
  Introduction 
 Chronic kidney disease (CKD) is a recently recognized global 
public health problem that is “common, harmful, and treatable” 
with an estimated prevalence of nearly 10% worldwide.  1   A variety of 
etiologies such as genetic, autoimmune, infectious, environmental, 
dietary, medications contribute to the diverse primary outcomes, 
but all can eventually lead to the same end point—CKD.  2   Th e 
primary process can involve glomerular, tubular, interstitial, 
and/or vascular compartments. Early intervention may slow 
the progression of CKD to end-stage renal disease if kidney 
disease was diagnosed and treated in its earlier stage.  1   ,   3–5   Th e 
National Kidney Foundation Kidney Disease Outcomes Quality 
Initiative (KDOQI) guidelines,  6   as well as a recent declaration 
by the American Heart Association,  7   recommend calculating 
the estimated GFR (eGFR) in at-risk populations. However, the 
eGFR cannot obtain an accurate assessment of kidney function 
in CKD patients. Th us, it is urgent to develop some eff ective and 
convenient techniques for earlier diagnosing, monitoring the 
progression, and guiding treatment of CKD, which has potentially 
enormous socioeconomic and medical benefi ts.  1   ,   3–5   

 Metabolomics, a new but rapidly growing “omic” in system 
biology, has the ability to detect a large number of small-molecule 
metabolites from body fl uids or tissues in parallel. Over the 
past decades, nuclear magnetic resonance (NMR) spectroscopy 
provides a rapid, nondestructive, reproducible, and high-
throughput methodology for monitoring altered biochemistry.  8   
Multivariate statistical analysis especially pattern recognition 
(PR) methods would be the fi rst choice to handle the large sets 
of NMR and generate metabolic data. By clustering samples and 
interpreting of the related metabolic responses, NMR-based 
metabolomics surely provides a powerful platform for clinical 
research and diagnostic applications, including early diagnosis, 
therapy monitoring, and understanding the pathogenesis.  9–11   

 In the area of kidney diseases, the previous studies suggested 
that metabolite profiling in both plasma and serum could 
successfully separated renal cell carcinoma (RCC) patients 
from healthy controls.  12,13   In other studies, metabolic profi ling 
held potential promise to diagnose acute rejection and monitor 
immunosuppression treatments in kidney transplantation.  14,15   In 
addition, NMR-based metabolomics urinalysis, the biomarkers 
of tubulointerstitial lesions in patients with glomerulonephritides 
were identifi ed and the metabolite profi ling contributed greatly to 
the early evaluation of the severity of the renal damage.  16   Tubular 
dysfunction associated with primary renal hypouricemia could 
also be distinguished from normal controls by NMR-based urine 
metabolomic profi ling.  17   

 In such situations, changes in metabolite profi le of biofl uids in 
renal diseases could be refl ected in the  1 H-NMR spectral fi ngerprint. 
We applied  1 H-NMR-based metabolomics spectrum to examine 
the serum metabolome of 80 patients with CKD comparing to 
28 healthy controls. Th e aim of this pilot study was to search for 
a pattern of metabolites in the serum which could result in the 
diagnosis as well as assessment the progression of CKD.   

 Material and Methods  

 Patients and controls 
 Th e study included 80 clinically stable, admitted patients to the 
Department of Nephrology of Shenzhen People Hospital. All the 
patients were Asian and some of them were nonsmokers, the rest 
of them have stopped smoking for at least 1 month. Th e patients 
were diagnosed based on the modifi ed KDOQI Clinical practice 
guidelines on CKD, and was classifi ed into four stages based on eGFR 
(eGFR ≥ 90, 60~89, 30~59 or 30 mL/min/1.73 m 2 ).  18   Th e etiologies 
of the 80 patients with CKD are as following: 28 patients are due to 
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tubulo-interstitial diseases, 35 patients are due to nephrotoxicity, 
and 27 are due to hypertensive nephrosclerosis. Th e abbreviated 
MDRD equation was used to eGFR as 186Cr  −1.154  × age −0.203  × 0.742 
(if female), where Cr is serum creatinine concentration.  19   Twenty-
eight healthy subjects matched for age, sex, and ethnicity served 
as controls. Exclusion criteria (for both groups) were pregnancy, 
infection, diabetes, tumor, estimated GFR < 15 mL/min/1.73 m 2 , and 
renal replacement therapy (including transplantation). In addition, 
patients with history of alcoholism, continued smoking and patients 
taking oral contraceptives were also excluded. Th e baseline clinical 
characteristics of the CKD patients and controls are summarized in 
  Table 1  . Th e study was carried out according to the Principles in the 
Helsinki Declaration.  20   All study participants gave informed consent 
for the investigation, which was approved by the Ethical Committee 
of the Second Clinical Medical College, Jinan University.

  All subjects were requested to fast overnight (at least 12 hours) 
and abstain from any medication (including over-the-counter 
drugs), 24 hours before sampling. Serum samples of all participants 
were obtained before immunosuppression come in.   

 Sample preparation 
 Serum was separated by centrifugation at 3000 rpm for 5 minutes, 
and stored at –80 °C until analysis. Before the NMR experiments, 
serum samples were defrosted at room temperature for less 
than 20 minutes and 200 μL aliquots combined with 400 μL of 
saline (0.9% NaCl in 10% D 2 O/90% H 2 O) were centrifuged at 
12,000 ×  g  for 5 minutes. A 550 μL aliquot of this solution was 
pipetted into a 5 mm NMR tube and samples were frozen at 
–40°C until NMR analysis.   

 NMR spectroscopy experiments 
  1 H-NMR spectra for all serum samples were collected on a Varian 
Unity INOVA 600 NMR spectrometer, at a frequency of 599.93 
MHz and temperature of 300 K. Samples were automatically 
inserted into a cryogenic probe and gradient shimming was 
performed prior to the acquisition of each spectrum. 

 For each sample, one-dimensional-Carr-Purcell-Meiboom-
Gill (1D-CPMG) was performed to fi lter out signals belonging to 
proteins and other macromolecules, thus obtaining spectra primarily 
composed of signals from metabolites and small molecules.  21   
Typically, 128 scans were collected into 64K data points over a 
spectral width of 8000.0 Hz with a relaxation delay of 2.1 seconds 
and acquisition time of 1.0 seconds. All samples were randomly 
processed and the operator was masked to the clinical diagnosis.   

 PR analysis 
 All spectra were Fourier transformed and phased with TOPSPIN 
2.0 and MestReNOva 6.0.2 soft ware (Umetrics, Umeå, Sweden). 
Th e baseline corrected and referenced to the methyl peak signal 

of lactate at chemical shift  (δ1.33). A line broadening of 0.3 Hz 
was applied to the free induction decay prior to Fourier transform. 
NMR spectra were divided into 0.01 ppm wide regions. Aft er 
removal of regions containing the residual water signal 4.31–5.50 
ppm, the remained 880 bins were integrated and normalized for 
the further analysis. 

 All PR analyses were applied with centered-scaling to the 
variables derived from the binned data using SIMCA 10.0. 
Principal component analysis (PCA) as an unsupervised PR 
method was initially applied to identify the intrinsic variation.  22,23   
In the PCA scores plot where each print represented an individual 
spectrum of a serum sample, the analysts could visualize the 
distribution and grouping of the samples based on the fi rst two 
PCs which contain the largest part of the variance of the data 
set. Th e corresponding loading plot revealed the biochemical 
components responsible for the classifi cation. 

 Partial least squares discriminant analysis (PLS-DA) as a 
supervised analysis technique was applied to build a metabolic 
profi le model which can identify those metabolites which vary 
between diagnostic groups.  23   Th e quality of the models was 
described by  R  2  and  Q  2  values.  R  2  is defi ned as the proportion 
of variance in the data explained by the models and indicates 
goodness of fi t.  Q  2  is defi ned as the proportion of variance in 
the data predictable by the model and indicates predictability. 
Th e PLS-DA model was cross-validated using venetian blinds, 
a method which reassigns randomly selected spectral data to 
the PLS-DA model to determine the sensitivity and specifi city 
of the model in correctly assigning diagnostic groups.  24   So we 
randomly divided our data in to a training set of 64 patients 
and 22 controls and a test set that consisted of the remaining 
samples. Th e model was built based on the training set. Th en we 
verifi ed its discriminating ability of the model with the test set. 
Results are expressed as sensitivity (the proportion of positive 
(diseased) subjects who test positive with the biomarker profi le) 
and specifi city (the proportion of negative (control) subjects who 
test negative with the biomarker profi le). 

 To further test the power of the PLS-DA model (control versus 
class 1 CKD), we selected eight new samples, including four CKD 
patients in class 1 and four healthy controls, to validate whether 
the metabolic profi ling can distinguish two groups eff ectively.    

 Results  

  1 H-NMR spectra 
  1 H Carr-Purcell-Meiboom-Gill (CPMG) superimposed spectra of 
serum samples from CKD patients (class 1–4) and from healthy 
controls (normal) are shown in   Figure 1  . Th e main diff erent 
peaks among fi ve groups were concentrated in the area of 0.5–
4.5 ppm. Over 10 main metabolites were identifi ed by  1 H-NMR 

CKD patients of four stages

Controls Class 1 Class 2 Class 3 Class 4

Total individuals (n) 28 20 20 20 20

Age (years)* 38.29 ± 12.48 35.00 ± 10.72 37.80 ± 12.81 40.10 ± 11.35 46.30 ± 14.47

Gender (F/M) 12/16 9/11 11/9 9/11 11/9

GFR (mL/min/1.73 m2) 94.37 ± 9.42 98.58 ± 6.19 75.51 ± 7.82 49.74 ± 9.57 21.82 ± 5.88

*Data are presented as mean ± SD. There wasn’t signifi cant difference of demographic data between controls and CKD patients.

    Table 1.     Characteristics of health controls and CKD patients.    
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and presented in   Figure 1  . Th e serum metabolites were assigned 
according to extant literature based on their chemical shift s and 
signal multiplicity.  21       

 PR analysis 
 PCA was applied to obtain an overview of the variations about 
all the CKD patients with four stages and healthy controls. 
In the score plot, the first two PCs contained 50.9% and 
29.4% of the whole variation, respectively. While complete 
discrimination was not achieved, a clear indication of some 
degree of separation between the control group and disease 
group was observed (  Figure 2A  ). Th e corresponding loading 
plot (  Figure 2B  ) suggested that the main metabolite alterations 
in the serum samples of CKD patients was elevated levels of 
lactate coupled with lowered levels of lipid, glucose and choline, 
phosphorylcholine, glycerphosphorylcholine and betaine, 
taurine, scyllo-inositol.   

 In order to further separating the disease groups, the PLS-DA 
scores plots were presented (  Figure 3  ). Although there was little 
overlap, biochemical distinction between all of CKD patients and 
controls was evident in the PLS-DA model (  Figure 3A  ). CKD 
patients in class 1–4 were also clearly separated from healthy 
control in scores plots. (  Figure 3B–E  ). Moreover, the distinction 
between class 1 and class 2 could also be visualized (  Figure 3F  ). 
Th e  R  2  and  Q  2  value of all the PLS-DA models were summarized 
in   Table 2  . And the PLS-DA prediction model was able to correctly 
classify the serum samples into CKD and control groups, and it 
accurately predicted all CKD patients and healthy subjects showing 
100% sensitivity and specifi city (  Figure 4  ). Th e coeffi  cients derived 
from the signifi cance metabolites contributing to the separation 
for each models are summarized in   Table 3  .    

  Th e serum metabolic profi les of four CKD patients in class 
1 and four healthy controls were overlaid in the PLS-DA model 
to evaluate the diagnostic performance (  Figure 5  ). Of these, four 
CKD patients of class 1 patients were clustered together in the 
left  section of the PLS-DA model (class 1 group), four controls 
were clustered together in the right section of the PLS-DA model 
(control group). Th e validation of eight new samples showed the 
model was reliable.      

  Figure 1.     Representative of 600 MHz  1 H-NMR CPMG spectrum (� 4.5–0.5) of 
serum obtained from CKD patients with GFR �90 mL/min/1.73 m 2 (class 1), 60–
89 mL/min/1.73 m 2  (class 2), 30–59 mL/min/1.73 m 2  (class 3), 30 mL/min/
1.73 m 2  (class 4) and healthy controls (normal). Ala = alanine; Cre = creatine; 
Glu = glutamate; Gln = glutamine; Lac = lactate; Cho = choline; tCho = total choline; 
Val = valine; mI = myo-inositol; Glc = �-glucose, �-glucose; Lip = lipid.    

  Figure 2.     The principal component analysis scores plot using the fi rst two principle components showing all the data points from the study. Black squares (�), red dots (�), 
blue diamond (�), and green spots (*) represent disease group 1, 2, 3, and 4 respectively. And yellow triangle (�) represents the healthy control. And (B) is the correspond-
ing loading plots of (A). Keys of the assignments were shown in   Figure 1  .    
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 Discussion 
 Th e study initially indicated that renal dysfunction in patients with 
CKD correlated with an altered serum metabolite profi le. Given 
the complexity of pathophysiology of CKD, it is conceivable that 

a combination rather than a single biomarker may detect some 
early changes and be suggestive of the risk disease evolution. Th e 
serum metabolomic profi ling based on  1 H-NMR spectroscopy 
hold the capability of diff erentiating patients with CKD in four 

  Figure 3.     PLS-DA scores plots derived from  1 H-NMR spectra of serum obtained from different groups. (A) CKD (�) as compared with the control (�); (B) Class 1 (�) as 
compared with the control (�); (C) Class 2 (�) as compared with the control (�); (D) Class 3 (�) as compared with the control (�); (E) Class 4 (*) as compared with 
the control (�); (F) Class 1 (�) as compared with Class 2 (�).    
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stages from healthy controls. And some metabolites in serum have 
been found altered. Th ese metabolites are intermediates or end 
products of cellular processes and, therefore, refl ect the global 
integrated response of both organs and entire biological system to 
long-term pathophysiologic stimuli of CKD. In this study, major 
altered endogenous metabolites in serum contained products 
of glycolysis (glucose, lactate) and amino acids (valine, alanine, 
glutamate, and glycine), as well as organic osmolytes (e.g., betaine, 
myo-inositol, taurine, and glycerophosphcholine). 

 Lactate is one of the most important characteristic metabolites 
of CKD patients in diff erent classes. Combined with the lower 
level of glucose in serum hinted the increased activity of anaerobic 
metabolism in CKD patients.  25,26   

 Taurine, ß-amino acid, is not incorporated into protein, 
and can serve as an intracellular osmolyte. Th e function of 
taurine related the pathophysiology of the kidney included the 
protection against chronic renal failure, acute kidney injury, and 
glomerulonephritis.  27   Th is study showed taurine was decreased 
in CKD patients, especially in patients in class 3 and 4. It was 
consistent with the previous study which indicated that human 
patients with chronic renal failure had reduced plasma and muscle 
intracellular concentrations of taurine  28,29   and it might result from 
decreased endogenous synthesis.  29   

 Myo-inositol is a second messenger in various cell types, 
including infl ammatory cells.  30   It increased in patients with class 
1 and class 2 CKD suggesting an activating infl ammatory state.  31   
Besides myo-inositol, a renal medullary osmolyte, is also a hint 
medullary injury. 

 Choline, a quaternary amino cationic alcohol, could be 
oxidized to betaine in kidney mitochondria. Betaine might 
play a role in treatment to reduce the risk of atherosclerosis 
in chronic renal failure by decreased the postmethionine load 
hyperhomocysteinemia.  32   

 The decreased levels of choline-containing metabolites 
including choline, glycerophosphorylcholine (GPC), and 
phosphorylcholine (PC) are associated with the structural 
components of cell membranes. Moreover the lipid of was 
elevated in patients with class 3 and 4 CKD. Th e disturbance of 
phospholipid metabolism might be aroused by an increased rate 
of metabolism of phospholipids to lipid or a greater demand for 
phospholipids in rapidly replicating renal cells. 

 Furthermore, PC, GPC, choline, glycine, and other choline 
derivatives such as betaine and myo-inositol are all either 
intermediates or derivatives of methylamine metabolism. Th ese 
chemicals have been identifi ed as major osmolytes in the renal 
medulla.  33   Th e abnormal alteration of organic osmolyte had also 
been found in patients with renal cell carcinoma (RCC).  34,35   Th e 
reasons for the alteration of these metabolites in serum are not quite 
clear to us at this moment yet, but one possibility might be related to 
a derangement of kidney cell osmolar function in CKD patients. 

 In this study, the serum metabolic profi les of the patients 
with CKD at any disease stage presented distinct alterations 

R2 Q2

All CKD patients versus control 0.914 0.820

Class 1 versus control 0.980 0.932

Class 2 versus control 0.989 0.924

Class 3 versus control 0.976 0.846

Class 4 versus control 0.971 0.817

Class 1 versus class 2 0.962 0.867

    Table 2.     The values of  R  2  and  Q  2  in all PLS-DA models.    

  Figure 4.     Prediction plot illustrated the accuracy of the PLS-DA model.    

Metabolite Chemical 
shift

r*

Class 1 
versus 
Control

Class 2 
versus 
Control

Class 3 
versus 
Control

Class 4 
versus 
Control

Myo-inositol 4.06 0.04 0.06 −0.01 –

Creatine 3.92 −0.07 – −0.10 −0.10

Betaine 3.90 −0.09 – −0.13 −0.13

Glucose 3.87 −0.01 +0.51 −0.03 −0.02

Glucose 3.78 −0.03 +0.42 −0.07 −0.07

Glucose 3.74 −0.08 −0.01 −0.07 −0.10

Glucose 3.72 −0.02 +0.05 +0.01 −0.01

Glycine 3.55 −0.03 0.01 −0.05 −0.07

Glucose 3.48 −0.12 −0.03 −0.16 −0.16

Taurine 3.41 −0.11 −0.04 −0.16 −0.15

Scyllo-inositol 3.36 −0.03 −0.07 −0.07 −0.03

GPC+PC 3.23 −0.03 −0.11 −0.10 −0.06

GPC+PC 3.22 −0.02 −0.12 −0.10 −0.05

Choline 3.21 +0.01 −0.07 −0.05 −0.01

Glutamate 2.05 – −0.10 +0.07 −0.01

Alanine 1.48 +0.02 −0.04 −0.05 –

Lactate 1.33 +0.96 +0.65 +0.61 +0.94

Lipid 1.29 −0.12 −0.28 +0.65 +0.10

Lipid 0.90 −0.06 −0.17 +0.34 +0.10

*The + and – indicate the direction of the change (i.e., + increase and – decrease) in 
the concentration in serum obtained from patients with CKD as compared to those 
obtained from healthy volunteers.

    Table 3.     Coeffi cient of metabolites contributing to separation between serum samples 

obtained from patients with CKD.    
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from those recorded from healthy individuals. However, GFR 
did not exhibit evident diff erence between normal and class 1 
CKD. GFR determined by only one substance (creatinine) while 
the established PLS-DA model was based on multimetabolites. 
It is conceivable that the metabolic changes revealed by NMR 
spectra could be more sensitive than GFR. In addition, the 
comparison between disease groups showed a statistically 
signifi cant separation between patients in class 1 and patients 
in class 2 and a high predictive ability of the corresponding 
PLS-DA models. In the predictive tests of the discriminatory 
power using eight new samples, the results showed that the 
accuracy of the PLS-DA model (class1 CKD versus healthy 
controls) was 100%. 

 To our knowledge, this pilot study is the fi rst reporting 
in CKD using of  1 H-NMR metabolomics combined with PR 
analysis to investigate serum metabolic pathways involved in 
the pathophysiology of CKD. Th e results demonstrated the 
feasibility of applying serum metabolomics profi le to the early 
diagnosis of CKD and monitoring renal function. Further 
studies with larger numbers of patients and controls will be 
done to validate the models and to assure its place in routine 
practice.   

 Conclusion 
 Th is study illustrates the potential value of metabonomics based 
on  1 H-NMR spectroscopy of serum for an understanding of 
the whole body eff ects of the renal dysfunction in patients with 
CKD at the small molecular metabolic levels. A number of serum 
metabolites were changed in CKD diff erent stages.  1 H-NMR 
metabolomics combined with PR analysis of serum, as a rapid 
and minimally invasive technique, could contribute to the early 
evaluation of the severity of the renal damage and possibly to the 
monitoring of the kidney function, and provide insight into the 
physiopathologic of CKD.   

 Confl ict of Interest 
 All the authors declared no confl icts of interest.  

  Figure 5.     The validation tests of PLS-DA (control versus class 1 CKD) using eight new samples, including four CKD patients in class 1 (empty squares) and four healthy 
controls (empty triangles).    
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