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Abstract

Background: Combining bevacizumab with frontline chemotherapy statistically significantly improved progression-free
survival (PFS) but not overall survival (OS) in the phase III GOG-0218 trial. Evaluation of candidate biomarkers was an
exploratory objective.
Methods: Patients with stage III (incompletely resected) or IV ovarian cancer were randomly assigned to receive six
chemotherapy cycles with placebo or bevacizumab followed by single-agent placebo or bevacizumab. Five candidate tumor
biomarkers were assessed by immunohistochemistry. The biomarker-evaluable population was categorized into high or low
biomarker-expressing subgroups using median and quartile cutoffs. Associations between biomarker expression and efficacy
were analyzed. All statistical tests were two-sided.
Results: The biomarker-evaluable population (n¼980) comprising 78.5% of the intent-to-treat population had representative
baseline characteristics and efficacy outcomes. Neither prognostic nor predictive associations were seen for vascular endo-
thelial growth factor (VEGF) receptor–2, neuropilin-1, or MET. Higher microvessel density (MVD; measured by CD31) showed
predictive value for PFS (hazard ratio [HR] for bevacizumab vs placebo ¼ 0.40, 95% confidence interval [CI] ¼ 0.29 to 0.54, vs
0.80, 95% CI¼0.59 to 1.07, for high vs low MVD, respectively, Pinteraction ¼ .003) and OS (HR¼0.67, 95% CI¼0.51 to 0.88, vs 1.10,
95% CI¼0.84 to 1.44, Pinteraction ¼ .02). Tumor VEGF-A was not predictive for PFS but showed potential predictive value for OS
using a third-quartile cutoff for high VEGF-A expression.
Conclusions: These retrospective tumor biomarker analyses suggest a positive association between density of vascular
endothelial cells (the predominant cell type expressing VEGF receptors) and tumor VEGF-A levels and magnitude of bevacizu-
mab effect in ovarian cancer. The potential predictive value of MVD (CD31) and tumor VEGF-A is consistent with a mecha-
nism of action driven by VEGF-A signaling blockade.
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Vascular endothelial growth factor (VEGF)–A, a dimeric glyco-
protein, is a survival factor for endothelial cells, is considered to
be a primary inducer of angiogenesis and vascular permeability,
and is the molecular target of bevacizumab (1). VEGF-A medi-
ates its effects primarily by activating VEGF receptor (VEGFR)–2,
a vascular endothelial-specific tyrosine kinase receptor (2).
Although VEGF-A inhibition is lethal during embryonic develop-
ment (3), its neutralization is well tolerated in adults, consistent
with postnatal vascular maturation and differentiation in vari-
ous tissues (4). Most tumors overexpress VEGF-A, and tumor
neo-vasculature is particularly sensitive to VEGF-A deprivation
(4). Following demonstration that VEGF-A signaling blockade
inhibits angiogenesis and tumor growth in preclinical models
(4), the humanized VEGF-blocking antibody bevacizumab was
evaluated in clinical trials and subsequently approved as treat-
ment for several advanced cancers (5,6).

The Gynecologic Oncology Group (GOG)-0218 randomized
phase III trial demonstrated statistically significantly improved
progression-free survival (PFS) with bevacizumab added to
standard frontline chemotherapy for epithelial ovarian cancer
(7). These results, supported by findings from the randomized
phase III ICON7 trial (8), led to European approval of frontline
bevacizumab combined with chemotherapy for epithelial ovar-
ian cancer. However, neither trial demonstrated a statistically
significant effect on overall survival (OS). In GOG-0218, exten-
sive crossover from the chemotherapy-alone arm to bevacizu-
mab and further uncontrolled treatment lines may have
masked a potential effect on OS (7,9). The present analyses
explored whether candidate tumor biomarkers might define
subsets of patients with epithelial ovarian cancer deriving dif-
ferential clinical benefit from frontline bevacizumab.

Evaluation of potential biomarkers in prospectively collected
specimens was an exploratory objective of GOG-0218. Five
tumor (t) biomarkers (tVEGF-A, tVEGFR-2, neuropilin-1, MET
[hepatocyte growth factor receptor], and cluster of differentia-
tion 31 [CD31]), each supported by a biologic rationale, were
assessed by immunohistochemistry (IHC). As bevacizumab tar-
gets VEGF-A, it was postulated that high tVEGF-A expression
may be associated with enhanced benefit from bevacizumab.
Similarly, tVEGFR-2 and neuropilin-1 (a co-receptor of VEGF-A)
are logical candidates. Retrospective biomarker analyses in
metastatic breast cancer suggested that low levels of
neuropilin-1 may predict increased PFS benefit from bevacizu-
mab (10). MET is biologically interesting as a candidate bio-
marker for bevacizumab efficacy because of its potential
involvement in anti-VEGF-A resistance (11).

CD31 is an integral membrane glycoprotein expressed at
high levels on endothelial cells, which form microvessels in
normal tissue and tumors (12). Microvessel density (MVD) quan-
tified based on CD31-positive endothelial cells in tumor sam-
ples assayed by IHC is often used as a surrogate for tumoral
angiogenic activity (13). Higher tumoral MVD is associated with
worse prognosis in several tumor types, including ovarian can-
cer (14–22). New, immature blood vessels within the microvas-
culature require VEGF-A signaling for survival, and thus are
among the direct targets of bevacizumab (23). It was proposed
that high MVD (measured by CD31-positive vessels/mm2 as a
possible surrogate marker of angiogenic activity and/or depend-
ency) may be associated with greater benefit from bevacizumab
(24). Retrospective analyses in colorectal cancer were consistent
with this hypothesis (25), but others failed to show a relation-
ship between MVD and bevacizumab benefit (26,27). Whether
the lack of correlation reflects small patient numbers, tumor
diversity, or other factors remains to be established. In this

biomarker substudy of the GOG-0218 trial evaluating bevacizu-
mab in ovarian cancer, we sought to explore the potential prog-
nostic and predictive effects of these five tumor markers.

Methods

Study Design

In this double-blind placebo-controlled randomized phase III
trial ClinicalTrials.gov number NCT00262847 (28), eligible
patients had International Federation of Gynecology and
Obstetrics (FIGO) (29) stage III (incompletely resected) or stage IV
epithelial ovarian, primary peritoneal, or fallopian tube cancer
and had undergone standard abdominal surgery with maximal
debulking effort within 12 weeks preceding study entry. The
study design details have been published previously (7). All
patients received six cycles of carboplatin plus paclitaxel and
were randomly assigned to receive: placebo during cycles 2 to
22 (chemotherapy alone); bevacizumab 15 mg/kg every three
weeks during cycles 2 to 6 followed by placebo during cycles 7 to
22 (concurrent bevacizumab); or bevacizumab throughout
cycles 2 to 22 (extended bevacizumab). The primary end point
was PFS; OS was a secondary end point. The protocol was
approved by the relevant institutional review boards or ethics
committees; all patients gave written informed consent.

Biomarker Analyses

Candidate biomarkers were measured after completion of the
clinical trial using paraffin-embedded formalin-fixed sections
taken from the pretreatment tumor samples. The specimens for
biomarker analysis were provided from the GOG tissue bank
according to standard National Cancer Institute (NCI) banking
material transfer agreements. All slides were sent to a single
central Clinical Laboratory Improvement Amendments-certified
research laboratory (HistoGeneX, Antwerp, Belgium) accredited
by the College of American Pathologists and the Belgian
Accreditation Organization (ISO 15189). Membrane and cyto-
plasmic IHC staining were undertaken using validated, fit-for-
purpose assays. Sections were stained using 3,30-diaminobenzi-
dine for neuropilin-1 (clone C-19; Santa Cruz Biotechnology,
Heidelberg, Germany), tVEGF-A (clone SP28; Abcam, Cambridge,
United Kingdom), and tVEGFR-2 (clone 55B11; Cell Signaling
Technology, Leiden, the Netherlands) on the Lab Vision
Autostainer (ThermoFisher Scientific, Gent, Belgium), whereas
CD31 (clone 1A10; Leica Biosystems, Diegem, Belgium) and
cMET (clone SP44; Ventana, Basel, Switzerland) were stained
using the Benchmark XT (Ventana, Basel, Switzerland). Whole-
slide images were created with a Pannoramic SCAN digital slide
scanner (3DHISTECH Ltd, Budapest, Hungary) using a Zeiss
plan-apochromatic objective (magnification: 20x; numerical
aperture: 0.8) and a Hitachi (HV-F22CL) 3CCD progressive scan
color camera (resolution: 0.2325 mm/pixel). JPEG image encoding
with quality factor 80 and an interpolated focus distance of 15
with stitching in the scan options was chosen. For every slide, a
specific scan profile was configured and holes in the scan area
were filled to allow for correct detection of tissue and in-focus
images of the tissue. Scanned images were examined in
Pannoramic Viewer (3DHISTECH) to check image quality and
confirm that the whole tissue section was captured (30).

Microscopic analysis of the digitized slides was performed by a
small number of highly experienced research pathologists and
imaging scientists using rigorous research protocols. This included
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systematic, uniform, random sampling of at least three but gener-
ally 10 regions of interest (ROIs) from the whole-slide image to take
into account potential tumor heterogeneity of the marker. An
unbiased, rectangular counting grid and optimized counting rules
were used for MVD quantification (Supplementary Figure 1, avail-
able online) (30,31). The pathologists and imaging scientists were
blinded to clinical outcomes in the study patients. For tVEGF-A scor-
ing, 100 cells were scored per ROI (�10 ROIs for large tissue samples).
Each cell was assigned a staining intensity: 0 (none), 1þ (weak),
2þ (intermediate), or 3þ (strong). The final histological score
(H-Score) was a composite of the staining intensity for each of the
100 cells, ranging from 0 (0 in all 100 cells) to 300 (3þ in all 100 cells).

Statistical Analysis

The data cutoffs were September 29, 2009 (PFS), and August 26,
2011 (OS). The biomarker-evaluable IHC (BEI) population com-
prised all patients with an evaluable baseline IHC biomarker
sample who received trial treatment at cycle 2 or beyond.
Initially, the BEI population was dichotomized using the median
value for each marker as the cutoff between low and high
expression of each marker. The median was prespecified as the
cutoff before performing the present biomarker analyses but
after unblinding of the clinical trial results. Associations
between tumor biomarker expression levels and PFS and OS
were analyzed. Biomarkers showing potential predictive effect
using the median as the cutoff were evaluated further to
explore the effect of choosing the first or third quartile instead
of the median as the cutoff to define low vs high expression of
each marker. Finally, sliding window analyses were performed
to explore the effect of varying cutoffs for potentially predictive
biomarkers. These graphs plot the point estimate and 95% con-
fidence interval (CI) of the treatment hazard ratio (HR) for PFS
and OS for only those patients whose biomarker value falls
within a window spanning 25%, which is moved in 5% steps
across the entire range of possible cutoff values.

In the biomarker analyses reported here, investigator-assessed
PFS and OS were calculated from the date of random assignment.
PFS was censored if nonstudy therapy was initiated for any reason
before disease progression or if progression was defined by cancer
antigen-125 elevation alone (without Response Evaluation Criteria
in Solid Tumors-defined progression). Comparisons were based on
the extended bevacizumab arm vs the chemotherapy-alone arm
because PFS was improved only with extended bevacizumab in the
primary analysis of the intent-to-treat (ITT) population.

Two-sided treatment-by-biomarker Pinteraction values were
calculated using a Cox model including treatment, biomarker
(using first quartile, median, or third quartile cutoffs to define
low and high biomarker expression levels), interaction of treat-
ment by biomarker, FIGO stage and debulking status, and base-
line GOG performance status. Because of the exploratory nature
of the analyses, no cutoff for statistical significance is specified
and no adjustment for multiple testing was performed. The
assumption of proportionality was not tested for the retrospec-
tive biomarker analyses. Statistical analyses were performed by
F Hoffmann-La Roche Ltd.

Results

Patient Population

The BEI population included 980 (78.5%) of the 1248 patients
randomly assigned to either placebo or extended bevacizumab

(Figure 1). Baseline characteristics in the BEI and ITT popula-
tions were similar, indicating that the BEI population was a rep-
resentative subset of the ITT population (Table 1). Furthermore,
efficacy outcomes were similar in the BEI and ITT populations.
In the control arm, median PFS was 12.1 months (95% confi-
dence interval [CI] ¼ 10.6 to 12.7 months) in the BEI population
(n¼ 483) vs 12.0 months (95% CI ¼ 10.4 to 12.5 months) in the
ITT population (n¼ 625) (Supplementary Figure 2, available
online). In the extended bevacizumab arm, median PFS was
18.7 months (95% CI ¼ 16.3 to 20.6 months) and 18.2 months
(95% CI ¼ 16.1 to 19.7 months) in the BEI (n¼ 497) and ITT
(n¼ 623) populations, respectively. The stratified hazard ratio
for PFS was 0.61 (95% CI¼ 0.49 to 0.74) in the BEI population and
0.62 (95% CI¼ 0.52 to 0.75) in the ITT population (Supplementary
Figure 2, available online). A similar pattern was seen for OS:
stratified hazard ratios were 0.86 (95% CI¼ 0.72 to 1.04) vs 0.88
(95% CI¼ 0.75 to 1.04) in the BEI and ITT populations, respec-
tively (32).

MET, Neuropilin-1, and tVEGFR-2

Analyses of PFS and OS using the median as the cutoff between
low and high biomarker subgroups showed no association with
bevacizumab treatment effect for MET, neuropilin-1, or tVEGFR-2
(Figure 2). None of the markers appeared to be prognostic for PFS
or OS, as indicated by the similar median values in high and low
subgroups in the control arm.

MVD (CD31)

The number of CD31-positive vessels/mm2 of tumor tissue was
used to indicate MVD. The effect of bevacizumab on both PFS
and OS was greater in patients with higher (above median) MVD.
For PFS, the hazard ratio was 0.40 (95% CI¼ 0.29 to 0.54) favoring
bevacizumab in the high MVD subgroup vs 0.80 (95% CI¼ 0.59 to
1.07) in patients with low MVD (Pinteraction ¼ .003) (Figure 2A and
Figure 3A). The OS hazard ratios were 0.67 (95% CI¼ 0.51 to 0.88)
vs 1.10 (95% CI¼ 0.84 to 1.44), respectively (Pinteraction ¼ .02)
(Figure 2B and Figure 3B). The Pinteraction values suggest that MVD
is predictive for bevacizumab treatment effect.

Supplementary Figure 3 (available online) shows the distri-
bution of MVD across the BEI population. The potential predic-
tive value of MVD for OS appeared to be greater using the third
quartile as the cutoff to define high vs low MVD (Figure 4).
Sliding window analyses supported these observations, sug-
gesting increasing magnitude of both PFS and OS benefits from
bevacizumab with increasing MVD (Supplementary Figure 4,
available online).

In the control arm, patients with high MVD had worse out-
comes than those with low MVD, suggesting a prognostic effect
of MVD for both PFS and OS (Figure 3).

tVEGF-A

In contrast to MVD, no differential treatment effect on PFS was
observed in subgroup analyses according to tVEGF-A expression
dichotomized at the median (HR¼ 0.57, 95% CI¼ 0.42 to 0.75, vs
HR¼ 0.62, 95% CI¼ 0.45 to 0.86, in those with high vs low tVEGF-
A expression, Pinteraction ¼ .75) (Figure 2A). For OS, there was a
suggestion of a greater bevacizumab treatment effect in
patients with high tVEGF-A expression (HR¼ 0.72, 95% CI¼ 0.56
to 0.94, vs HR¼ 1.06, 95% CI¼ 0.81 to 1.39, for high vs low
tVEGF-A, Pinteraction ¼ .06) (Figure 2B). As with MVD, the potential
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predictive effect of tVEGF-A on OS was greater using the third
quartile as the cutoff between high and low tVEGF-A expression
(HR¼ 0.61, 95% CI¼ 0.42 to 0.89, vs HR¼ 1.00, 95% CI¼ 0.80 to
1.23, respectively, Pinteraction ¼ .02) (Figure 5).

Sliding window analyses suggested that the highest percen-
tile was associated with the largest PFS improvement with bev-
acizumab (Supplementary Figure 4, available online). For OS,

there was a more clearly detectable pattern of increasing OS
benefit from bevacizumab with increasing tVEGF-A expression.
The histogram showing the distribution of tVEGF-A expression
levels across the GOG-0218 BEI population had a long tail to the
right (Supplementary Figure 5, available online), indicating that
a relatively small subset of patients expressed extremely high
levels of tVEGF-A.

1873 randomized 

625 assigned placebo + 
chemotherapy 

623 assigned extended 
bevacizumab + chemotherapy 

483 with evaluable IHC 
biomarker sample 

24 did not receive 
study treatment at 
cycle 2 or beyond 

625 assigned concomitant 
bevacizumab + chemotherapy 

18 did not receive 
study treatment at 
cycle 2 or beyond 

15 did not receive 
study treatment at 
cycle 2 or beyond 

980 included in IHC 
biomarker analysis 

475 with evaluable IHC 
biomarker sample 

497 with evaluable IHC 
biomarker sample 

118 treated at cycle 2 or 
beyond but no evaluable 
IHC biomarker sample 

132 treated at cycle 2 or 
beyond but no evaluable 
IHC biomarker sample 

111 treated at cycle 2 or 
beyond but no evaluable 
IHC biomarker sample 

601 treated at cycle 2 
or beyond 

608 treated at cycle 2 
or beyond 

607 treated at cycle 2 
or beyond 

Figure 1. Trial profile. IHC ¼ immunohistochemistry.

Table 1. Baseline characteristics in the biomarker-evaluable immunohistochemistry and intention-to-treat populations*

Characteristic

BEI population ITT population

Placebo þ chemotherapy
(n¼ 483)

Extended bevacizumab þ
chemotherapy (n ¼ 497)

Placebo þ chemotherapy
(n¼ 625)

Extended bevacizumab þ
chemotherapy (n¼ 623)

Median age (range), y 60 (26 to 85) 59 (22 to 89) 60 (24 to 85) 59 (22 to 89)
GOG performance status,

No. (%)
0 237 (49.1) 250 (50.3) 311 (49.8) 307 (49.3)
1/2 246 (50.9) 247 (49.7) 314 (50.2) 316 (50.7)

Primary disease site: ovary,
No. (%)

398 (82.4) 419 (84.3) 515 (82.4) 531 (85.2)

FIGO stage and debulking
status at diagnosis,
No. (%)

III optimally debulked 161 (33.3) 171 (34.4) 219 (35.0) 216 (34.7)
III suboptimally

debulked
203 (42.0) 194 (39.0) 253 (40.5) 242 (38.8)

IV 119 (24.6) 132 (26.6) 153 (24.5) 165 (26.5)
Mucinous or clear cell,

No. (%)
20 (4.1) 28 (5.6) Clear cell 20 (3.2)

Mucinous 11 (1.8)
Clear cell 25 (4.0)
Mucinous 10 (1.6)

Mean residuum (SD), cm 2.7 (3.68) 2.6 (3.65) 2.6 (3.49) 2.7 (3.77)
Ascites present at baseline,

No. (%)
347 (71.8) 353 (71.0) 454 (72.6) 445 (71.4)

Measurable disease at base-
line, No. (%)

321 (66.4) 314 (63.2) 396 (63.4) 403 (64.7)

*BEI ¼ biomarker-evaluable immunohistochemistry; FIGO ¼ International Federation of Gynecology and Obstetrics; ITT ¼ intention-to-treat.
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In the control arm, high tVEGF-A expression appeared to be
associated with worse PFS outcome, but the prognostic effect of
tVEGF-A on OS was less consistent (Figure 5).

Discussion

These retrospective tumor biomarker analyses suggest a posi-
tive association between the density of vascular endothelial
cells (the predominant cell type expressing VEGF receptors) and
tVEGF-A levels and the magnitude of OS improvement from
frontline bevacizumab in epithelial ovarian cancer (and PFS
improvement for MVD). In analyses according to MVD levels,
improvement in PFS (primary end point) with the addition of

bevacizumab to chemotherapy was seen in both the subgroup
with high (above median) MVD and the subgroup with low
MVD. However, the extent of PFS benefit was markedly more
pronounced in patients with higher MVD. In the subgroup of
patients with higher MVD, there was also an OS gain, contrast-
ing with the lack of OS benefit observed in the ITT population.
There was no OS effect of bevacizumab (either beneficial or det-
rimental) in patients with low MVD. There was also a suggestion
of OS improvement with bevacizumab in patients with high
tVEGF-A expression, although such an effect was not observed
for PFS. The remaining three tumor markers evaluated (MET,
neuropilin-1, and tVEGFR-2) showed no predictive value for bev-
acizumab efficacy.

No. of events/ 
patients

Median PFS,
mo

Marker PLA + 
CT

BEV + 
CT

PLA + 
CT

BEV + 
CT

MET Low

High

168/378

46/79

130/395

27/69

12.4

10.4

18.8

15.2

0.63

0.57

(0.50 to 0.79)

(0.33 to 0.98)

CD31 MVD Low

High

103/238

119/228

85/232

74/249

13.4

9.8

18.0

19.9

0.80

0.40

(0.59 to 1.07)

(0.29 to 0.54)

Neuropilin -1 Low

High

111/244

115/237

76/246

87/245

12.5

11.6

21.1

17.3

0.54 

0.65

(0.40 to 0.72)

(0.49 to 0.86)

tVEGF-A Low

High

107/248

118/234

70/239

93/254

12.6

10.6

17.9

19.1

0.62

0.57

(0.45 to 0.86)

(0.42 to 0.75)

tVEGFR-2 Low

High

137/284

86/193

92/279

68/206

12.3

12.1

18.4

18.7

0.59

0.62

(0.45 to 0.77)

(0.45 to 0.87)

BEV + CT
better

PLA + CT 
better

.75

.003

.15

.80

.79

Pinteraction*

Pinteraction*

A

HR (95% CI)†
0.2 0.5 1 2 5

No. of events/ 
patients

Median OS, 
mo

Marker PLA + 
CT

BEV + 
CT

PLA + 
CT

BEV + 
CT

MET Low

High

182/378

44/79

173/395

37/69

41.1

35.1

44.8

33.5

0.88

1.09

(0.71 to 1.09)

(0.70 to 1.71)

CD31 MVD Low

High

110/238

122/228

113/232

99/249

42.4

35.9

40.5

45.6

1.10

0.67

(0.84 to 1.44)

(0.51 to 0.88)

Neuropilin -1 Low

High

119/244

120/237

107/246

108/245

40.6

39.6

43.8

43.4

0.86 

0.87

(0.66 to 1.12)

(0.67 to 1.13)

tVEGF-A Low

High

110/248

129/234

110/239

107/254

42.4

39.3

39.8

45.4

1.06

0.72

(0.81 to 1.39)

(0.56 to 0.94)

tVEGFR-2 Low

High

136/284

100/193

117/279

96/206

43.0

39.3

48.1

42.3

0.86

0.91

(0.67 to 1.11)

(0.69 to 1.21)

.06

.02

.80

.77

.28

B

BEV + CT
better

PLA + CT 
better

HR (95% CI)†
0.2 0.5 1 2 5

Figure 2. Overview of candidate biomarkers for (A) progression-free survival and (B) overall survival.

*Cox model including treatment, biomarker (dichotomized at median), interaction of treatment by biomarker, International Federation of Gynecology and Obstetrics

(FIGO) stage and debulking status, and baseline performance status as covariates. The two-sided interaction test was performed using the Wald test. †Stratified analy-

sis (using the two stratification factors used for patient random assignment: FIGO stage and debulking status, and baseline performance status). BEV ¼ bevacizumab;

CD ¼ cluster of differentiation; CI ¼ confidence interval; CT ¼ chemotherapy; HR ¼ hazard ratio; MVD ¼microvessel density; OS ¼ overall survival; PFS ¼ progression-

free survival; PLA ¼ placebo; tVEGF ¼ tumor vascular endothelial growth factor; tVEGFR ¼ tumor vascular endothelial growth factor receptor.
A

R
T

IC
LE

C. Bais et al. | 5 of 10

Deleted Text: front-line


The main limitation of these analyses is their retrospective
and exploratory nature. One of the strengths of this analysis is
the very large sample size (n¼ 980), the high proportion of
patients (78.5%) with samples available for translational
research, and the high quality of the specimens. Importantly,
the BEI population was representative of the ITT population,

showing similar baseline characteristics and efficacy outcomes.
This contrasts with previously reported biomarker analyses of
the ICON7 trial, which used smaller subsets of samples (33–36).
The association between higher levels of MVD and the molecu-
lar target of anti-VEGF therapy and enhanced benefit from beva-
cizumab is consistent with one of the postulated mechanisms
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of action of bevacizumab, angiogenesis inhibition-induced
tumor cell starvation (37). The observed OS improvement in
these populations may reflect the benefit of bevacizumab out-
weighing other confounding factors, such as crossover or multi-
ple additional therapies. Whether these candidate biomarkers
will also predict benefit in other tumor types or indications in
which bevacizumab is given only concurrently with chemother-
apy remains to be determined. MVD probably varies according
to the time within the natural disease history. Therefore, in
ovarian cancer, it would be interesting to assess whether this
relationship with bevacizumab is present for recurrent disease,
including platinum-resistant tumors. Additionally, MVD varies
according to tumor type. Comparison of four cancer types using
the same MVD measuring technique revealed mean MVD of 112
(SD¼650) vessels/mm2 for renal cell cancer (22 patients), 76
(SD¼621) vessels/mm2 for colorectal cancer (19 patients),
65 (SD¼630) vessels/mm2 for glioblastoma (20 patients), and 43
(SD¼613) vessels/mm2 for ovarian cancer (21 patients) (31).
From a technical perspective, this means that in epithelial

ovarian cancer, which has lower intratumoral MVD, fewer ROIs
may need to be interrogated for a representative and reliable
MVD assessment (30).

Although VEGF-A and its receptors were considered the
most obvious candidate biomarkers, previous results for both
have been inconsistent across trials and tissue types, and
even—as in the present trial—across end points within a single
trial (38). Initially, bevacizumab biomarker research focused on
plasma biomarkers due partly to the convenience of their
potential clinical application. Retrospective analyses in breast,
pancreatic, and gastric cancers suggested that plasma (p)VEGF-
A might be a promising candidate biomarker (39–41). However,
with increased understanding of the effects of bevacizumab
and differences in disease biology, it appears that pVEGF-A is
not a robust pan-tumor biomarker (42). More recently, the first
prospective trial evaluating pVEGF-A in metastatic breast can-
cer showed no differential bevacizumab treatment effect on PFS
according to baseline pVEGF-A levels (43). The hypothesis for
pVEGF-A as a potential predictive biomarker has a particularly
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Figure 5. Bevacizumab treatment effect by tumor vascular endothelial growth factor–A quartile. A) Progression-free survival. B) Overall survival. The two-sided interac-

tion test was performed using the Wald test. *Cox model including treatment, biomarker (dichotomized at quartile 1, median, or quartile 3), interaction of treatment by
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weak rationale in the context of postoperative settings.
Exploratory correlative analyses of GOG-0218 showed no predic-
tive effect of baseline plasma concentrations of key candidate
biomarkers, including pVEGF-A, for bevacizumab efficacy
(44,45). An additional complication in GOG-0218 is that all sam-
ples were collected after debulking surgery and before chemo-
therapy, meaning they reflect removal of bulk tumor and the
impact of the surgical wound. However, most VEGF-A secreted
by tumors (tVEGF-A) is retained in the extracellular matrix and
is released to act on endothelial cells only after proteolytic proc-
essing (46). As only a fraction of tVEGF-A is proteolytically proc-
essed and biologically active, the relationship between tVEGF-A
expression levels and VEGF-A activity may not be linear, and
thus the right cutoff level for this marker may not be evident a
priori. Interestingly, a relatively small subset of patients in
GOG-0218 had tumors expressing extremely high levels of
tVEGF-A; in these patients, the VEGF-A pathway may be consis-
tently more active (Supplementary Figure 5, available online). In
this study, we observed that patients with the highest tVEGF-A
levels (highest quartile) seem to derive an OS benefit from beva-
cizumab treatment. One might speculate that these high
expressers may represent the true VEGF-dependent
subpopulation.

In conclusion, this retrospective analysis of GOG-0218 identi-
fied high MVD and tVEGF-A levels as potential predictive bio-
markers for bevacizumab efficacy in newly diagnosed ovarian
cancer. These intriguing findings should be considered when
designing future trials, and markers such as MVD and tVEGF-A
could eventually inform sequencing of approved targeted thera-
pies in specific patient subpopulations.
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