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Abstract Zika virus (ZIKV), a relatively elusive Aedes
mosquito-transmitted flavivirus, had been brought into spot-
light until recent widespread outbreaks accompanied by unex-
pectedly severe clinical neuropathies, including fetal micro-
cephaly and Guillain—Barré syndrome (GBS) in the adult. In
this review, we focus on the underlying cellular and molecular
mechanisms by which vertically transmitted microorganisms
reach the fetus and trigger neuropathies.
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Introduction

The tropical pathogen Zika virus (ZIKV), an Aedes mosquito-
borne flavivirus, is an emerging arbovirus, initially discovered
in Uganda as early as 1940s, but the geographic range has
expanded drastically, marching across Latin America,
Africa, and Southeast Asia, between January 1, 2007 and
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March 1, 2016 (Haddow et al. 2012; Wikan and Smith
2016). ZIKV remained relatively elusive due to the most
asymptomatic and quiet moderate nature and of the infection,
and, when self-limited febrile symptoms are present, typically
characterized by skin rash, conjunctivitis, and joint pain, just
resembling that of dengue fever and chikungunya (Brasil and
Nielsen-Saines 2016). However, recent widespread outbreaks
had brought ZIKV into spotlight, as evidence denoting that
ZIKV has been causally associated with adverse fetal
microcephaly in newborns (Malkki 2016a) and severe
neurological injuries in adults including Guillain—Barré
syndrome (Malkki 2016b; Parra et al. 2016; van den Berg
et al. 2014). In addition to the increase of severe illnesses,
novel modes of ZIKV deliveries have been detected, includ-
ing sexual transmission (Hills et al. 2016) and maternal-fetal
transmission (Brasil and Nielsen-Saines 2016; Brasil et al.
2016b). Presence of ZIKV in the male semen and female
genital tract poses notable challenges, implying that ZIKV
can be spread through sexual intercourse and by vertical
ransmission (D’Ortenzio et al. 2016; Mansuy et al. 2016;
Petersen et al. 2016; Prisant et al. 2016). ZIKV was reported
in the amniotic fluid and placenta of pregnant women whose
fetuses had been diagnosed with microcephaly, and microce-
phalic fetal neural tissues, indicating that ZIKV can breach the
placental barrier and invade the fetus (Calvet et al. 2016;
Martines et al. 2016; Mlakar et al. 2016).

The explosive and unprecedented cases of microcephaly
and Guillain—Barré¢ syndrome prompted the World Health
Organization (WHO) to declare a Public Health Emergency
of International Concern on February 1, 2016 (Heymann et al.
2016) and to advocate researches into possible causal relation-
ships and underlying mechanisms of ZIK V-induced neurologic
disorders.
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Molecular insights into ZIKV

Despite epidemic in Africa and Asia during the past half cen-
tury, ZIKV infections were not linked to severe human disor-
ders until now. It has been postulated that genetic variations of
the ZIKV genome may have contributed to its accelerated
transmissibility and infectivity, enhanced neurotropism, and
increased replicative capacity. Due to the remaining elusive
reasons for this, molecular insight into this virus may benefit
our understanding of the biology of ZIKV and vaccines
development.

ZIKV is an enveloped flavivirus with a nearly 10,800 nu-
cleotides positive-sense RNA molecule. The derived single
polyprotein is processed after translation into three structural
proteins (capsid [C], precursor Membrane [prM], and enve-
lope [E]) and 7 nonstructural proteins (NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5) by host and viral proteases
(Kuno and Chang 2007). Structural protein C interacts with
the viral RNA to construct a nucleocapsid, prM inhibits pre-
mature viral fusion with host membranes, and E, the viral
fusogen, regulates cellular attachment, accelerates membrane
fusion, and releases the viral genome into the host (Lazear and
Diamond 2016; Mukhopadhyay et al. 2005), whereas the viral
nonstructural proteins mediate viral transcription and replica-
tion and also mitigate host antiviral responses (Diamond and
Pierson 2015; Lazear and Diamond 2016; Mukhopadhyay
et al. 2005; Suthar et al. 2013).

To inspect the molecular evolution of ZIKV, Wang L et al.
(2016) conducted phylogenetic and genetic studies.
Interestingly, two major lineages of ZIKV, African and
Asian, was detected, whereas the contemporary human strains
derive from the Asian lineage (Faria et al. 2016; Wang et al.
2016). Numerous genetic variations in ZIKV genomes has
been revealed, along of which ZIKV has evolved from caus-
ing only a benign disease to trigger adverse neurological dis-
orders (Baronti et al. 2014; Wang et al. 2016). Structural
modeling studies suggest that genetic variations of ZIKV
could elicit specific structural changes of prM protein, which
could play a role in neurotropism and neurovirulence. Future
experiments are eagerly required to determine how such ami-
no acid or nucleotide substitutions impact the increased epi-
demic potential, neurotropism, and pathogenesis.

ZIKV is closely linked to dengue virus, belonging to the
family Flaviviridae. Both genetically and serologically, ZIKV
is associated with the four serotypes of dengue with approxi-
mately 43% amino acid sequence consensus (Lanciotti et al.
2008). Intriguingly, several antibodies isolated from dengue
patients potently neutralize ZIKV through targeting a confor-
mational epitope (Barba-Spaeth et al. 2016; Pierson and
Graham 2016). The structural basis of potent Zika—dengue
virus antibody cross-neutralization was revealed by compar-
ing the Zika and dengue virus immunocomplexes, providing a
lead for rational, epitope-directed design of a universal
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vaccine enough for inducing potent cross-reactivity antibodies
to opposing Zika and dengue viruses simultaneously (Barba-
Spaeth et al. 2016).

Animal models developed for ZIKV researches

In light of the catastrophic outcomes of this rapidly emerging
infectious disease, it is urgently required to develop animal
models of in utero ZIKV infection, which facilitate to define
the plausibility of causal relationships between ZIKV and neu-
rological diseases, and to assess the mechanisms of congenital
abnormalities (Broutet et al. 2016; Rasmussen et al. 2016). In
humans, the placenta plays a pivotal role in preventing vertical
transmission of viruses (Coyne and Lazear 2016; Pastula et al.
2016). The question of whether the placenta is permissive to
viral breaching has been challenging to resolve and confirm
the mode of sexual and maternal-fetal transmission of ZIKV.

Several particularly novel and relevant mouse models, the
most powerful tools for biomedical researches by far, are
established to unravel the mysteries of placental breaching
and transmission. ZIKV invades multiple primary human pla-
cental cell types and explants, suggesting placental and
paraplacental routes of virus mother-to-fetus transmission
routes (Quicke et al. 2016; Tabata et al. 2016). Lazear et al.
(2016) established a mouse model lacking interferon o/f3 re-
ceptor 1 (Ifnarl™"), which succumb to infection and exhibits
neurological destruction, accompanied by high viral loads in
the brain and spinal cord, as well as in the spleen, testes, and
serum, which is consistent with severe symptoms of ZIKV in
humans, as did a IFN regulatory factor (rf)3~ Irf5 " Irf7 '~
triple knockout mouse strain that are deficient for type I [FN
production (Lazear et al. 2016). Genetic deletion and antibody
blockade of Ifnarl early in pregnancy causes infection of the
placenta and embryonic brain, leading to in utero growth re-
striction and spontaneous pregnancy losses reported in ZIK'V-
infected pregnant women (Miner et al. 2016a; Suter and
Aagaard 2016). Li et al. (2016b) utilizes Irf3~ Irf5 " Irf7 "~
triple knockout strain to inoculate virus into the peripheral
circulation by retro-orbital injection, rather than direct injec-
tion into the brain, to simulate the blood-borne transmission
(Li et al. 2016b).

Moreover, a nonhuman primate model was established to
closely emulate human pathologies by injecting a current
ZIKV strain subcutaneously in five locations on the forearms
of a pregnant pigtail macaque at 119 days gestation, which is
beneficial for the development of therapeutics and vaccines
that could attenuate intrauterine infection of ZIKV (Abbink
et al. 2016; Adams Waldorf et al. 2016; Dowd et al. 2016).
Periventricular lesions were significantly detected in the non-
human primate model, along with cerebral white matter hypo-
plasia, periventricular white matter gliosis, and axonal and
ependymal injury (Adams Waldorf et al. 2016).
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Cellular and molecular mechanisms implied
in ZIKV-induced microcephaly

By far, the global alarm of the Zika virus is its great threat to
fetal brain. ZIKV infection and microcephaly are causally as-
sociated based on epidemiological data indicating an in-
creased risk of microcephaly coinciding with the ZIKV out-
break (Brasil et al. 2016a; Brasil et al. 2016b; de Fatima Vasco
Aragao et al. 2016; Hayes 2009; Sarno et al. 2016). However,
definitive proofs are still needed to confirm the causality be-
tween the viral epidemic and malformations in fetal brains.

During telencephalic development, neural progenitor cells
(NPCs) proliferate, differentiate into numerous fates, migrate
to their apposite positions, and maturate into a precisely or-
chestrated human brain, capable of higher-order language,
cognition, and emotion (Budday et al. 2015). Disturbance of
these processes resulted in neurodevelopmental disorders in-
cluding fetal microcephaly, thought to derive from the deple-
tion of NPC population, either through premature differentia-
tion or loss of NPCs (Barkovich et al. 2012; Kriegstein and
Alvarez-Buylla 2009; Molyneaux et al. 2007; Wilsch-
Brauninger et al. 2016; Wollnik 2010; Woodworth et al.
2012). The NPCs in the fetal brain appear to be probably
impacted, due to its greater susceptibility to the neurotropism
and neurovirulence of ZIKV infection.

Several recent studies provide some tractable experimental
systems for modeling the impact of ZIKV on
neurodevelopment and inspecting underlying cellular and mo-
lecular mechanisms.

The original ZIKV strain MR766 can directly infect NPCs
derived from human induced pluripotent neural stem cells
(hiPSCs) with high efficiency in vitro, and the infected
hiNPCs also release infectious viral particles (Tang et al.
2016). ZIKV infection elicits dysregulation of cell cycle pro-
gression and cell loss of hiPSCs, attenuating their viability and
growth as neurospheres and brain organoids (Garcez et al.
2016; Qian et al. 2016; Tang et al. 2016).

Animal models of human fetal infection are still needed to
understand when, how, and why ZIKV invades developing
brain, and provide the more detailed landscape of ZIKV-
induced neurodevelopmental abnormalities. Cugola et al.
(2016) inoculated Brazilian ZIKV strain into the brains of
unborn SJL pups and detected cerebral malformations in the
surviving fetuses, with decreased number of neural cells and
cortical layer thickness, pathologies linked to fetal microceph-
aly in humans (Cugola et al. 2016). Upon close inspection of
the ZIKV-infected mouse brains, Li et al. revealed that
ZIKVS%°! replicated in the embryonic mouse brain, sup-
pressed proliferation and differentiation of NPCs after infec-
tion, ultimately leading to signs related with microcephaly (Li
et al. 2016a). Wu et al. developed another mouse model by
intraperitoneal injection of a contemporary ZIKV strain into
the maternal mice, which provide evidence that ZIKV could

be vertically transmitted from the pregnant mice to their fe-
tuses (Wu et al. 2016). ZIKV invaded fetal brain results in a
decrease in the proliferative pool of cerebral NPCs (Wu et al.
2016).

Neurotropic ZIKV could gain entry into the CNS and cause
disease through many surface proteins, such as the candidate
AXL receptor, which facilitates ZIKV to invade the develop-
ing CNS (Luethy et al. 2016; Nowakowski et al. 2016; Perera-
Lecoin et al. 2013). Intriguingly, Nowakowski et al. (2016)
assessed the expressive patterns of candidate ZIKV entry pro-
teins by single-cell RNA-seq and revealed that conserved and
high AXL expression in NPCs could render this neural cell
population selectively susceptible to ZIKV infection
(Nowakowski et al. 2016). Consistently, many candidate
ZIKV entry receptors were significantly elicited, most strik-
ingly AXL in animal models of ZIKV-induced microcephaly
(Li et al. 2016a).

ZIKV infection elicits the deregulation of genes related to
neurogenesis like Nestin and Sox2, differentiation, apoptotic
pathways, and immune response-associated factors including
TLR3, which has been validated in several independent
in vivo and in vitro studies (Dang et al. 2016; Li et al.
2016a; Li et al. 2016b; Tang et al. 2016; Wu et al. 2016).
Multiple key cellular signaling cascades, including the
PI3K-Akt-mTOR pathway, are critical for neurogenesis from
NPCs, as well as for subsequent migration and maturation,
and autophagy regulation in brain development (Lee 2015;
Takei and Nawa 2014). Liang et al. (2016) revealed that after
invading of NPCs in the fetal brain, the nonstructural proteins
NS4A and NS4B of ZIKV prohibit the Akt-mTOR cascade,
disturbing neurogenesis and eliciting autophagy (Liang et al.
2016). Therefore, the above researches define candidate mo-
lecular targets of ZIKV pathogenesis and highlight potential
determinants for pharmaceutical intervention.

ZIKY linked pathologies beyond congenital
microcephaly

ZIKV have numerous cellular tropisms and various factors
that contribute to pathogenic consequences, involving defined
cellular response and tissue accessibility (Diamond and
Pierson 2015; Sips et al. 2012). ZIKV invades optic nerve,
retina, iris, and cornea, and trigger panuveitis, conjunctivitis,
and neuroretinitis in mice (Miner et al. 2016b). The results
from human studies also reveal that ZIKV analogously infects
the human ophthalmic tissues and trigger adverse eye illnesses
including optic neuritis, chorioretinal atrophy, and blindness
in neonates, and conjunctivitis and uveitis in adults (Miner
et al. 2016b; Sun et al. 2016). Congenital ocular disease trig-
gered by ZIKV could be due to direct invading of fetal ocular
cells.
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A notable rise in the incidence of GBS, observed in French
Polynesia and Colombia during ZIK'V outbreaks, respectively,
in 2013 and 2016, implies ZIKV a pathogen that can lead to
GBS, a severe neurological disease characterized by an
immune-mediated progressive muscle weakness that can ulti-
mately trigger flaccid paralysis and respiratory failure (Malkki
2016b; Parra et al. 2016; van den Berg et al. 2014). Moreover,
ZIKV can produce neurological outcomes, including demye-
linating polyneuropathy and brachial plexopathy and recently
acute meningoencephalitis in adult (Carteaux et al. 2016).
These neurological disorders may in fact be consequences of
ZIKV exposure in adult.

Utilizing triply Irf-disrupted mice, Li et al. (2016b) re-
vealed that blood-borne ZIKV administration can infect
NPCs, causing cell death and decreased proliferation, in the
adult neurogenic zones (Li et al. 2016b). We note that ZIKV
also infects other human cell types, including skin cells and
fibroblasts (Hamel et al. 2015). Intriguingly, an early mouse
research observed ZIKV infection of neurons and astrocytes
and detected enlarged astrocytes (Bell et al. 1971). ZIKV also
invades immature neurons and astrocytes with lower efficien-
cy in mice (Bell et al. 1971; Tang et al. 2016). These findings
raise pivotal concerns about pathological effects on neurons
and other cell types in the central and peripheral nervous sys-
tem, as well as potential long-term outcomes.

Conclusion

ZIKV-linked neuropathology is an eager global health alarm.
Accumulated evidence from clinical, imaging, laboratory, and
pathological assessment provided a more complete landscape
of the severe neurological abnormalities triggered by ZIKV
infection. After crossing the placental-fetal barrier, ZIKV
breaches the fetal brain and invades neural stem cells as the
primary target population with the highest AXL expression.
By preferentially disrupting neural stem cells, the founder
cells that generate all neuronal and glial cells, leading to neural
cell death by autophagy and apoptosis, ZIKV can impair brain
development and generate adverse microcephaly. The term
congenital Zika syndrome is preferable to refer to these cases,
as microcephaly is just one of the clinical signs of this con-
genital malformation abnormality. Moreover, results suggest
that adult as well as fetal neural stem cells are susceptible to
ZIKV infection. Broad cellular tropisms of ZIKV on numerous
cell types could induce adverse long-term consequences.
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