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Abstract

Polymers provide a versatile platform for mimicking various aspects of physiological extracellular 

matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue 

engineering applications. In this review, we provide a brief overview of patterning methods of 

various polymers with a particular focus on biocompatibility and processability. The materials 

highlighted here are widely used polymers including thermally curable polydimethyl siloxane, 

ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-

isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and 

nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and 

tissue structure and function. Such synergistic effect of topography and rigidity of polymers may 

be able to contribute to constructing more physiologically relevant microenvironment.
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INTRODUCTION

The rapid evolution of cell and tissue engineering has necessitated the use of various 

materials such as ceramics, metals and polymers as tissue engineering scaffolds for specific 

cell types. It has been widely recognized that polymers possess a number of advantages as 

tissue engineering scaffolds in terms of biocompatibility, transparency, and processability. 

For example, ceramics (e.g., oxides and nitrides) are bioinert with high elastic modulus but 

their use is limited due to inherent brittleness and opaqueness. Metals also present high 

stiffness and resilience, but some are susceptible to corrosion. Moreover, both materials lack 

bioactivity and thus researchers have increasingly employed polymers as materials which 

can suitably reproduce the physiological extracellular matrix (ECM) environment with the 

added benefit of increased cell adhesion and biocompatibility.
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The design and preparation of biomimetic polymer scaffold in terms of physical, chemical 

and biological similarity to native ECM plays a critical role in constructing optimal 

microenvironments for cells and tissues. For the last few decades, many characteristics of 

ECM microenvironments have been replicated by using various methods in terms of 

rigidity,73,115 chemical concentration,84 shear stress56 and micro/nanotopography.24,62 

Among these characteristics, the rigidity and topography of biomaterials has been of major 

interest for mechanotransduction of cell responses.74,150

The elasticity of materials and its importance in the biomedical sciences have long been of 

interest to researchers. Elastic materials such as polyacrylamide allow for an elastic substrate 

whose modulus spans several orders of magnitude, similar to that of human tissues.115 The 

most striking demonstration was reported by Engler et al.,27 showing that the differentiation 

of mesenchymal stem cells (MSCs) was directly correlated with the stiffness of the 

substratum. This seminal work, together with a series of following studies, reveals that 

elasticity could be a key factor in controlling various responses of cells. Despite the potential 

of the findings, the materials used in the differentiation studies were too soft to emulate the 

full spectrum of material rigidity found in the human tissue. Furthermore, the integration of 

micro- and nanostructures for tissue engineering scaffolds has been a challenge due to poor 

processability of the polyacrylamide, limiting the widespread fabrication of well-organized 

in vivo like structures for tendons, ligaments, collagen fibers in brain and muscle fibers.171

In the cellular mechanotransduction studies, polyacrylamide or gelatin gels were widely 

used since these materials have shown the ability to control biochemistry and mechanics 

independently.115 For example, the elastic moduli of polyacrylamide and gelatin gels can be 

controlled in the range of 150 Pa–150 kPa29,80,108,115 and 1–100 kPa,45,130 respectively. 

Despite these biocompatibility and tunable elastic moduli, such low mechanical properties 

render them too soft to fabricate micro- or nanoscale structures with high fidelity. 

Specifically, when fabricating micro and nanostructures in softer materials, a rounding of 

corners or shrinkage of height usually occurs due the lack of material rigidity, resulting in a 

loss of pattern fidelity. The mechanical properties of the material also affect the resolution of 

the feature sizes that can be fabricated. It is noted in this regard that, to construct well-

defined microscale structures with high complexity mimicking that of in vivo tissues, at least 

few hundreds kPa of elastic modulus is required.39 Consequently, more rigid polymeric 

materials have been introduced that can be structured with heat, ultraviolet (UV) or solvents. 

These materials are capable of creating well-defined micro and nanopatterns with smaller 

feature sizes than those of softer materials. For example, polydimethyl siloxane (PDMS), a 

well-known silicon elastomer used in soft lithography, has elastic modulus in the range of 

0.6–3.5 MPa,17,110,144 which allows a patterning resolution down to few hundreds of 

nanometers with moderate fidelity.66,67 This relatively low elastic modulus still limits the 

application into well-defined cell and tissue scaffolds with small scale (down to ~100 nm), 

as the human tissue microenvironment in which cells reside in consists of various sizes of 

well-organized matrix structure ranging from 50 nm to sub-microns.28,160 For this reason, a 

range of other polymeric materials are required for engineering a more relevant in vitro 
microenvironment.
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In this review, we address the patterning methods and material properties needed, with a 

particular focus on mechanical properties and biocompatibility to fabricate well-organized, 

topographically patterned cell culture substrates. The polymers covered in this review could 

be classified into four categories: thermo-curable, UV-curable, thermoplastic and conducting 

polymers. Furthermore, the materials will be compared in terms of elastic modulus, tunable 

mechanical properties and pattering methods to overcome inherent patterning limitations of 

each polymer.

CURRENT ISSUES IN CONSTRUCTING BIOMIMETIC POLYMER 

SCAFFOLDS

As mentioned earlier, the elastic modulus of a material plays an important role in regulating 

cellular behavior as seen from directed differentiation of stem cells into various cell types in 

accordance to differential rigidity.27,135 In Fig. 1, the elastic moduli of tissues in human 

body as well as various synthetic biomaterials used in cell and tissue engineering are 

summarized. Human tissues have their own rigidity based on specific cell types and 

structural organization,73 ranging from few kPa to few tens of GPa (arterial wall,1,114,143 

brain,34,82,120,152 breast,76,136 cancellous bone,1,105,133 cartilage,114,143 cornea,163 cortical 

bone,1,133 heart,36,156 kidney,26 liver,94,165 prostate,76 saphenous vein,1 skin114,143 and 

tendon/ligament60,114,143). The liver and breast display very low elastic modulus around ~1 

kPa, which is similar to the modulus of polyacrylamide (150 Pa–150 kPa) or gelatin (1–100 

kPa). On the other hand, the cortical and cancellous bones have very high rigidity of around 

~10 GPa, which corresponds to poly(methyl methacrylate) (PMMA) (2–4 GPa).

In order to construct physically similar microenvironment in vitro, one must consider 

appropriate mechanical properties of materials used. For example, although natural polymers 

such as collagen, gelatin, alginate and agarose gels have relatively high biocompatibility for 

implantation into human body and similar elastic moduli of physiological soft tissues, they 

are too compliant to construct micro and nanostructures with high fidelity. In the case of 

large scale structures such as microvilli of gastrointestinal tract epithelium (size ~500 

μm),149 the aforementioned materials can provide physiologically relevant structures with 

low patterning resolution. In the case of mimicking nanoscale features such as matrix fibers 

in myocardium,70 however, such low modulus of the materials can pose a potential problem 

in constructing smaller pattern sizes with diameters of a few hundreds of nanometers. For 

this reason, it would be beneficial to recognize the limitations of each material in terms of 

structuring capability, and find alternative methods for the creation of physiologically 

relevant micro and nanostructures.

For the last decade, the effects of rigidity and topography in cell and tissue engineering have 

been explored independently. Rigidity has demonstrated direct differentiation potential for 

stem cells with response to diverse stiffness of surfaces.27 Similarly, topography has also 

affected stem cell differentiation as seen from the differentiation of stem cells into 

osteoblasts with topography and dimensionality similar to that of real tissues.23 Although 

both cases have revealed the differentiation capability of each physical cue, the real tissues 

in vivo have well-organized texture and topography as well as specific rigidity. For example, 
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the brain has collagen fibers with an elastic modulus range of 20–100 kPa and with fibrils of 

a diameter of 200–500 nm.41,152 For this reason, the construction of topographically 

patterned substrate with proper rigidity is of great importance to investigate synergistic 

effects on cell behavior and function.

Recently, several studies have been reported in the context of synergetic role of rigidity and 

topography. These studies demonstrated different cell migration, spreading, 

alignment,15,145,159 and shape,117,123,173 as compared to that in the presence of single 

physical cue of rigidity or topography. Despite the capability of tuning rigidity and 

topography in the studies, the chemistry of materials was usually heterogeneous; the 

combined effects from the chemistry and mechanical cues were not decoupled. To 

investigate such synergistic effect more systematically, the chemical consistency is required 

with tunable modulus, while incorporating high biocompatibility or bioinertness into the 

patterned polymer scaffold. Such combinations of appropriate environmental cues 

potentially provide a new direction for increasingly advanced and sophisticated in vitro 
tissue engineering platforms.

CLASSIFICATION OF PATTERNING METHODS FOR TOPOGRAPHICALLY 

DEFINED POLYMER SCAFFOLD

Patterning methods for synthetic polymers can be classified into two categories: template-

free and template-assisted methods. Each category is further classified based on the 

patterning principle. In Fig. 2, three representative methods that have been frequently used to 

form a topographically defined substrate are included in each category: (i) electrospinning, 

self-assembly, and wrinkle/crack formation for the template-free method (or bottom-up 

method) and (ii) photolithography, electrochemical deposition, soft lithography, and 

nanoimprint lithography (NIL) for the template-assisted method (or top-down method). 

Here, photolithography is included without detailed descriptions for its excellent maturity 

and popularity in patterning fields. Also, chemical patterning such as microcontact printing 

is not included in soft lithography as it does not create a surface topography. Therefore, 

referring to soft lithography, mold-based approaches are only considered such as replica 

molding (RM), soft molding (SoMo), and capillary force lithography (CFL). A number of 

extensive reviews are available for the details of each patterning 

technique.24,62,68,73,74,134,167,171

Figure 2 summarizes the existing patterning methods available for each synthetic polymer. It 

is noted that each polymer could be used in single or multiple patterning methods depending 

on its properties. For example, UV-curable polymers such as polyurethane acrylate (PUA), 

polyethylene glycol (PEG) acrylate, Norland Optical Adhesive (NOA), poly(N-isopropyl 

acrylamide) (pNIPAM) have mostly been used in soft lithography in the form of RM and 

CFL, while thermoplastic polymers such as polymethyl methacrylate (PMMA) and 

polystyrene (PS) being used in multiple methods from electrospinning to NIL. It is therefore 

important to recognize the limitation, properties, and uses of each material in various 

patterning methods.
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In Fig. 3, representative template-free patterning methods are displayed with various 

polymers, which include electrospinning, microphase separation of block copolymer, and 

PDMS stretching for reconfigurable wrinkles and cracks. These bottom-up patterning 

methods are capable of creating well-ordered surface textures in a simple and cost-effective 

manner for various cell and tissue engineering applications. In the first example, the 

electrospinning of PLA fibers was used to investigate the effect of alignment and orientation 

of fibers in wound healing. It was observed that different wound healing speed was observed 

presumably due to the contact guided growth following the fibers (Fig. 3a). In the second 

example, self-assembly of PS-b-PMMA block copolymer via microphase separation was 

used to assess different actin filament expression on various topographically patterned 

surfaces (Fig. 3b). In the third example, wrinkles or cracks were formed on rigid film 

supported on soft PDMS substrate. On a wrinkled substrate (PDMS), cardiac-like cellular 

morphology was generated (Fig. 3c, (i)–(iii)), while on a cracked channel elongated cellular 

shape was formed upon cyclic stretching (Fig. 3c, (iv)–(v)).

Similarly, template-assisted patterning methods are briefly summarized in Fig. 4 along with 

their exemplary applications. In the template-assisted methods, polymer thin films are 

typically processed into desired shapes by applying a variety of external stimuli such as 

oxidation, pressure, heat, and UV irradiation. In the first example, patterns of 

electrochemically deposited conducting polymer (PPy) were used to apply an electrical 

stimulus to the cultured cells. With contact guidance by PLA:PLGA fibers, the patterned 

surfaces induced highly oriented undifferentiated myoblasts (Fig. 4a). In the second 

example, the most well-established soft lithography was illustrated in the form of replica 

molding. This method is a simple and low-expertise route to 2D or 3D topographically 

patterned surfaces with thermo-curable materials. Here, an array of high aspect-ratio 

micropillars was used to measure traction forces exerted by the cultured cells (Fig. 4b). In 

the third example, NIL is presented with PMMA polymer, which was used to investigate the 

role of pattern ordering on osteogenic differentiation (Fig. 4c).

SYNTHETIC POLYMERS AND THEIR PROPERTIES/USES IN PATTERNING 

METHODS

In this section, various synthetic polymers will be described with a particular focus on their 

properties in terms of biocompatibility and processability and their uses in various patterning 

methods. Their elastic moduli, patterning limit, and available patterning methods are 

summarized in Table 1.

Thermally Curable Polymer

Polydimethyl Siloxane (PDMS)—PDMS is one of the three primary reference 

biomaterials chosen by National Heart, Lung and Blood Institute (NHLBI) with the two 

other polymers of low-density polyethylene (LDPE) and fluorinated ethylene propylene 

(FEP).9 According to the references on hemocompatibility, biocompatibility, inflammatory 

behavior in vivo studies, PDMS causes only mild inflammatory reaction when implanted 

without irritating the skin, and induces no adverse effect on animal models such as rabbits 

Kim et al. Page 5

Ann Biomed Eng. Author manuscript; available in PMC 2017 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and mice.9 Additionally, a recently reported dry adhesive skin patch made of PDMS pillars 

demonstrated negligible skin irritation.77

PDMS was first introduced by Whiteside’s group in the early 1990s in the form of soft 

lithography in order to massively produce micro- and submicron-scale structures.129,167 

Traditionally, micropatterning utilized inorganic hard materials in photolithography at the 

expense of higher costs and laborious fabrication processes. Since the introduction of PDMS 

in micropatterning, one can directly fabricate various two-dimensional or three-dimensional 

patterns in a cost-effective and low-expertise fashion, which has dramatically improved the 

patterning capability in a typical laboratory setup. Microstructures of PDMS are made by 

mixing the prepolymer and cross-linker with an appropriate ratio (usually 10:1), followed by 

backfilling into a pre-patterned master and curing at 60–70 °C in an oven for an hour or 

two.129 Depending on the amount of curing agent and curing time, PDMS has tunable elastic 

modulus in the range of 0.6–3.5 MPa.4,72,106,110 As a result, when the pattern scale is 

smaller than 1 μm, the resolution decreases significantly.39 Although the patterning ability of 

PDMS is limited to 500–800 nm, the resolution can be further enhanced by increasing the 

ratio of cross-linker or adding a hard modulator (hard PDMS, E = ~9 MPa), which allows 

for sub-100-nm pattern resolution.17,118

One important application of micropatterned PDMS involved the use of microscale PDMS 

pillars for measuring traction force of cells via observing the bending of structures.31 In this 

study, the rigidity of pillars was modulated by varying the aspect ratio of microposts with the 

identical PDMS materials. Then, the amount of deflection or bending of the micropillars was 

easily measured when a shear force is applied to the top, where the bending was related to 

the magnitude of the applied shear force.

One of the important characteristics of PDMS is its high elongation at break (~160%).17 

This property enables an application of cyclic stretching (stretching and releasing) onto 

single or multiple cells (colonies) with desired tensions and frequency. Since some human 

tissues such as muscle,102 heart,12 cartilage,8 ligament and tendon164 are inherently exposed 

to mechanical loads, it is potentially beneficial to observe the effect of external forces onto 

the mechano-sensitive cells. When a uniaxial stress was applied to mimic uniaxial stretching 

in vivo, some cells have shown elongation and orientation to the direction of stretching.13,93 

With this stretching-induced alignment, the aligned ligament cells showed more efficient 

calcium wave propagation compared to the randomly oriented cells,59 and human patellar 

tendon fibroblasts (HPTFs) expressed more α-smooth muscle actin protein according to the 

alignment angle.164

In order to create self-organized micropatterns of PDMS, alternative methods such as 

wrinkle and crack formation have been used in some applications. Wrinkling is a mechanical 

instability occurring on a thin, stiff film adhered onto an elastomeric substrate. When an 

elastomeric substrate is treated with oxygen plasma or UV/Ozone, or deposited with metal 

layer or diamond-like carbon upon stretching, a multi-layered structure is formed with a thin 

stiff film on a soft substrate. Upon releasing, the stiff surface is buckled while the underlying 

substrate is relaxed, resulting in a spontaneous formation of well-ordered wrinkles.170 The 

wavelength and amplitude of wrinkles can be modulated by adjusting the thickness and 
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modulus of thin film35 as well as the alignment via controlling the direction of mechanical 

strain.170 The wrinkled pattern has been used as a scaffold for heart cells, in which a certain 

degree of alignment and protein localization of mouse and human cardiomyocytes were 

observed.99

Cracking is a result of mechanical fracture occurring on a thin film adhered onto an 

elastomeric substrate. Similar to wrinkle patterning, PDMS surface treated with oxygen 

plasma or UV/Ozone can give rise to cracks upon stretching in response to the applied 

mechanical strain. In the case of oxygen plasma treatment, few hundreds of nanometer scale 

cracks are generated50,109 whereas UV/Ozone treatment induces few micron-range cracks.69 

The crack formation and propagation has been studied mainly from a mechanics aspect, so 

that an application to tissue engineering has been rarely reported. With reconfigurable 

cracks, cellular elongation of mouse myoblasts was demonstrated upon cyclic stretching.177

UV-Curable Polymers

The major advantage of UV-curable polymers is a short-processing time by using UV-

exposure (λ = 250– 400 nm) of few tens of seconds. In most UV-curable polymers, 

incorporated or trapped oxygen retards cross-linking by radical scavenging in the course of 

photo-crosslinking.58 To prevent such inhibition effects upon curing, a flexible and 

transparent support such as polyethylene terephthalate (PET) or polycarbonate (PC) sheet, or 

other engineering plastics can be used as a blanket or backing support of polymer 

structures.18 Therefore, either free-standing structures or structures supported on a backing 

support can be fabricated. Although the process of UV-curable patterning is simple and well-

established, cell and tissue engineering applications could be restricted due to significant 

auto-fluorescence of plastic films, limiting the imaging of tissues.128 Thus, for biomedical 

research, a few hundreds of nanoscale patterns on cover glass are recommended to reduce 

auto-fluorescence.

Polyurethane (PU)-Based Materials—PU is a versatile UV-curable polymer whose 

chemical structure can be readily modified. Commercially available PU-based polymers 

include polyurethane acrylate (PUA, Minuta Tech. Inc., Korea) and NOA (Norland Optical 

Adhesive, NY, USA). PUA is a UV-curable polymer that was first introduced in 2004.18 

Similar to other UV-curable materials, PUA can be cross-linked in tens of seconds upon UV-

exposure, resulting in a transparent and flexible thin polymer structure with or without a 

backing plane. Since PUA has several notable characteristics such as transparency for 

optical imaging, chemical stability for long-term cell culture and tunable surface energy for 

easy molding, it has been successfully utilized as a cell culture platform either in single cell 

studies83,121,122 or various tissue engineering applications for diverse cell types such as 

human embryonic stem cells (hESCs),86 human mesenchymal stem cells (hMSCs),175 

fibroblasts,63,71 cancer cells,78 neurons.55

The most distinguished characteristic of PUA is that its modulus can be tuned between 20 

and 320 MPa, by adjusting the amount of soft and hard modulators.16,174 By utilizing the 

modulus-tunability and patterning method of CFL, the effect of rigidity has been 

investigated with the identical patterns without losing chemical consistency.174 Also, various 
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multiscale, hierarchical structures can be fabricated with the aid of partial curing kinetics, 

which would be useful to recapitulate complex, hierarchically organized structures.57

NOA is the brand name of polyurethane-based UV-curable adhesive which is commercially 

available. Due to high transparency and simple curing process, it is usually used as an 

optical adhesive in fixing glass lenses38 or for micro lens arrays.22 As compared to PUA or 

other UV-curable polymers, the curing process of NOA is not affected by the presence of 

oxygen. For this reason, it can be cured even in an open environment without the use of a 

transparent blanket. Furthermore, NOAs adhesion properties onto glass substrate are 

moderate to good, thus not requiring any type of pretreatment or an adhesion promoter. 

When using NOA as a patterning material, a flexible mold with low surface energy is 

needed. Although the detailed chemical structures and additives are not known, NOA shows 

a wide range of elastic modulus (6 MPa–2.5 GPa, available from the provider’s website).116 

As a cell culture scaffold, sub-100-nm NOA patterns have been used for culturing 

endothelial cells,95 fibroblasts,104 human embryonic stem cells,111,112 and breast cancer 

cells101 without significant adverse effects.

Polyethylene Glycol (PEG) Acrylate—PEG is a Food and Drug Administration (FDA)-

approved UV-curable hydrogel that has been frequently used for drug delivery and tissue 

engineering.161 Due to its minimized adverse effects, it is widely used for tissue 

implantation surgery.46 Furthermore, it can also be used as a material to prevent cell 

adhesions for microchips.64 Similar to PUA, PEG acrylate patterns are fabricated onto glass 

substrate in the form of a thin, structured film with UV-exposure of few tens of seconds. 

However, as PEG is a hydrogel, it has swelling problems upon exposure to water or media. 

As such, the patterns are easily delaminated from the substrate.132 To prevent delamination, 

the substrate surface can be treated with an adhesion promoter (phosphoric acrylate or 

acrylic acid dissolved in propylene glycol monomethyl ether acetate (PGMEA), 10 vol.%).

PEG and its related hydrogels have a broad range of modulus tunability depending on their 

modified chemical structures. Basic PEG has a simple chain structure with a relatively low 

elastic modulus of ~500 Pa.3,88 This elastic material is suitable as a model matrix for 

measuring traction force of cells in a real time manner since it is easily deformed by the 

morphological change of cells.88 Thus, the pure PEG could not be used for constructing 

well-defined micro- or nanoscale patterns. With the addition of acrylate group at both ends 

of the polymer chain then elevates its modulus to three orders of magnitude (~500 kPa),10 

allowing for the fabrication of submicron to few hundreds of nanometer structures without 

losing its biocompatibility.44,54 Further modification could be achieved by terminating the 

polymer chain with methacrylate group, resulting in the increase of modulus up to 1.6 

GPa.14 With PEG dimethacrylate (PEG-DMA), nanopillars of high aspect ratio (diameter of 

750 nm, height of 7 μm) have been successfully fabricated without collapse even in the 

presence of capillary force.14 With PEG diacrylate (PEG-DA), 50-nm-wide nanogrooves 

have been fabricated with high fidelity to be used as a nanopatterned scaffold for rat 

cardiomyocytes.65,70

Due to its biologically inert properties, PEG is also widely used for fabricating an anti-

adhesion surface for cells. For example, microscale PEG patterns have been fabricated to 
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obtain single or multiple cell aggregates.61 On non-adherent PEG substrates, co-culture of 

heterogeneous cells such as hepatocytes and fibroblasts87 and differentiation of 

mesenchymal stem cells within confined geometry127 have also been demonstrated.

Poly(N-isopropyl acrylamide) (pNIPAM)—Poly(N-isopropyl acrylamide) (pNIPAM or 

pNIPAAm) is a thermo-responsive polymer which can expand or shrink upon a thermal 

stimulus. One of the distinctive characteristics of pNIPAM is the ability to change phases in 

the physiologically relevant temperature range. Namely, the polymer has a lower critical 

solution temperature (LCST) of ~32 °C which is around the body temperature.20,139 Above 

the LCST, it shows a relatively hydrophobic surface, which is related to the packed 

conformation. In sharp contrast, below the LCST, it demonstrates a hydrophilic surface due 

to swelling by hydration.20,47

In addition to the tunable hydrophobicity, the material shows a dramatic difference in the 

mechanical property. For example, at 25 °C, its elastic modulus is ~9.8 kPa due to swelling, 

while at 40 °C its elastic modulus is around ~170 kPa due to dehydration.151 By utilizing 

this modulus tunability along with shape deformation, Khademhosseini and 

coworkers153,154 have recently demonstrated the use of pNIPAM as an active mold for 

patterning hydrogels and as microwells for forming and retrieving cell aggregates. Some 

studies have also demonstrated the patterning of pNIPAM surface with e-beam lithography. 

In the presence of the fabricated microgrooves of pNIPAM, a cell sheet with aligned cell 

morphology was obtained.51 With the help of the cell detachment characteristic above a 

certain temperature, selective cell removal and subsequent co-culture experiments were also 

presented.168,169

The cytotoxicity of pNIPAM has been studied in a number of drug delivery and tissue 

engineering applications. When the material was used as a drug delivery vehicle (eye drop) 

for glaucoma therapy, no difference of cell death rate was observed compared to PBS 

(phosphate buffered saline).48,162 When it was used as an embolic material, in vivo injection 

test showed no acute toxicity in mice below the dose of 250 mg kg−1.103 It was also used as 

a three-dimensional cell scaffold, presenting no significant problems with the exception of 

minor inflammation after the injection.119 Furthermore, many in vitro cell culture results and 

in vivo transplantation from pNIPAM plate to human body have shown no distinct adverse 

effects. Therefore, it can be seen that pNIPAM is a biocompatible material and possesses 

great potential in cell and tissue engineering applications.

Thermoplastic Polymers

A thermoplastic polymer becomes liquefied or molten upon heating above the melting 

temperature (Tm). The material also becomes plastic above the glass transition temperature 

(Tg), allowing for further modification such as drawing, bending and molding at an elevated 

temperature.146 Since these materials are solids at room temperature, heat or solvent 

treatment can be used to make fine structures.

Conventional Thermoplastics (PMMA/PS)—The biocompatibility of PMMA can be 

evaluated from the implantation studies in vivo. For many years, various transplantable parts 

made of PMMA were implanted into human bodies such as porous membranes onto human 
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kidneys124 and intraocular lenses.98 In these reports, PMMA demonstrated long-term 

stability and reasonable performance without appreciable adverse effects. In contrast, PS is 

known to have high cellular adhesion properties but to cause strong inflammatory response 

upon implantation. Due to this undesirable effect, PS is usually used as a control to decide 

relative biocompatibility of other materials or compare relative cell affinities between 

materials.11,97

The most well-known fabrication method for thermoplastic polymers is Nanoimprint 

lithography (NIL, also known as hot embossing), which requires heat above Tg (PMMA: 85 

to 165 °C, PS: 95 °C) and high pressure.43 Since the materials used in NIL usually have high 

elastic modulus on the order of GPa, they can represent high pattern resolution down to ~10 

nm.89,166 An alternative method for patterning thermoplastic polymers utilizes reduced 

viscosity of the materials via temperature rise or solvent treatment. For example, a 

thermoplastic polymer layer can be patterned by placing a patterned PDMS mold followed 

by temperature rise above Tg, leaving behind a negative replica of the mold by capillary 

action (capillary force lithography, CFL).147,148 Similarly, a solvent-laden polymer film 

directly fills into the cavity of PDMS mold by capillary action, which can be termed soft 

molding (SoMo).134 In this way, various micro- or nanopatterns of thermoplastic polymers 

such as PMMA, PS and PLGA have been constructed with high pattern fidelity.33,84,85 It is 

noted in this regard that PMMA and PS have relatively high elastic modulus on the order of 

several GPa, capable of rendering several tens of nanometer patterns with high physical 

integrity.

In addition to the above template-assisted methods, a template-free method is possible with 

thermoplastic polymers. One such technique is electrospinning, in which a jet of liquid-

phase polymer is ejected from a cone or nozzle, drawn by a controlled electric field, and 

finally stacked on ground-state plate. It is known that few tens of nanometer to few 

micrometer fibril structures can be constructed in the electrospinning. For more 

sophisticated, mesh-like structures, precise control of the electric field is required.41 Also, 

by adjusting the composition of solution or melt, the diameter and chemical distribution of 

the fibers could be modulated.155,172 An alternative template-free method is block 

copolymer lithography (BCL),100 where two nanophase polymer domains are self-

assembled into various morphologies such as spherical, hexagonal or lamellar lattice 

structure. Such a periodic, ordered structure showed increased cell spreading area with the 

decrease of domain size,158 and more actin filament formation at smaller feature scale.157

Biodegradable Thermoplastics (PLGA/PGA/PLA/PCL)—Biodegradable polymers, 

more specifically synthetic biodegradable polymers, refer to the polymers that lose their 

initial integrity within the body tissues over time.30 These biodegradable polymers include 

polylactic-co-glycolic acid (PLGA), polyglycolic acid (PGA), polylactide (PLA) and 

polycaprolactone (PCL).42 Due to their biocompatibility, biodegradability and high rigidity, 

these synthetic polymers have been widely used for human therapy such as absorbable 

sutures as well as fixation units for medical surgeries.107

A family of PGA, PLA and their copolymers (PLGA) are FDA-approved due to their 

biocompatibility upon implantation which has allowed clinical applications. However, some 
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side effects have also been recognized such as production of acid and release of small 

particles upon degradation.42 PLGA is a quickly biodegradable copolymer which can tune 

its properties by varying the relative molar ratio between lactic acid and glycolic acid (50:50, 

65:35, 75:25, 85:15 are commercially available). By adjusting the lactoyl content from 50 to 

85%, the degradation time can be controlled from 1 to 2 months (50% of lactoyl content) to 

5–6 months (85% of lactoyl content) while retaining their elastic modulus at ~2 GPa.6,42,107 

In the cases of PGA, PLA, and PCL, their degradation times are relatively long compared to 

that of PLGA (PGA: 6–12 months, PLA: >24 months and PCL: >24 months).

Although their chemical structures are slightly different, the fabrication techniques could be 

identical. For example, a thin film of these biodegradable polymers can be dissolved in a 

wide range of common solvents such as chloroform, toluene, tetrahydrofuran, acetone and 

ethyl acetate and spin-coated to be used in a simple molding technique (e.g., SoMo). 

Alternatively, a thin film can be thermally imprinted above the polymer’s Tg (PGA: 35–

40 °C, PLA: 60–65 °C, PLGA: 40–60 °C, PCL: 265 to 260 °C), which is relatively low as 

compared to PMMA and PS.107 Furthermore, these biodegradable polymers have high 

elastic modulus (PGA: 7.0 GPa, PLA: 2.7 GPa, PLGA: 2 GPa and PCL: 0.4 GPa), which 

allows for the fabrication of few tens of nanometer patterns with the existing template-

assisted methods.

For template-less structuring with biodegradable polymers, electrospinning is also widely 

used to prepare fibril structures. It was observed that the ordering and scale of fibers are 

important for the contact guidance-induced elongation, morphogenesis and migration of 

cells.125,172 In particular, cells with inherent anisotropic organization in vivo such as skeletal 

muscle tissue, ligaments, articular cartilage and blood vessels showed high sensitivity to the 

alignment of fibers.96 Additionally, bioactive molecules such as growth factors and specific 

signaling molecules play crucial roles in stem cell differentiation and homing of cells to the 

specific repair site. Further information on the electrospinning of biopolymers and their 

applications can be found elsewhere.96,138,155

Conducting Polymers

Certain tissues such as cardiac or nerve tissues convey their signals to adjacent cells by 

conducting electric pulses named ‘action potentials’.7,142 Action potential generation is 

involved in many crucial physiological processes, including the beating of heart at a desired 

frequency in a synchronized fashion.141 Since the transfer of signals is important for 

observing active cellular functions, the introduction of conducting materials into tissue 

engineering is required for certain cell types. For instance, when studying neurogenesis or 

cardiogenesis from stem cells, the cellular functions of differentiated cells can be judged by 

whether they have similar functions or electrical signals to real tissues.

For many years, conducting polymers such as polyaniline (PANi),90 polypyrrole (PPy),37 

poly(3,4-ethylenedioxythiophene) (PEDOT)52 or mixtures of conducting polymers have 

been used to address this issue. For example, cells cultured on an electroactive surface 

showed enhanced neuronal differentiation,75 promoted nerve regeneration,137 and significant 

increase in neurite lengths.140 However, these results were obtained from the cells cultured 

on smooth surface without the incorporation of topographical effects. Recently, 
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topographically modified electroactive surfaces have been introduced as a cell culturing 

platform to support growth of excitable tissue cells. There are a number of available 

patterning methods such as CFL,52 NIL49 or lift-off25 for patterning conducting polymers. 

Since most of the conducting polymers are rigid (elastic modulus; PANi: 2–4 GPa,32 PPy: 

1.2–3.7 GPa,113 PEDOT: 1.1–2.2 GPa79) they can form tens of nanometer scale features 

with high fidelity. It is worthwhile noting that due to their low breaking stress, the patterned 

thin films need to be handled with care.91 Furthermore, precise patterning techniques are yet 

to come for highly controlled active structures.92 In several studies, the researchers have 

employed an electrochemical deposition (or electro polymerization) in order to apply an 

electrical potential during the cell culture on conducting substrates.126,131,140

Concerning the neuron culture, the biocompatibility of conducting polymers can be 

determined from an efficacy test by counting percentage of cells bearing neurites or 

measuring the length of neurite compared to the control surfaces. There are three factors 

which can influence toxicity: unreacted monomers, motility and toxicity of dopant ions, and 

residual solvents.40 According to the Material Safety Data Sheets (MSDS) available in 

Sigma-Aldrich, monomers show higher toxicity than dopants, but both of the components 

are slightly to moderately toxic.40 Moreover, Schmidt et al.140 demonstrated less adverse 

tissue response of PPy as compared to PLGA upon animal implantation. From this study, it 

can be assumed that conducting polymers such as PPy and PEDOT have relatively good 

biological performance. Furthermore, biocompatibility can be enhanced by adding bioactive 

factors such as laminin peptide21 and hyaluronic acid (HA)19 or coating biocompatible 

polymers such as PLGA onto the polymer surface.81 It seems that further studies need to be 

performed to find an optimal condition between biocompatibility and mechanical, electrical 

and biological properties.

CONCLUSIONS

In this review, we have described material properties and patterning techniques of various 

polymers toward topographically defined substrates in cell and tissue engineering 

applications. As motivated by the pioneering work by Engler et al., there are increasing 

demands on topographically patterned substrate with tunable modulus in order to investigate 

synergistic role of rigidity and topography in mechanotransduction of cells.

Here, the patterning methods were classified into two categories of template-free (or bottom-

up) and template-assisted methods (or top-down). Then, the existing synthetic biocompatible 

polymers were described in the order of thermo-curable, UV-curable, thermoplastic and 

conducting polymers with particular emphasis on biocompatibility and processability. It has 

been shown that each biocompatible polymer is suited to specific patterning methods 

depending on its materials properties.

Based on the information provided in this review, an appropriate combination of material 

and patterning method should be chosen to create diverse and robust cell culture platforms 

with in vivo like cellular microenvironment. Such more physiologically relevant 

microenvironments may be able to significantly advance tissue engineering research while 
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providing insight into the effects of topography and rigidity in synergy on cell behavior and 

function.
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ECM extracellular matrix

MSCs mesenchymal stem cells

hMSCs human mesenchymal stem cells

hESCs human embryonic stem cells

HPTFs human patellar tendon fibroblasts

PBS phosphate buffered saline

OPN osteopontin

OCN osteocalcin

PDMS polydimethyl siloxane

LDPE low-density polyethylene

FEP fluorinated ethylene propylene

PET polyethylene terephthalate

PC polycarbonate

PU polyurethane

PUA polyurethane acrylate

NOA Norland Optical Adhesive

PEG polyethylene glycol

PEG-DMA polyethylene glycol dimethacrylate

PEG-DA polyethylene glycol diacrylate

PGMEA propylene glycol monomethyl ether acetate

pNIPAM poly(N-isopropylacrylamide)

LCST lower critical solution temperature
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PMMA poly(methyl methacrylate)

PS polystyrene

PLGA poly(lactic-co-glycolic acid)

PGA polyglycolic acid

PLA polylactide

PCL polycaprolactone

PANi polyaniline

PPy polypyrrole

PEDOT poly(3,4-ehtylenedioxythiophene)

PTS paratoluenesulfonate

HA hyaluronic acid

UV ultraviolet

NIL nanoimprint lithography

RM replica molding

SoMo soft molding

CFL capillary force lithography

BCL block copolymer lithography

NHLBI National Heart, Lung and Blood Institute

FDA Food and Drug Administration

MSDS Material Safety Data Sheets
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FIGURE 1. 
Mechanical properties of natural tissues and synthetic polymers. (a) Range of the elastic 

modulus of various tissues in human body. Modified from Nemir and West.115 (b) The same 

of various biocompatible polymers used for in vitro studies with respect to patterning 

resolution and mechanical properties.
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FIGURE 2. 
Classification of patterning methods with template-free and template-assisted principles and 

their availability with the existing various synthetic polymers.

Kim et al. Page 24

Ann Biomed Eng. Author manuscript; available in PMC 2017 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Template-free patterning methods and their applications. (a) Electrospinning of PLA fibers 

on stationary or rotating substrate, in which random (i) or aligned (ii) fibers can be formed. 

(iii) Depending on the alignment and orientation of fibers, wound healing speed was 

different over 48 h time span (actin filaments: green, nuclei: blue). For example, the wound 

healing was the fastest on perpendicularly ordered fiber matrix. Reprinted with permission 

from Patel et al.125 (b) Self assembly of PS-b-PMMA block copolymer. (i) With neutral 

interfaces between film-air and film-substrate, vertically aligned nano- to microscale 

patterns can be fabricated by self assembly of nanoscopic polymer domains. (ii) On 
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topographically defined surfaces, the degree of actin stress fiber formation (fibroblast) was 

observed to decrease as the feature size increased. Reprinted with permission from Tsai et 
al.158 (c) Wrinkle and crack formation via compression (wrinkle) (i) or stretching (crack) (ii) 

of surface modified PDMS. (iii, iv) On wrinkled substrate, neonatal cardiac cells showed 

alignment. Connexin-43 (green) in (ii) and N-Cadherin (green) and actin (red) in (iii). Scale 

bars indicate 100 μm. Reprinted with permission from Luna et al.99 (v) An elongated 

myoblast cell on a crack stained with actin (red), nucleus (blue) and crack with collagen 

(green). Reprinted with permission from Zhu et al.177
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FIGURE 4. 
Template-assisted patterning methods and their applications. (a) (i) Schematic illustration of 

electrochemical deposition. (ii) SEM image of patterned surface and fluorescent images of 

skeletal muscle cells that adhered and proliferated for 2 days and finally differentiated into 

myotubes at day 4 (arrow indicates delaminated points of PLA:PLGA fiber). 

Immunofluorescence images of differentiated, desmin (green)-expressing myotubes on 

PPy/pTS substrate with (top panel) and without (bottom panel) PLA:PLGA fiber arrays. Cell 

nuclei are shown in blue. Scale bars are 200 μm. Reprinted with permission from Razal et 
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al.131 (b) (i) Schematic illustration of soft lithography in the form of UV-assisted capillary 

force lithography (CFL). (ii) SEM images of hMSCs cultured on various micropost arrays. 

Bottom panel is an enlarged view from each top panel. Scale bars, 100 μm (top panel), 50 

μm (first column, bottom), 30 μm (second column, bottom) and 10 μm (third column, 

bottom). Reprinted with permission from Fu et al.31 (c) (i) Schematic illustration of 

nanoimprint lithography. (ii) Effect of ordering on human mesenchymal stem cell 

differentiation. Top panel: SEM images of PMMA hole arrays with various orderings 

(diameter: 120 nm, depth: 100 nm, average center-to-center spacing: 300 nm). These arrays 

include hexagonal, square, displaced square with random displacement. Middle and bottom 

panels: Immunostaining images of osteopontin (OPN) and osteocalcin (OCN) (actin: red, 

OPN/OCN: green). Reprinted with permission from Dalby et al.23
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