific record-

ing equipment [20]. Others, such as carcass trait evaluation, may require animal slaughter,

which obviously eliminates the potential breeding value of the animal. Similarly for reproduc-

tive traits, animals have to reach a stage of maturity and sexual activity to allow measurement

of related traits. Metabolomics allows many of these trait measurements to be conducted ear-

lier, more routinely, non-invasively and often at a lower cost than current techniques [33; 4].

However, metabolomics is not without its challenges. Metabolomic experiments must be care-

fully designed as diet and other variables such as sex, diurnal variations and sampling time can

profoundly affect results. Likewise, metabolomic technologies, such as gas chromatography

(GC), mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are not

yet widely available in many livestock research facilities. Furthermore, there continues to be a

significant shortage of data resources that could facilitate the interpretation of livestock meta-

bolomic data.

Given the many applications of metabolomics in both the livestock industry and livestock

research as well as the diversity of journals in which livestock metabolomics is often published,

we felt it was important to conduct a thorough, systematic review of the field. By consolidating

the results from diverse journals and different studies into a single review paper, we believed

this content would provide a more complete picture of both the strengths and the weaknesses

of livestock metabolomics. In conducting this review we sought answers to 4 key questions: 1)
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What are the most common applications of metabolomics in animal science and where are

they trending?, 2) What are the preferred metabolomics technologies in livestock metabolo-

mics and how are they evolving?, 3) What are the most obvious gaps or weaknesses in livestock

metabolomics relative to other fields of metabolomics research? and 4) What are the known or

measured metabolites for the 5 major livestock species (i.e., bovine, ovine, caprine, equine, and

porcine) in different tissues and biofluids? This metabolite compilation, which we have called

the livestock metabolome database or LMDB (available at http://www.lmdb.ca), is intended to

help lay a more solid foundation in terms of data resources that would make livestock metabo-

lomic studies much easier to perform, analyze and compare. The LMDB catalogues all metabo-

lite compounds that have ever been identified and reported in the 5 livestock species (for

multiple biofluids and tissues), along with concentration ranges, compound descriptions,

chemical structures, reference NMR and MS spectra and other information associated with

each metabolite for both healthy and a variety of abnormal physiological conditions.

Materials and methods

In compiling this review and assembling the livestock metabolome database, we used a combi-

nation of web-accessible data mining tools along with manual curation to survey 2313 peer

reviewed journal articles covering the period from 1930 to 2015. From this initial set of articles,

we reduced the number further to cover published livestock papers reporting the measurement

or characterization of�8 metabolites for any of the 5 major livestock species (i.e., bovine,

ovine, caprine, equine, and porcine). This reduced the target number of peer-reviewed manu-

scripts to a total of 149. The livestock species selected for this review were based on their global

population, economic impact and use in agricultural systems [34; 35]. Details regarding the

keyword selection, search engines and databases, journals and search strategy are given below

and summarized in the preferred reporting items for systematic reviews and meta-analysis

(PRISMA) checklist (S1 Table) and flow chart (Fig 1).

Keyword selection

As noted above, this review is focused on 5 main livestock species including cattle, sheep,

goats, horses and pigs. Therefore, a combination of keywords was selected to target those spe-

cific animals and to identify the associated metabolomics studies. Keywords were divided into

3 main groups: 1) animal species, 2) sample types, and 3) metabolomic methods. Selected key-

words for animal species included the name of the species and its various derivatives or syno-

nyms, i.e., bovine, cattle, cow, calf, Bos taurus, etc. To target metabolomics papers in animal

science, a broad range of metabolomics keywords were identified and used. These included

different variations of the term “metabolomics” (such as metabolomics, metabonomics,

metabolite profiling, metabolite fingerprint, chemical profile, chemical analysis, chemical

composition, etc.) to target publications prior to and after 1999, as well as the names of various

analytical platforms (i.e., NMR, mass spectrometry, liquid chromatography, gas chromatogra-

phy-MS, etc.). Moreover, a wide variety of sample types such as different body fluids (i.e.,

serum, blood, plasma, urine etc.) and different organs or tissues were selected to further enrich

the keyword search.

Search engines and databases

An initial comparison among many open access search engines showed that most search

results are similar regardless of the search engine used. Therefore, Google Scholar (https://

scholar.google.ca/) was selected as the primary literature search engine. In addition, a number

of agriculture-specific databases such as Agricola and AGRICULTUREnetBASE were also
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Fig 1. PRISMA diagram. The preferred reporting items for systematic reviews and meta-analysis (PRISMA) flow diagram identifies the total number

of articles initially surveyed, the number of articles included and excluded for this systematic review. From: Moher D, Liberati A, Tetzlaff J, Altman DG,

The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PloS Med 6(7):

e1000097. doi:10.1371/journal.pmed1000097. For more information, visit www.prisma-statement.org.

https://doi.org/10.1371/journal.pone.0177675.g001
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used. Other databases included Scopus, the Web of Science, ScienceDirect (http://www.

sciencedirect.com/) and PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Settings for all

search engines and databases were adjusted to increase search efficiency and filter irrelevant

results.

Search methods and selection criteria

Different keywords were combined to target metabolomics papers in the field of animal sci-

ence. For example, “cattle”, “cattle serum” or “cattle milk” was accompanied with “metabolo-

mics”, “chemical composition” or “metabolite profiling”. Consequently, each combination of

the keywords in the search engines generated a long list of results. These included various

types of publications (full papers or abstracts) that contained any or all of the used keywords.

A manual review was performed on all retrieved publications. Typically, the first 3–5 pages of

the search results from the aforementioned search engines were manually reviewed to select

for articles of interest. Among the papers identified as worth pursuing, research papers,

abstracts or textbooks that showed relevance in their title or abstract were selected. In addition

to papers reporting experimental results, review articles that included specific metabolite data

sets were also selected. Among the selected manuscripts, only those papers that reported�8

metabolites were chosen for this review. The threshold of 8 or more as the minimum number

of metabolites was based on a post hoc analysis of the retrieved papers and the need to optimize

both metabolite coverage and the time devoted to manual analysis. We also determined that

this selection cut-off allowed us to cover most, if not all, of metabolites reported in papers with

<8 metabolites. Based on these criteria, a total number of 149 manuscripts covering all 5 ani-

mal categories were selected for this review. Selected publications were carefully read to extract

and annotate a set of 10 pieces of information including: 1) metabolite names; 2) tissue or bio-

fluid origin; 3) quantified values (concentration) if any; 4) experimental conditions; 5) animal

breed; 6) sample size; 7) analytical platform; 8) field of research, 9) physiological condition

(disease or state of health), and 10) Pubmed/DOI references.

Compilation of the livestock metabolome database

In compiling the data for this livestock metabolome database or LMDB (http://www.lmdb.ca),

all reported concentrations were transformed into a standardized concentration unit (micro-

molar; μM) and each entry was associated with an abbreviated description of the experimental

context, the sample type, and the methodologies used for the metabolomic analyses. In identi-

fying a metabolite for inclusion in this study the compound had to: 1) have a molecular weight

<1500 daltons; 2) it could not be a peptide, protein or oligonucleotide; 3) it had to correspond

to a reasonably unique chemical entity (triglycerides and amino acids are not unique chemical

entities, but LysoPC-16:2 is sufficiently unique) and 4) it had to be identified with a structurally

interpretable name. This literature-based effort generated 1070 metabolites from 149 peer-

reviewed papers, abstracts or textbooks. Metabolites extracted from these manuscripts were

systematically categorized into the LMDB. Nearly all metabolites extracted were linked to a

standard Human Metabolome Database (HMDB) identifier [36; 37; 38] which provides a

freely-accessible comprehensive description of each metabolite. A brief description of experi-

mental data for each metabolite was also extracted from the articles and included in the data-

base including information on the analytical platform, experimental conditions and field of

research. A PubMed and/or DOI id was also associated with each metabolite to provide a link

to the article reporting that metabolite. Additional data on each metabolite, including struc-

ture, synonyms, chemical classifications, physicochemical data, reference NMR, GC-MS or

LC-MS spectra and links to other databases were obtained through an in-house annotation
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tool called DataWrangler. All of this information was used to construct the on-line version

of the LMDB (http://www.lmbd.ca). The LMDB was prepared using a Ruby-on-Rails [39]

framework, modeled after other on-line species-specific metabolomic databases prepared in

our laboratory. Details regarding their construction, required operating systems, browser com-

patibility and hardware requirements can be found elsewhere [36; 40; 41].

Results and discussion

Growth and trends in livestock metabolomics research

Based on the data collected from our literature survey, it is clear that the majority of metabolo-

mics studies among all livestock categories have been conducted in cattle (Fig 2) with a total

of 76 articles (50% of the selected articles) focusing on various fields of bovine research and

assessment. Metabolomics studies on pigs and sheep came second and third with 28% and

12% of the selected articles, respectively. The least studied group were horses with only 5 (3%)

reported equine metabolomic studies. As might be expected, most livestock metabolomic

Fig 2. Literature mining. Total number of livestock metabolomics articles considering only articles that reported�8 metabolites resulted in selection of

149 manuscripts for this review.

https://doi.org/10.1371/journal.pone.0177675.g002
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studies focused on issues related to animal health, nutrition and production (65%). These stud-

ies are obviously useful for characterizing bioproduct quality, identifying biomarkers or under-

standing animal responses to different stressors. However, we were surprised to see relatively

few efforts focused on metabolomic characterization of healthy animals with the aim of identi-

fying baseline values for different metabolites in different biofluids or tissues. In fact, only 16

studies (10%) of this kind were reported. These “referential surveys” are foundational and are

often needed before biomarker studies could/should be undertaken or fully understood.

As noted earlier, most metabolomic studies of cows, sheep, goats and pigs appear to be

directed towards disease detection, production and bioproduct assessment, feed efficiency

determination and reproduction. In contrast, the primary focus for equine metabolomics has

been on drug discovery and doping detection, specifically for thoroughbred horses [42]. Given

the large sums of money directed to horse racing, this is not unexpected. However, compared

to the widespread applications of metabolomics in other livestock species for other purposes, it

is clear that equine metabolomics is being under-utilized. Certainly, equine metabolomics

could be used to select more desirable traits and higher value or higher performing animals,

similar to what is being done for bovine metabolomics. Likewise, metabolomics could serve as

a diagnostic or prognostic tool for improving equine health and disease resilience (as it has for

essentially all other livestock species).

Temporal categorization of all 149 published studies showed that the majority of livestock

metabolomics papers were published after 1999. Less than 9% (13 articles) of the selected

papers were published prior to 1999 while, ~91% (136 articles) of the papers were published

thereafter. The earliest paper in our collection dates from 1930. It is noteworthy that the term

“metabolomics” was not coined until 1998 [43; 44] therefore, metabolomics studies prior to

this date had to be identified using other keywords such as “chemical composition”, “biochem-

ical profiling”, etc. Based on our observations, it is clear that interest in livestock metabolomics

is growing rapidly, especially over the last couple of years. Our data indicates that from 2000–

2010 just 29 articles (19%) were published in this field, while from 2011–2015 a total of 107

(72%) articles were published. In terms of percentage growth, the most rapidly expanding sub-

field appears to be caprine and equine metabolomics with a growth rate of 100% over the past

5 years. In terms of overall growth, the most significant changes were in bovine metabolomics

with the number of papers growing from just 10 prior to 1999 to 49 in 2011–2015. The most

recent additions to the field of livestock metabolomics are studies focused on goats (starting in

2014) and horses (starting in 2007).

Trends and gaps in livestock metabolomics applications

We found that livestock metabolomics studies can be categorized in 7 main areas (Table 1).

These include animal health, animal nutrition, animal production, animal reproduction,

Table 1. Categorical comparison.

Bovine Ovine Caprine Equine Porcine

Animal Health 30 6 2 4 10

Animal Nutrition 10 6 5 0 14

Animal Production 22 3 2 2 11

Animal Reproduction 2 1 0 0 3

Human Health 6 4 2 0 14

Animal Products 16 1 0 0 2

Animal Physiology 13 2 0 1 0

https://doi.org/10.1371/journal.pone.0177675.t001
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animal physiology (mainly analysis of different biofluids), animal products (products originat-

ing from livestock such as milk, meat, yogurt, etc.), and human health (livestock models used

for human health studies). This general categorization was based on a post hoc analysis of the

types of articles where we manually assessed article keywords, subject headings, journal titles

and the general focus of each article. Most of these categorizations (such as animal reproduc-

tion, human health and animal health) were relatively simple to make. For instance, the

category “animal reproduction” obviously refers to articles using metabolomics to study repro-

duction in livestock. Likewise, the category “animal health” refers to articles using metabolo-

mics to study livestock health or disease while “human health” refers to application of

metabolomics to study human disease using various livestock models. Other categories proved

to be somewhat more ambiguous. For instance, the field of “animal products” typically con-

tains metabolomics investigations related to food, nutrition and human consumption of ani-

mal products, such as meat and cheese. On the other hand, “animal production” is focused on

investigating the associated biochemical profile with each animal product. In some cases, we

had to be fairly strict with our definitions. For instance, we limited “animal physiology” to

include only those articles focused on analyzing various biofluids or characterizing the metab-

olite composition of specific biofluids, organs and tissues.

Selected livestock metabolomics articles of 5 major livestock species were categorized based

on the area of research, i.e., animal health, animal nutrition, animal production, animal repro-

duction, human health, animal physiology and animal products. It is noteworthy that articles

in the area of human health mainly reflected animal models being used to study human related

health issues.

Among the seven different categories, animal health (52) and animal production (40) had

the most metabolomics articles published for the largest number of animal groups (Table 1).

However, this varied depending on the livestock species being studied. In human health

research, porcine metabolomic studies covered the majority of articles (14 articles) compared

to all other livestock categories. This is not unexpected, given the comparable physiology of

pigs to that of humans [45]. In the category of animal products, bovine-based studies had the

most articles published (16 articles) relative to all other groups. Some of the more interesting

applications of metabolomics found in our survey include the use of metabolomics for quality

control of animal products [46; 47], evaluating nutritional value and impact of various feed

sources on animal health and products [25], investigating disease biology by using animal

models of human disease [48; 49], investigation of potential metabolite biomarkers of animal

disease [22; 23], assessment of production traits [50; 51], reproductive performance [29], and

general metabolome characterization [52; 53].

In terms of gaps in the existing literature, it is perhaps most useful to use bovine metabolo-

mic studies as the “gold standard” by which to compare other livestock species. While metabo-

lomics is routinely being used to understand the biology or diagnose a few common bovine

production diseases (including acidosis, mastitis, milk fever) we found no metabolomic studies

looking at common diseases in sheep or goats (such as brucellosis, campylobacteriosis, pneu-

monia, Q fever), in horses (equine flu, equine herpes, equine sleeping sickness, anemia, lamini-

tis, azoturia), or in pigs (respiratory diseases, swine dysentery, parvovirus). Indeed, we found

only 22 metabolomic studies focused on the health of sheep, goats, pigs and horses, compared

to 30 metabolomic studies for cattle alone. Of these 22 non-bovine studies, most were focused

on metabolic, growth and neurodegenerative disorders.

Livestock metabolomics studies also appear to be missing a number of opportunities cur-

rently being pursued in human biomedical research. One of particular note is the use of

metabolomics to predict (as opposed to diagnose) or detect subclinical forms of disease.

While disease diagnosis is useful, often it is too late or too costly to perform useful veterinary
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interventions. Detecting diseases before they manifest or predicting them before they occur

allows inexpensive prophylactic or preventative measures to be taken. In human metabolo-

mic studies, the identification of disease prediction biomarkers is becoming increasingly

common [54; 55; 56; 57; 58]. This is because metabolic changes appear to precede significant

physiological changes, possibly because metabolites play an important signalling role to acti-

vate later stage (i.e. symptomatic) physiological responses [59; 60]. However, we could only

find 2 papers (limited to cattle) that focused on disease diagnosis/prognosis or (sub)clinical

detection of diseases [21; 61]. A similar approach could also be used towards the prediction

of later-life production traits on the basis of early-life metabolic fingerprints. This, too, is an

area of interest in the field of human metabolomics, where later-life health is being predicted

on the basis of early-life metabolic fingerprints [62; 63; 64]. Obviously the reliable prediction

of economically important traits is an important tool for livestock management and strategic

planning.

Metabolomics is already being used in the evaluation and/or prediction of production traits

such as residual feed intake (RFI), carcass merit, reproductive performance and metabolic dis-

orders for cattle. However, there is a surprising dearth of similar studies regarding evaluation

or prediction of production traits for sheep, goats and pigs. Metabolomics potentially offers a

unique opportunity for indirect, inexpensive marker-assisted measurement of these economi-

cal traits. This can be achieved through non-invasive sample collection of readily accessible

biofluids such as blood, urine, milk and saliva. In most cases, the standard measurement or

prediction of some traits such as RFI and carcass merit requires labour intensive, invasive,

costly and time consuming measurements [65]. Metabolomic studies regarding the prediction

of RFI in beef cattle have already been very promising with a reported initial prediction accu-

racy of 95% [20; 66]. Metabolomic data, when coupled with genomic data, appear to increase

the accuracy of trait prediction [67]. This combination potentially allows one to screen for

individual animals with superior traits that could be used for breeding stock. Given the positive

results already seen for cattle, the application of these metabolomic concepts to other livestock

species is certainly worth investigating. Overall it appears that there is still a considerable body

of useful metabolomic work that could be pursued with most other livestock species by simply

applying or extending what has already been done in bovine metabolomics.

Trends and gaps in sample size

Nearly 50% of the selected articles for all animal species used�30 animals or samples (from an

even smaller number of animals) to conduct their metabolomics analysis. Other sample size

categories shown in Table 2 account for ~10% of the peer-reviewed livestock metabolomics lit-

erature. The maximum number of samples reported from the selected papers were: 1587

(bovine), 163 (ovine), 80 (caprine), 36 (equine), and 506 (porcine). It is noteworthy that sam-

ple size does not always reflect the total number of animals used in the study. For instance, lon-

gitudinal studies typically collect multiple samples from a relatively small number of animals

Table 2. Sample size.

Bovine Ovine Caprine Equine Porcine

�30 25 6 4 5 30

31–50 12 2 0 0 7

51–100 9 4 3 0 1

>100 16 2 0 0 2

Undetermined 13 3 0 0 3

https://doi.org/10.1371/journal.pone.0177675.t002

Livestock metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0177675 May 22, 2017 9 / 26

https://doi.org/10.1371/journal.pone.0177675.t002
https://doi.org/10.1371/journal.pone.0177675


over an extended period of time. Relative to many reported human metabolomic studies [55]

or rodent model studies [68] the number of samples and the number of subjects (i.e. animals)

used in most livestock metabolomics studies is generally quite small. Indeed, many human

and rodent model studies routinely measure 100s to 1000s of samples. This difference in sam-

ple size likely reflects the relatively high cost of performing large animal studies as well as the

somewhat limited funding available to agriculture research relative to medical research.

Sample size reported in livestock metabolomics papers were divided into 5 categories with

papers using�30 samples, 31–50, 51–100, or those that have not mentioned the number of

samples used in the analysis.

However, it is important to note that the smaller sample sizes in livestock metabolomics

also mean that statistical significance and “power” of the published results is also somewhat

less than many human-subject or model organism studies. This represents a significant gap for

livestock metabolomics and requires either study sizes to be increased or more effort being

directed to conducting validation studies on similar-to-largely sized cohorts for confirmation

previously reported results. Indeed, we found only one bovine metabolomic study reporting

either independent cross validation (using a different animal cohort) or independent follow-

up validation of any newly identified biomarkers or interesting metabolite findings [20]. On

the other hand, follow-up validation studies are becoming routine in human metabolomic

studies [69; 70; 71]. Clearly, this is a gap in livestock metabolomics that must be filled if meta-

bolomic findings are going to be translated to practical pen-side or on-farm applications.

Another consistent problem detected in the published livestock metabolomics literature is

incomplete reporting. We found that 13% of all published livestock metabolomics papers did

not report the number of samples used in their research. Providing information on sample size

is an essential scientific measurement and reflects on the quality and reliability of published

papers. Failure to report sample sizes along with failure to provide information on the num-

bers of animals or animal replicates indicates a major flaw in manuscript preparation and sci-

entific work.

Trends and gaps in biological sample types

As can be seen in Fig 3 and Table 3, a total of 30 different sample types have been used for live-

stock metabolomics analyses. The most commonly used sample types include milk, plasma,

serum, urine and ruminal fluid. These biofluids account for 78% of the total sample types

reported. Milk and plasma are the most commonly used samples in bovine metabolomics

manuscripts. Among all other animal groups, plasma was the most widely examined sample

type (Table 3), reflecting perhaps the ease of collection but also its potential utility as a proxy

reporter for all of the organs in the body [72]. Some of the least frequently used samples

include cerebrospinal fluid, colostrum, semen, adipose tissue, kidney and kidney perfusate,

feces, amniotic fluid, bile and liver (Table 3). The relatively low number of papers reporting

data on tissue metabolomics likely reflects the challenges and costs of animal culling especially

for larger livestock, sample collection, and the need to rapidly perform metabolic quenching

via liquid nitrogen (immediately after surgery or necropsy) to obtain useful tissue samples for

metabolite analysis [73; 74].

Different varieties of samples have been used in livestock metabolomics analyses as identi-

fied by the number of published articles per sample per livestock specie.

While studies on bovine milk are quite prevalent, there are essentially very few studies on

sheep or goat milk (Table 3). Given the importance of goat and sheep milk in the global agri-

food economy, it is surprising that only a total of 6 papers have been published on goat/sheep

milk metabolites. One notable study, however, is that of Park and colleagues [75] who used
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LC-MS to identify/quantify 82 metabolites in sheep and goat milk. This paper reports a num-

ber of other macronutrient milk constituents including fat, protein, minerals and vitamins. In

another more recent study, the effect of a specific grazing patterns and their associated dietary

effect on goat milk was evaluated [76]. These authors used GC-MS techniques to identify and

quantify 25 milk metabolites.

Similar trends are also seen in other biofluid or sample types, with bovine samples or

bovine-related papers dominating. For instance, there are a number of metabolomic studies

on bovine ruminal fluid, plasma and urine, but very few studies on these biofluids for sheep,

goat, horses or pigs (43 for all 4 species and 3 sample types). Likewise, metabolomics studies

on colostrum and semen are limited to cattle only with one study each. Interestingly, some of

the less-frequently used sample types such as cerebrospinal fluid, synovial fluid, amniotic fluid,

bile and vitreous humor are limited to the less frequently studied livestock species (sheep, goat

and pig). What is also quite striking is the dearth of fecal metabolomic studies among all live-

stock species (Table 3). With the growing interest in the microbiome and the clear role that

gut (and rumen) microflora play in animal health, we were surprised by the complete absence

of metabolomic papers on bovine fecal samples.

Given the importance of beef, sheep and goat meat, it is also surprising to see how little

metabolomic data has been collected on meat samples. Indeed, only a total of 9 papers pro-

vided data on relatively small number (140) of meat metabolites. The most comprehensive

meat metabolomics study was reported by Castejón et al. [32]. These authors profiled meat

exudate using NMR to explore the effect of storage time on metabolite composition. They

reported a total of 60 different metabolites. Overall, these data suggest that the livestock meta-

bolomic literature is characterized by a significant under-representation of some important

sample types, including milk, meat, fecal/rumen, semen samples and cerebrospinal fluid.

Fig 3. Sample types. Different varieties of samples and animal products have been analyzed in livestock

metabolomics studies.

https://doi.org/10.1371/journal.pone.0177675.g003
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These “gaps” in our knowledge and “gaps” in the published literature represent clear opportu-

nities for livestock researchers to pursue.

With regards to the number of metabolites detected, quantified and/or reported among

the different sample types, we found that the broadest level of coverage was for milk, plasma

and serum (Table 4). Ruminal fluid, urine, feces and meat samples had slightly lower levels

of coverage while the rest of the sample types reported in Fig 3 typically report <60 metabo-

lites each. It is instructive to compare these livestock metabolite numbers to data reported

for human metabolites identified in similar kinds of sample types. For instance, the most

comprehensive human milk metabolomics paper reports just 129 identified metabolites [77],

which is >3X lower than what has been reported in the livestock milk. The total number of

metabolites reported for plasma/serum in humans is 4229 [72], which is significantly more

than what is reported for livestock plasma/serum (with 759). Likewise, the total number of

human urine metabolites has been reported to be 445 [2], which is more than twice that

Table 3. Sample types.

Bovine Ovine Caprine Equine Porcine

Adipose 1 0 0 0 0

Amniotic Fluid 0 2 0 0 0

Bile 0 0 0 0 2

Brain 0 1 0 0 1

Cerebral-Spinal Fluid 0 1 0 0 0

Cheese 0 1 0 0 0

Colostrum 1 0 0 0 0

Cream 1 0 0 0 0

Feces 0 1 0 1 0

Follicular Fluid/Media 3 0 0 0 2

Jejunal Tissue 0 0 0 0 2

Kidney 0 0 0 0 1

Kidney Perfusate 0 0 0 0 1

Liver 0 0 0 0 3

Lung 0 0 0 0 1

Meat 7 0 0 0 2

Milk 27 3 3 0 0

Muscle 1 0 0 0 1

Plasma 21 6 0 3 18

Proximal Colon 0 0 0 0 1

Rumen Fluid 7 1 1 0 0

Semen 1 0 0 0 0

Serum 14 3 1 1 15

Synovial Fluid 0 1 0 0 0

Urine 12 2 1 3 8

Vitreous Humor 0 0 1 0 0

Yogurt 0 1 0 0 0

https://doi.org/10.1371/journal.pone.0177675.t003

Table 4. Metabolite coverage.

Milk Plasma Serum Ruminal Fluid Urine Feces Meat

Number of Metabolites 422 408 351 248 177 158 75

https://doi.org/10.1371/journal.pone.0177675.t004
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found in the urine of livestock species. Given their genomic similarity, our expectation is

that the number of metabolites measurable in livestock for each of the biofluids should be

comparable to the number of metabolites measured in humans. Currently, the Human Meta-

bolome database recognized as the most comprehensive metabolomics database contains

>40,000 metabolites derived from various human biosamples [78]. As a result, this suggests

there is still a significant gap to be filled with regard to the depth and breadth of metabolome

characterization in livestock.

The number of metabolites detected, quantified and/or reported among the commonly

used sample types in the livestock metabolomics publications up to 2016 (counting publica-

tions that reported>8 metabolites).

Trends and gaps in analytical instrumentation and methodologies

Metabolomics uses a wide variety of analytical instruments that vary in terms of their sensitiv-

ity and breadth of coverage. Nuclear magnetic resonance (NMR) continues to be among the

most commonly used analytical platforms in metabolomics [79]. It is often chosen for its reli-

ability and utility in absolute quantitation however, NMR is relatively insensitive and is limited

to measuring substances in micromolar to millimolar (μM-mM) concentrations (Fig 4). Mass

spectrometry (MS) platforms (especially LC-ESI-MS) can detect metabolites at nanomolar

(nM) to picomolar (pM) concentrations, allowing a much higher number of metabolites to

be detected. However, MS instruments are prone to frequent breakdowns and, relative to

NMR, it is often difficult to quantify chemical concentrations via MS techniques. Gas chroma-

tography-MS (GC-MS) is less sensitive than liquid chromatography (LC)-MS, but is generally

more robust and more reproducible. As a result, GC-MS can sometimes be used to identify

Fig 4. Relative sensitivity of metabolomics platforms. Nuclear magnetic resonance (NMR), gas

chromatography-mass spectrometry (GC-MS), and liquid chromatography (LC)-MS are the commonly used

metabolomics platforms with varying detection limits.

https://doi.org/10.1371/journal.pone.0177675.g004

Livestock metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0177675 May 22, 2017 13 / 26

https://doi.org/10.1371/journal.pone.0177675.g004
https://doi.org/10.1371/journal.pone.0177675


and quantify the metabolome with higher precision and reproducibility than either NMR or

LC-MS.

Each of the 149 livestock metabolomics papers was carefully analyzed to identify which ana-

lytical platforms (NMR, LC-MS, GC-MS) were used more frequently to conduct metabolomic

analyses. In certain studies, more than one platform was used so, we simply counted the fre-

quency that each technique or technology was used in each study. Interestingly, the most com-

monly used metabolomics platform for all animal categories is NMR spectroscopy, accounting

for 28% of all livestock metabolomics studies. Following closely behind NMR, in terms of fre-

quency, is LC-MS with 25% of all studies using this analytical platform. It is noteworthy that

the LC-MS category includes ultra performance liquid chromatography (UPLC)-MS, high-

performance liquid chromatography (HPLC)-MS, and direct flow injection (DFI)-MS. Gas

chromatography-MS is the third most prevalent (15%) analytical platform used in livestock

metabolomics studies. The more limited use of GC-MS is typical of other metabolomic disci-

plines as well.

Other, less conventional or more targeted, methodologies account for the remaining 27%

of the technologies used in livestock metabolomics studies. These methods include, but are not

limited to, infrared spectroscopy (FTIR), silicic acid column chromatography, immunoassays,

the Kjeldahl method (for organic nitrogen measurement), ELISAs, and miscellaneous, lab-spe-

cific methods. Relative to other fields of metabolomics, livestock metabolomics appears to use

NMR spectroscopy somewhat more and LC-MS somewhat less. This may simply reflect the

availability of instrumentation or the preferences of major research groups in livestock meta-

bolomics. Certainly, sample abundance and supply is not a significant issue in livestock meta-

bolomics so, the use of tools that require higher-volumes, but offer more quantitative results

(such as NMR) is not unexpected. However, NMR is not the most sensitive technique and cer-

tainly if livestock metabolomics researchers wish to extend their coverage of the livestock

metabolome, they will certainly need to makes use of more LC-MS methods.

Another gap that was noted in livestock metabolomics research is the near complete

absence of ICP (inductively coupled plasma)-MS studies to measure metal ion levels in tissues

and biofluids. Indeed, only 2 studies used ICP-MS, with the most complete characterization

being conducted by Saleem et al. [52] who reported the identification and quantification of 20

metals in bovine ruminal fluid. The importance of metal ions as micronutrients for animal

health and animal productivity cannot be underestimated [80; 81]. Therefore, it is surprising

that so little metal ion data has been collected or analyzed in livestock metabolomic studies. It

was also noted that the use of fluxomics [82] or the measurement of metabolite flux using sta-

ble isotopes is completely absent in livestock metabolomics studies. Fluxomics is particularly

useful in understanding metabolic sinks and sources. It is also useful for assessing nutrition

and metabolic efficiency—topics, which are obviously important in livestock research. How-

ever, to conduct metabolic flux analysis, isotopically labeled (13C or 2H) feed needs to be used.

Given the size of most livestock animals (relative to rats and mice) and the need for significant

quantities of expensive, isotopically labeled feed, fluxomic studies are likely too difficult and

costly to perform [83]. Likewise, the use of imaging mass spectrometry or IMS (which is

becoming very popular in human metabolomics studies) was completely absent in livestock

studies. Imaging mass spectrometry is particularly useful for analyzing tissues and for under-

standing the metabolic changes that take place during tissue development or tissue transfor-

mation [84; 85].

A good metabolomics study should use more than one analytical platform, and ideally as

many different (orthogonal) platforms as possible to broaden the metabolite coverage. In

our analysis we found that 69% of the published studies used just 1 platform (either NMR,

HPLC-UV, LC-MS, GC-MS or ICP-MS), 15% used 2 platforms and only 3% used 3 or more
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analytical platforms. The remaining 13% of studies used relatively non-conventional platforms

or assays (immunoassays, FT-IR, etc.). The most comprehensive metabolomic analysis was a

study that used 5 different platforms (NMR, HPLC-UV, LC-MS, GC-MS and ICP-MS) to

characterize the bovine ruminal fluid metabolome [52]. Looking through the more recent

studies, there is a general trend towards using more than one platform and a growing trend

towards using LC-MS techniques over NMR methods. However, the surprisingly high number

of livestock metabolomic studies that still use only a single platform also represents a signifi-

cant issue that the field must remedy. Certainly the trend in human metabolomic studies is to

use at least 2 and often 3 or more different analytical platforms [2].

Another gap that was identified from this literature analysis was the general lack of integra-

tion of other omics techniques (proteomics, transcriptomics or SNP measurements) with

reported livestock metabolomic studies. Indeed, only 5 papers (3 bovine and 2 swine metabo-

lomics studies) used metabolomics in conjunction with genomics or proteomics. One paper of

note was an investigation that used genomics and metabolomics to evaluate RFI (residual feed

intake) from cross breeds of dairy and beef cattle [66]. This group of researchers used metabo-

lomics and phenotypic data to support their genomics investigations and identified two genes

(TP53 and TGFB1) that were strongly associated with cellular functions driving feed efficiency.

In another study by Lu and colleagues [50], the effect of genetic polymorphisms on dairy milk

characteristics was evaluated using a combination of metabolomics and proteomics. This

paper identified alterations in triglyceride composition and reported changes in the milk meta-

bolome and proteome of dairy cows with the K232A (lysine to alanine substitution) polymor-

phism in the well-studied DGAT1 gene. Given the growing trend towards systems biology

research and the more “holistic” interpretations of multi-omics data in other fields of life sci-

ence, the near absence of multi-omics studies represents an important gap in livestock metabo-

lomics (and omics) research.

Trends and gaps in metabolite quantification

The majority of livestock metabolomics publications are non-quantitative or semi-quantitative

(yielding relative quantification) while 28.18% of published studies provide fully (absolute)

quantitative data. The metabolites tracked in this review were categorized in two main groups:

1) quantified and 2) non-quantified metabolites. Any metabolite that was associated with an

absolutely quantified value (millimolar, micromolar, nanomolar, mg/mL, ug/mL, etc.) in a

given sample type was placed in the quantified category. The non-quantified group consists of

either metabolites with no quantified value or ones that have only relative quantification (i.e.

reported as a fraction or a percentage). Over all livestock species and all sample types, we

found a total of 404 quantified metabolites and 666 non-quantified. The majority of both

quantified and non-quantified metabolites are lipids and lipid-like molecules. Temporal trends

in metabolite quantification show that proportionally fewer livestock metabolomics papers are

providing quantitative data. For instance, 69% of papers published prior to 1999 had quantita-

tive data, while 34% of papers from 1999–2010 and just 21% from 2011–2015 generated quan-

titative metabolite data.

Overall, livestock metabolomics still has an impressive proportion (~28%) of publications

that report absolute concentration values. In contrast, most other fields of metabolomics quan-

tify metabolites far less frequently [72]. Nevertheless, the steady decline in the proportion of

livestock papers providing quantitative metabolomic data is not a good sign. The importance

of absolute quantification in metabolomics cannot be over-emphasized. As a branch of analyti-

cal chemistry focusing on small molecule characterization, there is more than 100 years of

history and a plethora of tools, standards and protocols designed specifically for absolute
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metabolite quantification [79]. Absolute quantification allows facile comparisons of readings

between animals, research staff, platforms, laboratories and countries. Acquiring quantified

values also allows one to determine normal and abnormal ranges for disease diagnosis, predic-

tion as well as other relevant production measures. Obtaining quantified data and recognizing

normal physiological concentrations is also a requirement in biomarker discovery [86; 60].

Indeed, absolute quantification and the existence of normal and abnormal ranges is the foun-

dation to the entire field of clinical chemistry. In livestock metabolomics, having a “normal”

quantified range specific for each animal species or breed is critical for defining referential

“healthy” conditions. Likewise, being able to quantify specific changes in an animal’s metabo-

lome allows one to identify “abnormal” conditions such as overt disease, malnutrition, preg-

nancy difficulties, and most importantly subclinical conditions for which no obvious clinical

indicators are visible [51; 87].

Trends and gaps in metabolite coverage

Based on our analysis of the literature and the definition of a metabolite given earlier, the

majority of livestock metabolomics studies report�50 metabolites (79% of the total selected

metabolomics publications) while the other 21% report >50 metabolites. The largest number

of metabolites (or features) reported in a single paper was 647 [51] covering multiple biofluids

for bovine samples while, the fewest reported was 8 (in a variety of papers from all different

livestock species). As with metabolite quantification, there is a trend for more recent livestock

metabolomics papers to report a greater number of metabolites. For instance, papers published

prior to 1999 averaged 29 metabolites per study, those from 1999–2010 averaged 44 metabo-

lites per study while, papers from 2011–2015 averaged 63. Among the later publications, the

recent bovine study conducted by Sun et al. [51] who investigated potential biomarkers of

milk production and quality using GC-time-of-flight/MS analyses of rumen fluid, milk, serum

and urine claimed to detect the highest number of metabolites (i.e., 647). However, careful

reading of the manuscript shows that they only formally identified 123. The remaining

“metabolites” were unidentified MS peaks or features. In ovine metabolomic studies, Parveen

and colleagues [88] reported 168 out of 205 detected metabolites using GC-MS to investigate

sheep plasma and feces. Clark et al. [89] reported 97 metabolites out of the 571 detected fea-

tures in caprine serum using a combination of both GC-MS and LC-MS. In equine metabolo-

mics, the highest number of metabolites identified was from a study conducted by Escalona

and colleagues [53] with 102 metabolites identified via NMR analysis of plasma, urine and

fecal water. A porcine metabolomics study by Metzler-Zebeli et al. [90] reported 104 out of

132 detected serum metabolites using LC-MS.

Overall, our analysis shows a total of 1070 non-redundant or unique metabolites have been

detected and/or quantified in the livestock metabolomics literature. Bovine studies covered the

majority of detected metabolites (i.e., 768 different compounds) over multiple sample types.

Porcine and ovine studies have the next highest number of detected metabolites with 412 and

285 different metabolites, respectively. Caprine and equine studies reported 167 and 109 dif-

ferent metabolites, respectively. The most frequently detected metabolites with>100 separate

entries for different animals, biofluids or conditions include: alanine (124 times), valine (112

times), isoleucine (105 times), glycine (101 times), and lactate (101 times). In addition, 26

other metabolites were reported 50–100 times. Metabolites reported more than once and<50

times add to 560 while, 479 metabolites are reported only once.

It is important to provide some context to these numbers, especially with regard to meta-

bolome studies reported for other animal or model species. The estimated size of the mam-

malian metabolome is >100,000 molecules [36; 2] and the total number of metabolites so far
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reported and/or theoretically expected to be in the human metabolome or HMDB is just

over 42,000 [78]. While the number of expected or theoretical metabolites is large, the actual

number of experimentally identified (and/or quantified) metabolites is actually quite small.

For instance, based on the HMDB, the number of experimentally identified metabolites in

the human metabolome is 3821 [78], in the E. coli metabolome it is 891 [41] and in the yeast

metabolome it is 625 [40]. Among the different livestock species, it is clear that the coverage

of the bovine metabolome is quite extensive and is approaching or even exceeding that of

other model organisms. However, there is an obvious gap in terms of the coverage of other

livestock species with caprine and equine metabolomes being very poorly characterized.

Much more work is needed on goat and horse metabolomes to bring them up to the level

seen in the bovine metabolome.

Trends and gaps in animal breeds

While we have largely focused on examining metabolomics data for different livestock species,

we also noticed some interesting trends with regard to the choice of specific breeds in each

livestock species. Similar to other fields of bovine research, the majority (45%) of bovine meta-

bolomic studies use either pure- or cross-bred Holsteins. A smaller amount (11%) of other

studies used cross breeds to investigate various aspects of the bovine metabolome. Other com-

mon bovine breeds used in metabolomic studies include Charolais (7%) and Jersey (3%). In

ovine metabolomic studies, the main breed reported is Suffolk (19%) while other breeds (i.e.,

Sarda) are reported only once or twice. For caprine metabolomics studies, the preferred breeds

have been Norwegian (22%) with other breeds such as Saanen and Alpine being reported only

once. Likewise, among equine and porcine metabolomic studies, Standardbred horses (33%)

and Landrace sows (22%) were most frequently used. Interestingly, no breed information was

provided in 18%, 33%, 22%, 17%, and 9% of the bovine, ovine, caprine, equine, and porcine

metabolomics manuscripts, respectively. It is surprising that this essential information is not

provided in the manuscripts. This suggests the reporting standards found in livestock metabo-

lomics manuscripts still needs improvement.

Based on the above statistics, one of the more obvious gaps in current livestock metabolo-

mics research is the limited variety of breeds being used in most metabolomic studies. The vast

majority of the published research appears to be focused on just one or two main breeds i.e.,

Holstein in cattle, Suffolk in sheep, Standardbred in horses. Evidently, assessing breed differ-

ences and their potential impacts on the metabolome has not been a priority for most livestock

researchers. However, it is important to remember that the existence of dozens of livestock

breeds is a consequence of centuries of selection for very unique phenotypic qualities—some

of which are likely determined by their metabolism or metabolome. Different breeds will be

characterized by specific production or metabolic parameters and these may be fundamentally

different between breeds. While the composition of mammalian (and livestock) metabolomes

is likely to be highly similar, metabolite concentrations are expected to differ substantially

between different breeds. Identifying the unique aspects affiliated with each breed’s metabo-

lome is therefore, an important component of livestock metabolomics that should be consid-

ered in future studies. This is particularly true for purebred and breeding stock herds that are

limited to very few animals/herds worldwide. Breeding stock animals provide most of the

genetic background found in most commercial herds, which means they have a significant

influence on the metabolome associated with their progeny. We were also surprised by the

very limited research on the neonatal livestock metabolome. Indeed, we found only 16 neonate

metabolomic studies, with 1 study focused on calves, 4 on lambs, 1 on kids, 10 on piglets and

no studies on colts or foals.

Livestock metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0177675 May 22, 2017 17 / 26

https://doi.org/10.1371/journal.pone.0177675


Trends and gaps in biomarker discovery

One of the strengths of metabolomics lies in its utility for biomarker discovery [91]. Because

metabolites can be more easily, cheaply and routinely quantified than most other biological

molecules, they are ideal for use in biomarker panels. Indeed, metabolite biomarkers continue

to be developed and used in clinical applications at a much greater rate than genes or proteins

[78]. In surveying the papers compiled for this review, we found a total of 11 livestock metabo-

lomics papers that proposed candidate biomarkers. This included 5 papers in animal health, 1

in animal nutrition, 2 in animal production, 1 in animal reproduction and 2 for animal models

of human health. These studies were limited to cattle, sheep and pigs with no metabolomic bio-

marker studies being reported for goats or horses. Of these papers, we observed that most

reported fewer than 30 candidate biomarkers, with the lowest number being 2 [61]. A few

reports used higher number of metabolites, i.e., 64, as part of a statistical model to increase the

accuracy of prediction [92; 93]. The majority (55%) of metabolomic biomarker papers did not

provide any quantitative data, but rather reported only relative metabolite trends (up or down

relative to some indeterminate standard). This means that only 5 papers, all from the bovine

group, effectively provided useful or verifiable biomarker data. Furthermore, only a single

paper [20] reported follow-up validation studies where the initially discovered biomarkers

were subsequently validated on a separate cohort of samples.

Based on our data, most biomarker studies were conducted with relatively small sample

sizes with the majority of studies being done on fewer than 100 animals. The largest biomarker

study was one conducted on 321 animals (1587 samples), which investigated prognostic bio-

markers of ketosis in dairy cows using NMR spectroscopy [61]. Overall, the quality of bio-

marker studies done for livestock metabolomics is not particularly good, especially given the

standards expected of human biomarker studies [91].

Nevertheless, among the reported biomarker studies, we did find some very interesting and

compelling results. One example is a biomarker study of RFI and other feed efficiency traits in

beef steers [20]. In this study, NMR spectroscopy was used to identify and quantify plasma

metabolites associated with RFI, initially in a discovery population and subsequently in the val-

idation cohort. Karisa et al. [20] reported 3 candidate biomarkers of RFI that significantly

(P<0.05) account for >30% of the phenotypic variation for this trait. Other metabolites were

proposed to be associated with average body weight, average feed intake, dry matter intake and

average daily gain. In another interesting study, predictive biomarkers of transition diseases in

dairy cows were investigated [21]. This study monitored only 12 dairy cows over four time

points during the transition (pre- and post-calving) period. Blood samples were drawn to

quantify the metabolome changes associated with various periparturient diseases post-calving.

Using direct flow injection (DFI)-MS, Hailemariam and colleagues [21] profiled 120 blood

metabolites of which 3 were suggested as candidate biomarkers for transition diseases, with a

sensitivity and specificity of�85%. Another study reported by Gray et al. [94] looked into bio-

markers associated with vaccine efficacy. Using UPLC-MS metabolomic measurement of

plasma derived from Holstein male calves, Gray and colleagues [94] found 12 metabolites that

were altered post-vaccination. These biomarkers are being proposed as a newer, more efficient

route to optimise vaccination and to make vaccine formulation and benchmarking much

more efficient and targeted. This paper emphasizes on the importance of disease prevention

and vaccination procedures in livestock, especially in using new technologies such as metabo-

lomics to enhance evaluation of vaccine efficacy.

Identification of biomarkers will not only improve disease diagnosis but also allow the

opportunity for disease prediction prior to manifestation of clinical signs. For example, if a

metabolic disorder can be predicted well before (sub)clinical manifestation, farmers can make
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informative decisions with regards to their management, feeding, housing, etc., to change the

cascade of biological events leading to that disease. Predictive attempts of such can make a sig-

nificant financial and sustainability difference by maintaining production quantity and quality,

saving on costs associated with treatment, veterinary visits, preventing animal culling and

thus, maintaining longevity.

The livestock metabolome database

In assembling the material for this review, we identified a total of 1070 metabolites that have

been detected and/or quantified in livestock metabolomic studies of cattle, sheep, goats, horses

and pigs. This information has been systematically categorized into LMDB with all of the

metabolites being fully described including information about the degree or quality of quanti-

fication (i.e., quantified, non-quantified) and the source sample types for each livestock spe-

cies. All of the metabolites with quantitative data had their concentrations converted into a

standardized concentration unit (i.e., μM) to improve consistency. In addition to the chemical

data and source information, an abbreviated description of the experimental context for each

metabolite was extracted from the articles and included in the online database (http://www.

lmdb.ca). This information includes data on the analytical platform(s), experimental condi-

tions, field of research, and animal breed used in acquiring the metabolomic data. All metabo-

lites are linked to a standard HMDB (http://www.hmdb.ca/) identification number, which

provides a freely-accessible and detailed description of the metabolite. A PubMed and/or DOI

identifier is also associated with each metabolite entry, which provides a literature reference or

a direct link to the article reporting that metabolite for readers who are interested in further

details.

Only those metabolites that had reasonably complete descriptions (i.e., unique chemical

names, sample types, source information, etc.) were included in the online database. A number

of metabolites or “features” were identified during the review process but not included in the

LMDB. These include those compounds that have either not been characterized at all (no

chemical name, no data on sample types), or not fully characterized (unknown or undefined

chemical structure). This collection of 415 “unknown” metabolites will be added to the LMDB

once we can obtain sufficient structural and sample source information on them. Among the

metabolites entered into the LMDB, 404 compounds were quantified and 666 were not. On a

species level there were 768 bovine metabolites, 285 ovine metabolites, 167 caprine metabo-

lites, 109 equine metabolites, and 412 porcine metabolites. Detailed descriptions of each com-

pound are provided in the LMDB “metabocard” pages. Likewise, structural images, molecular

formulas, names and synonyms, chemical classification/taxonomy information, physicochem-

ical data (molecular weights, pI’s, pKa’s, boiling/melting points), referential spectral data (both

experimental and theoretical NMR, MS/MS and EI-MS spectra), links to other online data-

bases and full reference (authors, journals, volumes, etc.) information is also provided. The

LMDB has been designed so that it can be easily browsed and it supports searches through

standard text queries as well as via structure, mass, and spectral queries. Most of the informa-

tion in the LMDB is hyperlinked to other resources within the LMDB, allowing for a more

convenient and compact route to access the data. The LMDB is available at http://www.lmdb.

ca. This database will be constantly updated with more metabolites and more detailed metabo-

lite descriptions as more research in livestock metabolomics is published.

By assembling the LMDB and making this information freely available through both the

web and this manuscript, we hoped to create a referential resource that other livestock

researchers could readily use. Our past experience in assembling and maintaining the Human

Metabolome Database (HMDB) clearly showed how useful a centralized, on-line resource
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could be in the field of human metabolomics [38]. Therefore, our expectation with the LMDB

is that it will have a comparable impact on the field of livestock metabolomics. Indeed, we

believe that establishing a comprehensive repository that stores and categorizes livestock meta-

bolome information into a standardized format will be critical for future livestock research. It

will also be important for identifying potential livestock disease biomarkers, improving animal

selection (via metabolomic assays), enhancing animal nutrition and understanding novel bio-

chemical mechanisms arising from various physiological perturbations. With more and more

livestock metabolomics papers appearing each year and the continued growth in metabolite

coverage, it will be challenging to maintain the LMDB. However, without even attempting to

create the LMDB we suspect that livestock metabolomics would continue to lag behind the

metabolomics activities seen in other areas (i.e. human, plant crops, microbes, food/beverage

studies) and would face significant hurdles in the coming years trying to catch up.

Conclusion

Metabolomics is less than 15 years old, yet it has already delivered some remarkable achieve-

ments. This includes significant improvements in the ability to identify many environmental

contaminants and toxins [95], significant advances in food and nutrient characterization [7;

6], the identification of many novel biomarkers for disease risk including risk markers for dia-

betes [54], heart disease [96] and cancer [58] as well as promising leads for a variety of drugs

and therapies [97]. Metabolomics is also well-positioned to provide some important advances

in both livestock research and the livestock industry, especially as it relates to livestock health,

breeding and production. A number of examples were highlighted in this review including

metabolome discovery for normal metabolite composition and concentrations [52; 53], identi-

fication of biomarkers of transition diseases [21] as well as production traits in dairy [51] and

beef cattle [20] with the goal of introducing prognostic strategies in animal health as well as

increasing prediction accuracies. Our observations also showed that a wide variety of biofuids

have received attention for metabolomics research such as metabolic profiling of milk, plasma,

serum, and urine, minimizing animal welfare concerns.

However, in order for livestock metabolomics to deliver on the promise and the excitement

seen in other areas of metabolomics research, it is important to carefully assess what has been

accomplished, what is known and what still needs to be done. The intent of this review was to

provide a critical overview of the trends and gaps in livestock metabolomics research. Specifi-

cally, we sought answers to 4 key questions: 1) What are the most common applications of

metabolomics in animal science and where are they trending?, 2) What are the preferred meta-

bolomics technologies livestock metabolomics and how are they evolving?, 3) What are the

most obvious gaps or weaknesses in livestock metabolomics relative to other fields of metabo-

lomics research? and 4) What are the known or measured metabolites for the 5 major livestock

species (i.e., bovine, ovine, caprine, equine, and porcine) in different tissues and biofluids? In

addressing the first 3 questions we focused on areas relating to: 1) Animal Choices; 2) Research

Applications; 3) Sample Size; 4) Sample Type; 5) Instrumentation and Methodologies, 6)

Quantification; 6) Metabolite Coverage; 7) Animal Breeds, and 8) Biomarker Identification. In

many cases we were able to identify some clear trends while at the same time identifying

important shortcoming or areas where further improvements could be made. It was apparent

that livestock metabolomics appears to be ahead with regard to metabolite quantification, the

diversity of research applications and its efforts in biomarker identification. On the other

hand, it was also clear that livestock metabolomics (especially with regard to sample size,

instrumentation and metabolite coverage) was lagging somewhat further behind than human,

microbial or plant crop metabolomics.
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Based on our assessment of the shortcomings with current livestock metabolomics studies,

it is clear that future metabolomics research should focus on expanding or extending metabo-

lome discovery using healthy control animals, increase sample numbers, direct more effort

towards metabolite quantification, perform more integrated multi-omics experiments, use a

greater variety of analytical platforms or techniques (including ICP-MS, MSI and fluxomics),

increase the breadth of metabolite coverage (by using more sensitive platforms, such as

ESI-MS), investigate a greater and new varieties of biosamples such as semen, amniotic fluid,

saliva and urine, extend the number and types of animal breeds used in metabolomic studies

and be more conscientious in the design and implementation of biomarker studies.

Another important outcome of this study was the collection and consolidation of livestock

metabolite information into a single, centralized resource (the LMDB). It became readily appar-

ent in conducting this review that the livestock metabolomics literature is highly diffuse and that

valuable information is being “lost” or is not readily available. By compiling the LMDB and mak-

ing an on-line version of the database freely available, we hope it could serve as a hub for livestock

researchers and the livestock industry to further advance the field of livestock metabolomics.

Supporting information

S1 Table. PRISMA checklist. The preferred reporting items for systematic reviews and meta-

analysis (PRISMA) checklist reflects 27 items under 7 main categories that highlights essential

components of this systematic review.

(TIFF)

Author Contributions

Conceptualization: SAG DSW MAS GSP.

Data curation: SAG.

Formal analysis: SAG ACG TS.

Funding acquisition: SAG DSW GSP.

Investigation: SAG.

Methodology: SAG DSW.

Project administration: SAG DSW.

Resources: SAG DSW.

Software: SAG ACG TS.

Supervision: SAG DSW.

Validation: SAG.

Visualization: SAG.

Writing – original draft: SAG.

Writing – review & editing: SAG DSW MAS GSP.

References
1. Pearson H. Meet the human metabolome. Nature. 2007; 446: 8. https://doi.org/10.1038/446008a

PMID: 17330009

Livestock metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0177675 May 22, 2017 21 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177675.s001
https://doi.org/10.1038/446008a
http://www.ncbi.nlm.nih.gov/pubmed/17330009
https://doi.org/10.1371/journal.pone.0177675


2. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The human urine metabolome. PLoS

One. 2013; 8: e73076. https://doi.org/10.1371/journal.pone.0073076 PMID: 24023812

3. Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P. Metabolomics Analysis for Biomarker Dis-

covery: Advances and Challenges. Curr Med Chem. 2013; 20: 257–271. PMID: 23210853

4. Fontanesi L. Metabolomics and livestock genomics: Insights into a phenotyping frontier and its applica-

tions in animal breeding. Anim Front. 2016; 6: 73–79.

5. Moore ER, Kirwan J, Doherty MK, Whitfield PD. Biomarker discovery in animal health and disease: the

application of post-genomics technologies. Biomark Insights. 2007; 2: 185–196. PMID: 19662203

6. Wishart DS. Metabolomics: application to food science and nutrition research. Trends Food Sci Tech.

2008; 19: 482–493.

7. Kim S, Kim J, Yun EJ, Kim KH. Food metabolomics: from farm to human. Curr Opin Biotechnol. 2016;

37: 16–23. https://doi.org/10.1016/j.copbio.2015.09.004 PMID: 26426959

8. Jalali A, Hatamie A, Safarpour T, Khajeamiri A, Safa T, Buazar F. Impact of pharmaceutical impurities

in Ecstasy tablets: gas chromatography-mass spectrometry study. Iran J Pharm Res. 2016; 15: 221–

229. PMID: 27610162

9. Simo C, Ibanez C, Valdes A, Cifuentes A, Garcia-Canas V. Metabolomics of genetically modified crops.

Int J Mol Sci. 2014; 15: 18941–18966. https://doi.org/10.3390/ijms151018941 PMID: 25334064

10. Summer LW, Lei Z, Nikolau BJ, Saito K. Modern plant metabolomics: advanced natural product gene

discoveries, improved technologies, and future prospects. Nat Prod Rep. 2015; 32: 212–229. https://

doi.org/10.1039/c4np00072b PMID: 25342293

11. Mahdavi V, Farimani MM, Fathi F, Ghassempour A. A targeted metabolomics approach toward under-

standing metabolic variations in rice under pesticide stress. Anal Biochem. 2015; 478: 65–72. https://

doi.org/10.1016/j.ab.2015.02.021 PMID: 25766578

12. Mahdavi V, Ghanati F, Ghassempour A. Integrated pathway-based and network-based analysis of GC-

MS rice metabolomics data under diazinon stress to infer affected biological pathways. Anal Biochem.

2016; 494: 31–36. https://doi.org/10.1016/j.ab.2015.10.017 PMID: 26582432

13. Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol. 2002; 48: 155–

171. PMID: 11860207

14. Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010; 11: 855–

566. https://doi.org/10.1038/nrg2897 PMID: 21085204

15. Duggan GE, Hittel DS, Sensen CW, Weljie AM, Vogel HJ, Shearer J. Metabolomic response to exercise

training in lean and diet-induced obese mice. J Appl Physiol. 2011; 110: 1311–1318. https://doi.org/10.

1152/japplphysiol.00701.2010 PMID: 21270351

16. Jones DP, Park Y, Ziegler TR. Nutritional metabolomics: progress in addressing complexity in diet and

health. Annu Rev Nutr. 2012; 32: 183–202. https://doi.org/10.1146/annurev-nutr-072610-145159

PMID: 22540256

17. May DH, Navarro SL, Ruczinski I, Hogan J, Ogata Y, Schwarz Y, et al. Metabolomic profiling of urine:

response to a randomised, controlled feeding study of select fruits and vegetables, and application to

an observational study. Br J Nutr. 2013; 110: 1760–1770. https://doi.org/10.1017/S000711451300127X

PMID: 23657156

18. Gilany K, Moazeni-Pourasil RS, Jafarzadeh N, Savadi-Shiraz E. Metabolomics fingerprinting of the

human seminal plasma of asthenozoospermic patients. Mol Reprod Dev. 2014; 81: 84–86. https://doi.

org/10.1002/mrd.22284 PMID: 24254375

19. Minai-Tehrani A, Jafarzadeh N, Gilany K. Metabolomics: a state-of-the-art technology for better under-

standing of male infertility. Andrologia. 2015; 48: 609–16. https://doi.org/10.1111/and.12496 PMID:

26608970

20. Karisa BK, Thomson J, Wang Z, Li C, Montanholi YR, Miller SP, et al. Plasma metabolites associated

with residual feed intake and other productivity performance traits in beef cattle. Livest Sci. 2014; 165:

200–211.

21. Hailemariam D, Mandal R, Saleem F, Dunn SM, Wishart DS, Ametaj BN. Identification of predictive bio-

markers of disease state in transition dairy cows. J Dairy Sci. 2014; 97: 2680–2693. https://doi.org/10.

3168/jds.2013-6803 PMID: 24630653

22. LeBlanc SJ, Leslie KE, Duffield TF. Metabolic predictors of displaced abomasum in dairy cattle. J Dairy

Sci. 2005; 88: 159–170. https://doi.org/10.3168/jds.S0022-0302(05)72674-6 PMID: 15591379

23. Sundekilde UK, Poulsen NA, Larsen LB, Bertram HC. Nuclear magnetic resonance metabonomics

reveals strong association between milk metabolites and somatic cell count in bovine milk. J Dairy Sci.

2013; 96: 290–299. https://doi.org/10.3168/jds.2012-5819 PMID: 23182357

Livestock metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0177675 May 22, 2017 22 / 26

https://doi.org/10.1371/journal.pone.0073076
http://www.ncbi.nlm.nih.gov/pubmed/24023812
http://www.ncbi.nlm.nih.gov/pubmed/23210853
http://www.ncbi.nlm.nih.gov/pubmed/19662203
https://doi.org/10.1016/j.copbio.2015.09.004
http://www.ncbi.nlm.nih.gov/pubmed/26426959
http://www.ncbi.nlm.nih.gov/pubmed/27610162
https://doi.org/10.3390/ijms151018941
http://www.ncbi.nlm.nih.gov/pubmed/25334064
https://doi.org/10.1039/c4np00072b
https://doi.org/10.1039/c4np00072b
http://www.ncbi.nlm.nih.gov/pubmed/25342293
https://doi.org/10.1016/j.ab.2015.02.021
https://doi.org/10.1016/j.ab.2015.02.021
http://www.ncbi.nlm.nih.gov/pubmed/25766578
https://doi.org/10.1016/j.ab.2015.10.017
http://www.ncbi.nlm.nih.gov/pubmed/26582432
http://www.ncbi.nlm.nih.gov/pubmed/11860207
https://doi.org/10.1038/nrg2897
http://www.ncbi.nlm.nih.gov/pubmed/21085204
https://doi.org/10.1152/japplphysiol.00701.2010
https://doi.org/10.1152/japplphysiol.00701.2010
http://www.ncbi.nlm.nih.gov/pubmed/21270351
https://doi.org/10.1146/annurev-nutr-072610-145159
http://www.ncbi.nlm.nih.gov/pubmed/22540256
https://doi.org/10.1017/S000711451300127X
http://www.ncbi.nlm.nih.gov/pubmed/23657156
https://doi.org/10.1002/mrd.22284
https://doi.org/10.1002/mrd.22284
http://www.ncbi.nlm.nih.gov/pubmed/24254375
https://doi.org/10.1111/and.12496
http://www.ncbi.nlm.nih.gov/pubmed/26608970
https://doi.org/10.3168/jds.2013-6803
https://doi.org/10.3168/jds.2013-6803
http://www.ncbi.nlm.nih.gov/pubmed/24630653
https://doi.org/10.3168/jds.S0022-0302(05)72674-6
http://www.ncbi.nlm.nih.gov/pubmed/15591379
https://doi.org/10.3168/jds.2012-5819
http://www.ncbi.nlm.nih.gov/pubmed/23182357
https://doi.org/10.1371/journal.pone.0177675


24. Saleem F, Ametaj BN, Bouatra S, Mandal R, Zebeli Q, Dunn SM, et al. A metabolomics approach to

uncover the effect of grain diets on rumen health in dairy cows. J Dairy Sci. 2012; 95: 6606–6623.

https://doi.org/10.3168/jds.2012-5403 PMID: 22959937

25. Abarghuei MJ, Rouzbehan Y, Salem AZM, Zamiri MJ. Nitrogen balance, blood metabolites and milk

fatty acid composition of dairy cows fed pomegranate-peel extract. Livest Sci. 2014; 164: 72–80.

26. Weikard R, Altmaier E, Suhre K, Weinberger KM, Hammon HM, Albrecht E, et al. Metabolomic profiles

indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus

growth and lipid deposition. Physiol Genomics. 2010; 42A: 79–88. https://doi.org/10.1152/

physiolgenomics.00120.2010 PMID: 20647382

27. Karisa BK, Thomson J, Wang Z, Bruce HL, Plastow GS, Moore SS. Candidate genes and biological

pathways associated with carcass quality traits in beef cattle. Can J Anim Sci. 2013a; 93: 295–306.

28. Kuhn C, Weikard R, Widmann P. Metabolomics: a pathway for improved understanding of genetic mod-

ulation of mammalian growth and tissue deposition. Proc 10th World Cong Genet App Livest Prod.

2014;1–6.

29. Chapinal N, Carson ME, LeBlanc SJ, Leslie KE, Godden S, Capel M, et al. The association of serum

metabolites in the transition period with milk production and early-lactation reproductive performance. J

Dairy Sci. 2012; 95: 1301–1309. https://doi.org/10.3168/jds.2011-4724 PMID: 22365212

30. Melzer N, Wittenburg D, Hartwig S, Jakubowski S, Kesting U, Willmitzer L, et al. Investigating associa-

tions between milk metabolite profiles and milk traits of Holstein cows. J Dairy Sci. 2012; 96: 1521–

1534.

31. Melzer N, Wittenburg D, Repsilber D. Integrating milk metabolite profile information for the prediction of

traditional milk traits based on SNP information for Holstein cows. PLOS One. 2013; 8: e70256. https://

doi.org/10.1371/journal.pone.0070256 PMID: 23990900

32. Castejón D, Garcı́a-Segura JM, Escudero R, Herrera A, Cambero MI. Metabolomics of meat exudate:

Its potential to evaluate beef meat conservation and aging. Anal. Chim. Acta. 2015; 901: 1–11. https://

doi.org/10.1016/j.aca.2015.08.032 PMID: 26614053

33. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis.

Analyst. 2012; 137: 293–300. https://doi.org/10.1039/c1an15605e PMID: 22102985

34. Robinson TP, Wint GRW, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, et al. Mapping the

global distribution of livestock. PLoS One. 2014; 9: e96084. https://doi.org/10.1371/journal.pone.

0096084 PMID: 24875496

35. Thornton PK. Livestock production: recent trends, future prospects. Philos Trans R Soc Lond B Biol Sci.

2010; 365: 2853–2867. https://doi.org/10.1098/rstb.2010.0134 PMID: 20713389

36. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the Human Metabolome Data-

base. Nucleic Acids Res. 2007; 35: D521–526. https://doi.org/10.1093/nar/gkl923 PMID: 17202168

37. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: a knowledgebase for the

human metabolome. Nucleic Acids Res. 2009; 37: D603–610. https://doi.org/10.1093/nar/gkn810

PMID: 18953024

38. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—The Human Metabolome

Database in 2013. Nucleic Acids Res. 2013; 41: D801–807. https://doi.org/10.1093/nar/gks1065 PMID:

23161693

39. Viswanathan V. Rapid web application development: a ruby on rails tutorial. IEEE Software. 2008; 25:

98–106.

40. Jewison T, Neveu V, Lee J, Knox C, Liu P, Mandal R, et al. YMDB: The Yeast Metabolome Database.

Nucleic Acids Res. 2012; 40: D815–20. https://doi.org/10.1093/nar/gkr916 PMID: 22064855

41. Sajed T, Marcu A, Ramirez M, Pon A, Guo A, Knox C, et al. ECMDB 2.0: A richer resource for under-

standing the biochemistry of E. coli. Nucleic Acids Res. 2016; 44: D495–501. https://doi.org/10.1093/

nar/gkv1060 PMID: 26481353

42. Peters RJB, Stolker AAM, Mol JGJ, Lommen A, Lyris E, Angelis Y, et al. Screening in veterinary drug

analysis and sports doping control based on full-scan, accurate-mass spectrometry. Tren Anal Chem.

2010; 29: 1250–1268.

43. Tweeddale H, Notley-Mcrobb L, Ferenci T. Effect of Slow Growth on Metabolism of Escherichia coli, as

Revealed by Global Metabolite Pool (“Metabolome”) Analysis. J Bacteriol. 1998; 180: 5109–5116.

PMID: 9748443

44. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends

Biotechnol. 1998; 16: 373–378. PMID: 9744112

45. Nielsen KL, Hartvigsen ML, Hedemann MS, Lærke HN, Hermansen K, Knudsen KEB. Similar metabolic

responses in pigs and humans to breads with different contents and compositions of dietary fibers: a

Livestock metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0177675 May 22, 2017 23 / 26

https://doi.org/10.3168/jds.2012-5403
http://www.ncbi.nlm.nih.gov/pubmed/22959937
https://doi.org/10.1152/physiolgenomics.00120.2010
https://doi.org/10.1152/physiolgenomics.00120.2010
http://www.ncbi.nlm.nih.gov/pubmed/20647382
https://doi.org/10.3168/jds.2011-4724
http://www.ncbi.nlm.nih.gov/pubmed/22365212
https://doi.org/10.1371/journal.pone.0070256
https://doi.org/10.1371/journal.pone.0070256
http://www.ncbi.nlm.nih.gov/pubmed/23990900
https://doi.org/10.1016/j.aca.2015.08.032
https://doi.org/10.1016/j.aca.2015.08.032
http://www.ncbi.nlm.nih.gov/pubmed/26614053
https://doi.org/10.1039/c1an15605e
http://www.ncbi.nlm.nih.gov/pubmed/22102985
https://doi.org/10.1371/journal.pone.0096084
https://doi.org/10.1371/journal.pone.0096084
http://www.ncbi.nlm.nih.gov/pubmed/24875496
https://doi.org/10.1098/rstb.2010.0134
http://www.ncbi.nlm.nih.gov/pubmed/20713389
https://doi.org/10.1093/nar/gkl923
http://www.ncbi.nlm.nih.gov/pubmed/17202168
https://doi.org/10.1093/nar/gkn810
http://www.ncbi.nlm.nih.gov/pubmed/18953024
https://doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693
https://doi.org/10.1093/nar/gkr916
http://www.ncbi.nlm.nih.gov/pubmed/22064855
https://doi.org/10.1093/nar/gkv1060
https://doi.org/10.1093/nar/gkv1060
http://www.ncbi.nlm.nih.gov/pubmed/26481353
http://www.ncbi.nlm.nih.gov/pubmed/9748443
http://www.ncbi.nlm.nih.gov/pubmed/9744112
https://doi.org/10.1371/journal.pone.0177675


metabolomics study. Am J Clin Nutr. 2014; 99: 941–949. https://doi.org/10.3945/ajcn.113.074724

PMID: 24477039

46. Cevallos-Cevallos JM, Danyluk MD, Reyes-De-Corcuera JI. GC-MS based metabolomics for rapos

simultaneous detection of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Muenchen,

and Salmonella Hartford in ground beef and chicken. J Food Sci. 2011; 76: M238–246. https://doi.org/

10.1111/j.1750-3841.2011.02132.x PMID: 22417363

47. Regal P, Nebot C, Dı́az-Bao M, Barreiro R, Cepeda A, Fente C. Disturbance in sex-steroid serum pro-

files of cattle in response to exogenous estradiol: a screening approach to detect forbidden treatments.

Steriods. 2011; 76: 365–375.

48. Merrifield CA, Lewis M, Claus SP, Beckonert OP, Dumas M, Duncker S, et al. A metabolic system-wide

characterisation of the pig: a model for human physiology. Mol Biosyst. 2011; 7: 2577–2588. https://doi.

org/10.1039/c1mb05023k PMID: 21761043

49. Mickiewicz B, Heard BJ, Chau JK, Chung M, Hart DA, Shrive NG, et al. Metabolic profiling of synovial

fluid in a unilateral Ovine model of anterior cruciate ligament reconstruction of the knee suggests bio-

markers for early osteoarthritis. J Orthop Res. 2015; 33: 71–77. https://doi.org/10.1002/jor.22743

PMID: 25283885
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