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ARTICLE INFO ABSTRACT

Article history: Background: Rhinovirus infection is a major cause of asthma exacerbations.

Received 1 February 2017 Objectives: We studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-in-
Received in revised form 9 March 2017 duced asthma exacerbations.

Accepted 24 March 2017 Methods: We used nasosorption on days 0, 2-5 and 7 and bronchosorption at baseline and day 4 to sample mu-

Available online 28 March 2017 cosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma

(n = 28) and healthy non-atopic controls (n = 11), by using a synthetic absorptive matrix and measuring levels

Iéfl}i’:;?,riﬁs of 34 cytokines and chemokines using a sensitive multiplex assay.

Asthma Results: Following rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and
Mucosal immunology lower peak expiratory flows compared to controls (all P < 0.05). Asthmatics also developed higher nasal lining
Absorption of mucosal lining fluid fluid levels of an anti-viral pathway (including IFN-vy, IFN-N/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a
Interferons type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under
Type Il inflammation curve day 0-7, all P<0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P<0.01) and levels increased

by days 3 and 4 (P<0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels
over 7 days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asth-
matics [FN-y, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infec-
tion (all P < 0.05).
Conclusions: Precision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the
upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption
have potential to define asthma endotypes in stable disease and at exacerbation.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Throughout life the human immune system is modulated by interac-
tions with viruses, bacteria, and allergens (Hansel et al., 2013). Abnor-
mal airway mucosal inflammatory responses are a feature of asthma,
and an expanding number of asthma phenotypes are now recognised
at a clinical and molecular level (Wenzel, 2012). Since rhinoviruses
are a major cause of exacerbations of asthma (Jackson & Johnston,
2010), it is important to monitor rhinovirus-induced mucosal immune
responses.

Airway inflammation and asthma phenotypes have been defined by
sputum eosinophil and neutrophil percentages (Moore et al., 2014), and
bronchial and nasal mucosal gene expression can be used to define
endotypes of asthma (Choy et al.,, 2011; Poole et al., 2014). However,
blood eosinophil counts are generally used to monitor inflammation
in severe asthma, although there is recognition of the need to develop
non-invasive sampling methods coupled to assessment of biomarkers
(Chung et al., 2014). Based on the presence of airway eosinophilia and
type 2 inflammation in asthma (Choy et al.,, 2011; McGrath et al.,
2012; Fahy, 2015), biologic therapies targeting type 2 inflammation
are being introduced for selected asthmatics (Hambly & Nair, 2014;
Chung, 2015).

The magnitude of interferon production in asthma remains contro-
versial. Deficiency of various interferons (IFNs) has been demonstrated
using cultured human bronchial epithelial cells (hBECs) from asth-
matics following rhinovirus infection in vitro. This includes deficiency
of IFN-P and IFN-N\ in primary bronchial epithelial cells (PBECs) (Wark
et al., 2005; Contoli et al., 2006; Edwards et al., 2013), and deficiency
of IFNs (v, o, p and \) and IL-15 in BAL cells (Contoli et al., 2006;
Message et al., 2008; Sykes et al., 2012; Laza-Stanca et al., 2011). How-
ever, rhinovirus-induced interferon production in hBECs is not deficient
in well-controlled asthma (Sykes et al., 2014), hBECs from asthmatics
have preserved interferon responses to influenza and respiratory syncy-
tial virus (RSV) (Patel et al.,, 2014), and TLR responses are not impaired
in asthmatic airway and blood cells (Sykes et al., 2013). In addition, ro-
bust IFN-y and IFN-N responses have been found clinically in children
with asthma during naturally-occurring virus-induced exacerbations
(Lewis et al., 2012; Miller et al., 2012), and severe adult asthmatics
and neutrophilic asthmatics have recently been shown to have a domi-
nant [FN-y immune response in BAL (Raundhal et al., 2015; da Silva et
al, 2017).

Nasosorption with paper and then synthetic absorptive matrices
(SAM) has been used to sample nasal mucosal lining fluid (Alam et al,
1992; Lu & Esch, 2010; Scadding et al., 2012; Jochems et al., 2017).
This technique can be considered as “precision mucosal sampling”,
since it samples directly from the respiratory mucosa, and is free from
the salivary contamination that occurs in breath and sputum sampling.
Nasosorption sampling involves manipulating the synthetic absorptive
matrix (SAM) up the lumen of the nasal cavity, and then holding it in
position against the mucosa by external firm finger pressure. This is
more comfortable and less invasive than using a conventional swab,
where rotation against the mucosal surface is generally required.

Sampling by nasosorption has been carried out in children with rhini-
tis (Chawes et al,, 2010), neonates (Folsgaard et al.,, 2012), and after nasal
allergen challenge (Scadding et al., 2012, 2015; Nicholson et al., 2011;
Leaker et al., 2017). Nasal lavage causes considerable dilution of nasal me-
diators, resulting in levels approximately tenfold less than those found in
nasosorption samples (Riechelmann et al., 2003; Hentschel et al., 2014).
The absorption technique of bronchial microsampling has also been de-
veloped (Ishizaka et al., 2001), but this sampling method caused mucosal
bleeding in patients with asthma (Cohen et al., 2008), and we have devel-
oped a modified bronchosorption system.

This study involves experimental rhinovirus infection followed by
serial nasosorption and bronchosorption sampling, with the aim of
studying upper and lower airway mucosal immune responses in indi-
vidual patients with asthma. Following experimental rhinovirus

infection we have previously reported baseline and peak nasal re-
sponses, together with baseline and day 4 bronchial responses of IL-4,
IL-5, IL-13 and IL-33 (Jackson et al., 2014), IL-15 (Jayaraman et al.,
2014); IL-18 (Jackson et al., 2015), and IL-25 (Beale et al., 2014) in sam-
ples from the current study. In this report we provide a more complete
presentation of levels of 34 cytokines and chemokines from the nose
and lung, based on presentation of values recorded at defined time
points in individual patients.

2. Materials and Methods
2.1. Study Participants

Non-smoking asthmatic and healthy non-asthmatic volunteers aged
18-55 years with absent serum neutralising antibodies to rhinovirus-16
(RV16) were recruited (Jackson et al., 2014).

2.2. Study Approval

This clinical study received Research Ethics Committee approval
(09/H0712/59) and written informed consent was obtained from all
participants prior to inclusion in the study.

2.3. Inclusion and Exclusion Criteria

Asthmatic subjects were eligible for inclusion if they had a doctor
diagnosis of asthma and objective evidence of airway
hyperresponsiveness with a (PC),o histamine <8 pg/mL, evidence of
atopy on skin prick testing (>1 positive skin prick test on a panel of 10
common aeroallergens), and a history of worsening asthma symptoms
with infection (Jackson et al., 2014). Subjects were excluded if they
had a history of severe asthma or any significant other respiratory or
medical disease, smoking of >5 pack year history or any smoking within
the previous 6 months, current symptoms of allergic rhinitis, or had ex-
perienced an asthma exacerbation or viral illness within the previous
6 weeks.

Healthy, non-smoking subjects were eligible if they had no history of
asthma, allergy or any other significant disease, had negative skin prick
testing, and no objective airway hyperresponsiveness with a histamine
(PC)20 2 8 pg/mL (Jackson et al., 2014).

Pregnant or breastfeeding women and any subject who had contact
with infants or the elderly at home or at work were excluded. Further
exclusion criteria included use of any nasal or oral medication including
anti-histamines, or nasal/oral corticosteroids. Subjects were excluded
from the study analysis if they failed to develop objective evidence of
a rhinovirus infection defined as serum neutralising antibody to RV16
at 6 weeks of <1:4 and no detection of RV16 in nasal lavage samples
throughout the infection period (day 2-10) (Jackson et al., 2014).

24. Study Design

Volunteers underwent bronchoscopy with bronchosorption ~14 days
prior to inoculation with RV16 and on day 4 (Fig. 1A). Nasosorption was
performed on days 0, 2-5 and 7. On day 0, nasosorption and then nasal
lavage sampling was performed immediately before inoculation with
virus (HRV16). RV16 (Bardin et al., 1996) was inoculated into both
nostrils (total dose 100 TCIDsq) using an atomizer (no. 286; De Vilbiss
Co., Heston, UK) on day 0. Rhinovirus was detected during the infection
by PCR of nasal lavage (Scadding et al., 2015). Daily diary cards of respira-
tory symptoms (Message et al., 2008) were commenced 2 weeks prior to
baseline sampling and continued until 6 weeks after inoculation, with
lower respiratory symptom scores corrected for the effects of bronchos-
copy (Message et al., 2008; Jackson et al., 2014). Spirometry was per-
formed on waking using a Piko-1 spirometer (nSpire Health, CO).
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Fig. 1. Study design with clinical and viral load responses to rhinovirus infection. Nasal inoculation with rhinovirus 16 (RV16) was performed in 28 asthmatic and 11 healthy controls (a).
Nasal mucosal lining fluid was sampled by the technique of nasosorption on days 0,2,3,4,5 and 7 post-inoculation. Bronchial lining fluid was sampled by bronchosorption at baseline
(—14d) and day 4 post-inoculation. Upper (b) and lower (c) respiratory tract symptom scores, with changes in morning peak expiratory flow (PEF) from baseline (d) and nasal viral
load (e) are shown for asthmatic (red) and healthy (blue) subjects. Bars represent mean values (b-d) or median values (e). This clinical data and the viral load responses have

previously been reported (Jackson et al., 2014).

2.5. Nasosorption

Nasosorption was performed by placing strips of a hydrophilic
polyester absorptive matrix (Mucosal Diagnostics, Hunt Develop-
ments (UK) Ltd., Midhurst, UK: available as a CE-marked device)
measuring 7 x 35 mm into each nostril for 2 min (Jackson et al.,
2014). Having removed the SAM strip, it was washed in PBS buffer
pH 7.4 (100 pl) containing BSA (1%) and Triton X 100 (1%) within
the cup of a spin filter insert (Costar® Spin-X®). Mucosal lining
fluid was then eluted from the SAM by spin filter centrifugation
(5 min at 16,000G at 4 °C), and aliquots frozen at — 80 °C.

2.6. Bronchosorption

The bronchosorption catheter was passed down the operating port of
a bronchoscope, and has an inner SAM probe that is extruded under di-
rect vision from the catheter using a handpiece (Hunt Developments
(UK) Ltd., Midhurst, UK: available as a CE-marked device). The main ben-
efit of bronchosorption sampling is the detection of relatively high levels
of mediators through avoiding the significant and variable analyte dilu-
tion associated with bronchoalveolar lavage. An inner probe wire is
tipped by a SAM (1.8 x 30 mm) which was placed on the bronchial mu-
cosa for a period of 30 s. Following sampling, the bronchosorption device
was withdrawn back into its catheter, and the complete device was

removed from the bronchoscope. The sampling end of the probe was
then cut off and treated in an identical way to the nasosorption strips.

2.7. Cytokine and Chemokine Immunoassays

Levels of 34 cytokines and chemokines in the extracted upper and
lower airway mucosal lining fluid were analysed using ultrasensitive
Meso Scale Discovery multi-spot human cytokine assays (Meso Scale
Discovery, Gaithersburg, MD, USA). Samples were read using the Sector
Imager 6000 (Meso Scale Discovery).

2.8. Multiplex Immunoassay of Cytokines and Chemokines

The 34 cytokines and chemokines measured were IL-1p, IL-2, IL-4,
IL-5, IL-6, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-16, [L-17, IL-18, IL-
25, IL-29 /IFN-N\, IL-33, IFN-(, IFN-vy, TSLP, TNF-o, GM-CSF, CCL2/
MCP1, CCL3/MIP1c,, CCL4/MIP1(3, CCL5/RANTES, CCL11/eotaxin,
CCL13/MCP4, CCL17/TARC, CCL20/MIP3¢, CCL22/MDC, CCL26/eotaxin3,
CXCL8/IL-8, CXCL10/1P10, CXCL11/ITAC. The lower limit of detection
was 1.0 pg/ml for all mediators except CCL26/eotaxin-3, CCL2/MCP-1,
CCL13/MCP-4 and IL-33 (3 pg/ml); IL-16 (5 pg/ml); CCL11/eotaxin,
CXCL10/1P10, CCL17/TARC, IL-25, TSLP and CCL4/MIP13 (10 pg/ml);
IFN-3 (25 pg/ml); IL-29/IFN-N (40 pg/ml) and CCL22/MDC (100 pg/ml).
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Table 1
Baseline characteristics of study volunteers.
Characteristic Healthy Asthma P
(N=11) (N=28)
Age (yr) 314+ 12 36 + 11 NS
Sex (%)

Female 4(36) 15 (54)

Male 7 (64) 13 (46) NS
White ethnicity (% of subjects) 9(82) 22 (79) NS
Percent predicted FEV; 104 + 8 86 4+ 12 <0.001
Histamine PCyo (mg/mL) >16 13+£20 -
Asthma control questionnaire (ACQ) score - 1.1+ 06 -
ICS use (%) - 15 (54) -
ICS daily dose - 427 +£ 71 -

Beclometasone equivalent (mcg) (mean
of steroid-treated subjects, n = 15)

IgE 1U/mL, median (IQR) 16 (14-19) 139 (70-448) <0.001

Aeroallergen sensitivity (no. of positive skin - 27+12 -
prick tests)
Blood eosinophils (per pL) 100 £ 63 264 + 213 <0.001

These baseline characteristics have been previously reported (Jackson et al., 2014; Beale et
al,, 2014).

Means =+ standard deviation unless otherwise stated; FEV; = forced expiratory volume in
1 s; ICS = inhaled corticosteroids; IQR = interquartile range, NS = not significant.
Threshold for significance is defined as P < 0.05.

2.9. Statistical Analysis and Data Processing

Mucosal lining fluid eluate levels of cytokines and chemokines were
not normally distributed (Shapiro-Wilks test). Statistical analysis was
carried out for paired samples using the Wilcoxon signed-rank test,
and for non-paired samples with the Mann-Whitney test.

A Dynamical Hierarchical Correlation Matrix was produced for
nasosorption levels of 24 cytokines and chemokines on days 0, 2-5
and 7. Hierarchical dynamical correlation between the longitudinal cy-
tokine/chemokine profiles of individuals within each group is repre-
sented as a heat map with cytokine clustering (Opgen-Rhein &
Strimmer, 2006), using R statistical software (version 2.15.2).

A Volcano Plot was performed on normal transformed data for all 34
cytokines and chemokines, assessing the fold change between asth-
matics and controls from day 0 in relation to days 2-5 and 7 post infec-
tion. The fold change was calculated between asthmatics and controls
using mean levels of cytokine or chemokine on particular days. The P
value was derived by t-test and corrected for multiple testing (Benja-
min-Hochberg). Cluster Analysis of nasosorption levels was carried
out in relation to IFN-vy, IL-5 and IL-13 (Z score normalised) on day 0
and day 4.

3. Results
3.1. Study Subjects and Clinical Outcomes

28 allergic asthmatics and 11 healthy control subjects were success-
fully infected with RV16 (Jackson et al.,, 2014; Beale et al., 2014) (Table
1). Nasosorption and bronchosorption were well tolerated with no sig-
nificant adverse events. Respiratory symptoms and lung function mea-
surements were recorded daily throughout the study and have been
previously reported (Jackson et al., 2014), but we highlight day 4 after
infection (Fig. 1B, C, D), since bronchosorption was performed on this
day. On day 4 nasal viral load was not significantly different between
asthmatics and controls (Fig. 1E), although on day 3 viral load was sig-
nificantly increased in asthmatics (Fig. S1) (Jackson et al., 2014). Virus
load in asthmatics was not significantly increased when assessing area
under the curve for days 2-7 (Mann Whitney test, P = 0.0833). Viral
load on day 3 was assessed for correlation with levels of nasal cytokines
on day 3 (Table S1), viral load on day 4 was assessed for correlation with

levels of nasal cytokines on day 4 (Table S2), and also AUC for days 2-7
for both viral load and nasal cytokines were also analysed (Table S3).

3.2. Nasal Cytokines/Chemokines

We have previously reported that baseline nasal levels of IL-4, IL-5,
IL-13 were significantly increased in these asthmatic subjects compared
to controls (Jackson et al., 2014). IL-4, IL-5 and IL-13 become significant-
ly increased in asthmatics on and off inhaled corticosteroids (ICS), and
in both mild and moderately severe asthmatics.

We now report the type 2 chemokines CCL11/eotaxin, CCL17/TARC
and CCL26/eotaxin-3 were also increased (P< 0.05) (Table S5). The levels
of 34 cytokines and chemokines in nasal lining fluid were measured over
the first week of the infection, noting that some levels have been reported
largely as peak values (Jackson et al., 2014, 2015; Jayaraman et al., 2014;
Beale et al,, 2014). Twelve nasal cytokines and chemokines were selected
for presentation (Fig. 2) based on them having significantly (P< 0.05, AUC
days 0-7) increased levels in asthmatics compared to controls (Table S4).
IFN-{3, CCL2/MCP-1 and CCL13/MCP-4 were also significantly increased,
but are not presented here as levels were mostly undetectable [IFN-3]
or for reasons of space [CCL2/MCP-1 and CCL13/MCP-4]. The remaining
22 cytokines and chemokines are presented in Figs. S2 and S5. Median
levels with quartiles permit an assessment of the overall magnitude
and kinetics of the response (Fig. 2A and Fig. S2). Actual levels for individ-
uals over time are shown on logarithmic and linear scales, with levels for
5 individuals given markings for identification (Fig. 2B and Figs. S3-54).
Levels of IL-5 and IL-13 in nasal lining fluid tend to be high before infec-
tion (day 0) in those individuals that developed the highest levels after
rhinovirus infection (Fig. S3).

Analysis of changes from baseline in healthy control and asthmatic
subjects in nasal levels of all 34 cytokines/chemokines on days 2, 3, 4,
5 and 7 are given in Tables S5-S9 respectively. Responses to infection
in the asthmatic subjects were remarkably robust, with 24 cytokines/
chemokines being induced significantly on at least one day, with most
reaching their maximum levels on days 3 to 5. However, when
interpreting these responses, it should be emphasised that there were
only 11 controls compared with 28 asthmatics. Prominent among
those induced in asthma were cytokines of the dendritic cell/T cell
axis including IL-2, IL-10 and CCL20/MIP3q, the type 2 pathway includ-
ing IL-5, IL-13, IL-33, CCL11/eotaxin, CCL17/TARC and CCL22/MDC, the
anti-viral interferon pathway including IFN-f3, IFN-vy, [FN-N/IL-29, IL-
12p40, IL-15, CCL5/RANTES, CXCL10/IP10, CXCL11/ITAC and the pro-in-
flammatory cytokines TNFq, IL-6 and IL-17 and chemokines CCL2/MCP-
1, CCL3/MIP-1ax and CCL4/MIP-1p. IL-18 was lower on day 2 than at
baseline in asthmatics and significantly lower in asthmatic compared
to normal subjects on day 4 (Jackson et al., 2015) and IL-4 and CCL13/
MCP-4 were also decreased after infection in asthmatics on days 5 and
7 and day 2 respectively (Tables S5 and S7-9). Cytokines not significant-
ly induced on any post-infection day in asthma were IL-1p, IL-12p70, IL-
16, IL-18, IL-25, GM-CSF, TSLP, CCL13/MCP-4, CCL26/eotaxin3 and
CXCL8/IL-8 (Tables S5 and S6-9), though CCL13/MCP-4 was significant-
ly increased after infection in asthma compared to healthy controls
when assessing AUC (Table S4), suggesting greater data variability
than with other cytokines/chemokines. Nasal mucosal cytokine and
chemokine responses to infection in the healthy controls were smaller,
with occasional significant increases only observed in IL-12p40, CCL17/
TARC, CCL2/MCP-1, CCL22/MDC on days 2-5 and 7 (Tables S5, and S6-
9).

3.3. Heat Map of Hierarchical Correlation Matrices

From the original 34 cytokines and chemokines measured in the
nose we excluded TSLP, IL-1p3, IL-12p40, IL-12p70, IL-16, IL-18, IL-25,
IFN-B, GM-CSF and CXCL8/IL-8 where nasal levels were mostly below
detection limits, and/or not significantly different in asthmatics versus
controls (Table S4), or levels did not significantly increase from day 0
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Fig. 2. Nasal mucosal lining fluid cytokine and chemokine levels. Levels of 12 cytokines and chemokines in nasal mucosal lining fluid obtained by nasosorption were determined by
multiplex immunoassay. (a). Median levels with quartiles for allergic asthmatics (red) and healthy control subjects (blue). (b). Individual values for all subjects (shown on log scale):
asthmatics (red, n = 28) and healthy subjects (blue, n = 11). Four representative asthmatics and one healthy control subject are given specific line patterns to allow identification of
these individuals across the panel of cytokine responses. See Tables S4-9 for relevant statistical analyses on nasosorption levels of cytokines and chemokines: noting that for the 12
cytokines and chemokines displayed the area under the curve (AUC) for days 0-7 was significantly greater in allergic asthmatics than in healthy controls (P < 0.05 in all cases) (Table
S5). Individual Subjects: = = H1; == « AQ; = - - A3; 188 A2; = =A1.
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to day 4 (Table S7). A hierarchical correlation matrix was derived for
nasal levels of the remaining 24 cytokines and chemokines, involving
determination of incremental daily correlations beginning on day 0
and proceeding through days 2, 3, 4, 5 and then 7 (Fig. 3A).

In asthmatics (right) four major clusters can be seen:

a small chemokine cluster containing CCL3/MIP-1c, CCL4/MIP-1f and
CCL22/MDC.

a clearly differentiated type 2 pathway including IL-4, IL-5, IL-13,
CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3 and CCL13/MCP-4.

a mixed immune response cluster including IL-17, IL-33, IL-2, CCL20/
MIP3«x and IL-10.

an interferon/inflammatory response cluster with IFN-vy, IFN-N/IL-29,
IL-6 and CCL2/MCP-1, CCL5/RANTES, TNF, IL-15, CXCL10/IP10 and
CXCL11/ITAC.

In the healthy controls (left) there is more fragmented clustering:

type 2 inflammation (IL-5 and IL-13)

anti-viral (CXCL11/ITAC, IL-15, CCL2/MCP-1, IFN-y) with innate/regu-
latory factors (IL-2, IL-33, IL-6 and IL-10)

pro-inflammatory cytokines (TNFo, IL-17) and a group of 10
chemokines.

3.4. Heat Map of Personalised Responses

This heat map demonstrates the size of the AUC for levels of partic-
ular nasal cytokines and chemokines in individual subjects, with a gra-
dation of colour intensity set across all the asthmatics and controls for
a given cytokine or chemokine (Fig. 3B). We have selected IFN-y and
ITAC/CXCL11 to reflect the anti-viral response, while IL-5 and IL-13
were chosen to represent type 2 inflammation. In the healthy controls
(left) the nasal levels are lower, although 3 subjects had strong anti-
viral responses (H1, H2, H3). As might be expected, IL-5 and IL-13 levels
were conspicuously low in all the healthy subjects. In the asthmatics
(right) a varied immune response (both qualitatively and quantitative-
ly) was observed. Some asthmatics had strong interferon and IL-5/13 in-
flammatory responses (A1), others had strong anti-viral but weaker IL-
5/13 responses (A2, A6-8), whilst others had a limited anti-viral re-
sponse with a pronounced IL-5/13 response (A9).

3.5. Volcano Plot

A volcano plot of normalised data shows that asthmatics have a
greater immune response as shown by the up-regulation of many cyto-
kines, since the volcano plot is highly asymmetric to the right. In partic-
ular, nasal IL-5 and IL-13 are upregulated in asthma versus controls,
especially on days 3-5 (Fig. 4A), and this confirms the greater induction
demonstrated in terms of changes from baseline in asthmatic compare
to healthy subjects (Table S10).

3.6. Receiver Operating Characteristic (ROC) Curves

The ROC curves presented in Fig. S6 and Table S11 display how
nasosorption eluate IL-13 levels on days 0 and 4 can discriminate asth-
matics and controls (AUCs 0.75 and 0.84 respectively).

3.7. Cluster Analyses

In considering the response to viral infection on day 4, we have pre-
viously noted that discrete pathways of interferon family and type 2
pathways are induced in nasal lining fluid (Fig. 3A). Nasal IL-5 and IL-
13 are prominent in asthmatics (Fig. 4A). We then selected IFN-y and
IL-13 as representative members of interferon and type 2 pathways, to
compare the viral response in asthmatics (red) and controls (blue) on
day 4 (Fig. 4B). The viral response can be divided into quartiles based

on high and low IL-13 and IFN-vy levels. This demonstrates the lack of re-
lationship between IL-13 and IFN-vy levels, with some asthmatics having
high IL-13 levels (with and without high IFN-v), while controls have
low IL-13 levels but can still have high IFN-vy levels. Levels of
nasosorption IL-13 against IL-5 (Z-score normalised) on day 0 were
plotted as a 2D cluster, and demonstrate that there is reasonable dis-
crimination between asthmatics (red dots) and healthy volunteers
(blue dots) at baseline before infection (Fig. 4C). These features are
also present during asthma exacerbation on day 4 (Fig. 4D), when the
healthy and allergic asthmatic patients form separate clusters with
overlap for only a few subjects: with asthmatic patients generally hav-
ing higher levels of nasal IL-5 and IL-13.

3.8. Bronchial Mucosal Responses to Infection

There was significant induction of bronchial IFN-y, CXCL11/ITAC,
CXCL10/IP10, IL-15, IL-10, TNFa and IL-5 during infection in allergic
asthmatics (all P < 0.05), but not in healthy controls (Fig. 5 and Table
S$12). We have previously reported that bronchial levels of IL-5 and IL-
13 were greater during infection in asthmatic compared with healthy
subjects (Jackson et al., 2014).

4. Discussion

This study found an amplified immune response to rhinovirus infec-
tion in adults with allergic asthma, by using the mucosal sampling
methods of nasosorption and bronchosorption to measure a panel of
34 cytokines and chemokines. We observed striking up-regulation of in-
terferon and type 2 inflammatory pathways in our allergic asthmatic
subjects. The magnitude of the IFN-y response to infection is relatively
large compared to type 2 cytokine induction, but induction of IL-5 and
IL-13 is more selective for allergic asthmatics compared to controls.
However, we do not know whether these mediators take part in the
pathogenesis of the exacerbation of asthma and/or are part of a protec-
tive immune response to combat viral infection. In addition, there was
marked heterogeneity between individual asthmatic patients in terms
of the relative involvement of these pathways, reflected in mucosal
levels of IFN-y and IFN-N/IL-29 relative to IL-5 and IL-13. In contrast,
in healthy controls there were few significant changes in levels of
nasal and bronchial cytokines after rhinovirus infection.

Although there have been previous publications on peak nasal levels
of IL-15, IL-18, IL-25, and IL-33 (with IL-5 and IL-13) from this viral chal-
lenge study (Jackson et al., 2014, 2015; Jayaraman et al., 2014); we now
provide detailed kinetics of 34 cytokine and chemokine levels in indi-
viduals over time. We stress the importance of scrutiny of graphs of
data points for individual subjects, comprising cytokine and chemokine
levels over time, since a single sample is generally taken from a patient
in the context of measuring a biomarker of a disease and making a ther-
apeutic decision. Nasal IL-5 and IL-13 levels were generally <1 pg/ml in
healthy controls, but higher at >1 pg/ml in most stable allergic asth-
matics prior to infection. This demonstrates that for nasal IL-5 and IL-
13 levels there is “room to move” in relation to monitoring levels in sta-
ble allergic asthmatics. This has major implications for future clinical
studies, including dose range finding, of biologics directed against IL-5
or [L-13. Repeat daily nasal sampling could be performed in stable aller-
gic asthmatics in a baseline run-in period, before continued serial nasal
sampling after administration of a biologic directed against IL-5 or [L-13.
Furthermore, those asthma patients with higher levels of nasal IL-5 and
IL-13 prior to RV infection, tended to be those with higher nasal levels of
IL-5 and IL-13 after infection. Hence, levels of nasal IL-5 and IL-13 when
a patient is stable could be used to select a biologic that acts mainly in
the context of exacerbations.

We also found that that cytokines and chemokines of the type 2
pathway were closely related as a group in nasosorption samples in
the asthmatic subjects during the 7 days after the infection. This includ-
ed CCL17/TARC, CCL22/MDC, CCL11/eotaxin and CCL26/eotaxin-3 that
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are chemokines produced by epithelial and dendritic cells early in the divergent pathways in response to rhinovirus infection. This is in agree-
type 2 pathway and are chemotactic for Th2 cells and eosinophils. The ment with a recent report that IL-33 promotes, and IFN-y suppresses,
relative degree of interferon and type 2 pathway induction was found type 2 inflammation (Molofsky et al., 2015), while IFN-A2 has also
to vary between asthmatic patients, suggesting that these may be been shown to suppress type 2 inflammation (Koltsida et al., 2011).
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Fig. 3. Nasal mucosal lining fluid heat maps. (a) Dynamical hierarchical correlation matrix for nasosorption levels of 24 cytokines and chemokines on days 0 to 7 generated using R
statistical analysis software (version 2.15.2) (Opgen-Rhein & Strimmer, 2006). Cytokines are grouped together according to the strength of correlation using hierarchical clustering, as
represented by the dendrogram. Positive or negative correlation is shown in the colour key. (b) Individual responses in terms of nasal cytokine and chemokine responses in individual
subjects are shown as individual rows for separate healthy control (n = 11) (left) and allergic asthmatic (n = 28) (right) subjects. The order of asthmatic and healthy subjects was
generated within a group in terms of the overall AUC (day 0-7) intensity, ranging from the highest mean value at the top to the lowest mean value at the bottom (controls and
asthmatics together). The columns are for representative anti-viral (IFN-y and ITAC/CXCL11) and type 2 (IL-5 and IL-13) cytokines and chemokines. R statistical analysis software
(version 3.0.2) was used to generate heat maps. Colour intensity ranges from dark red (close correlation) to white (minimum correlation) for each cytokine/chemokine across all
subjects. For 2 missing samples the last observation was carried forward (LOCF).
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Fig. 4. Nasal Mucosal Lining Fluid Volcano Plot and Cluster Analyses. (a) Volcano plot analysis was performed on normal transformed data for all 34 cytokines and chemokines, assessing
the fold change between asthmatics and controls from day 0 in relation to days 2,3,4,5 and 7 post infection. The fold change was calculated between asthmatics and controls using mean
levels of cytokine or chemokine on particular days. P values were derived by t-test and corrected for multiple testing (Benjamin-Hochberg), the horizontal dotted line demonstrates the cut
off value for P = 0.05. (b) Cluster analysis of nasosorption levels of [FN-y and IL-13 on day 4, with horizontal and vertical lines on zero. This shows the distribution of asthmatic subjects
(red dots) and healthy controls (blue): asthmatics have high and low levels of IFN-y and IL-13 (with red dots in 4 quadrants), while control subjects have low levels of IL-13 but can have
higher levels of IFN-y (with blue dots in 2 quadrants). (¢) (d) These cluster analyses used levels of nasosorption IL-5 and IL-13 (Z score normalised) on day 0 and day 4 plotted as a 2D
cluster. This illustrates how nasal IL-5 and IL-13 can be used to discriminate asthmatics from controls, and how nasal IL-5 and IL-13 levels are related.

Nasal levels of IL-5 and IL-13 were tightly correlated with each other
in this study and after nasal allergen challenge (Leaker et al., 2017). This
suggests that IL-5 and IL-13 could be produced by the same cell type(s),
such as by type 2 innate lymphoid cells (ILC2) (Yuetal.,, 2014; Walker et
al., 2013), since ILC2 cells have been demonstrated in the blood and
lungs of asthmatics (Barnig et al., 2013; Bartemes et al., 2014). Further-
more, it has recently been shown that IL-25 drives rhinovirus induced
allergic inflammation (Beale et al., 2014), and that epithelial-derived
IL-33 activates human ILC2 cells and T cells to secrete large amounts
of IL-5 and IL-13 (Jackson et al., 2014).

Prior to infection nasal IFN-gamma levels were generally <2 pg/ml,
before rapidly increasing after RV infection, particularly in subjects
with allergic asthma. Our finding of elevated nasal and bronchial levels
of IFN-y and IFN-\ (together with the IFN-inducible proteins CXCL10/
IP10, CXCL11/ITAC and IL-15) is in agreement with elevated IFN-y and
IFN-\ responses to virus infection being found in vivo in children with
asthma (Lewis et al., 2012; Miller et al., 2012). However, interferon
and IL-15 deficiency have been demonstrated in cultured cells retrieved
from stable asthmatics at baseline following infection of these cells with
a standardised quantity of rhinovirus ex vivo (Wark et al., 2005; Contoli
etal., 2006; Edwards et al.,, 2013; Message et al., 2008; Sykes et al., 2012;
Laza-Stanca et al., 2011). Measurement of cytokines and chemokines in

nasal MLF was studied in the context of allergic asthmatics challenged
with RV. Following experimental nasal allergen challenge (NAC) with
grass pollen in allergic asthma and hay fever, we see increases in medi-
ators of type Il inflammation in most subjects, but we have not seen an
increase in IFN-gamma or related mediators. However, it will also be
relevant to measure nasal and bronchial mediators in natural allergen-
induced and virally-induced exacerbations.

It would be of interest to compare nasal and bronchial mucosal viral
load in allergic asthmatics and healthy controls following RV infection.
However, a weakness of the current study was that virus load was mea-
sured in nasal lavage samples, when the lavage causes dilution of nasal
secretions in 5 ml of saline, and there is variable recovery of fluid. These
problems of dilution and variable recovery are also relevant for bron-
choalveolar lavage (BAL) samples: where viral load cannot usually be
reliably measured. In the future it will be of interest to take nasosorption
and bronchosoprtion samples and perform elution in RNA extraction
buffer, prior to measuring RV load by qPCR. We observed significantly
greater nasal lavage virus load on day 3 but not on day 4 in vivo in asth-
matic subjects (Jackson et al., 2014). Thus it is possible that the ampli-
fied cytokine responses observed in vivo in asthmatics may be a
consequence of greater virus load. In addition, we did not assess ex
vivo interferon responses in our subjects at baseline, so we were not
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Fig. 5. Bronchial mucosal lining fluid levels of 12 cytokines and chemokines. Individual raw data is presented for levels of cytokines and chemokines in bronchial lining fluid, for asthmatic
(red) and healthy (blue) subjects. Baseline bronchial samples were taken on day - ~ 14 before inoculation with rhinovirus, while post samples were taken on day 4 post-inoculation.
Probability was tested using a Wilcoxon signed rank test: matched/paired samples (baseline/day 4) and the Mann-Whitney test for the unmatched samples (healthy vs asthma). Data
is shown for asthmatics (n = 25) and healthy volunteers (n = 11) at baseline and (n = 10) for day 4. A full table of summary statistics and probability values is given in the Table
S12. For display purposes on a log scale, the lower limit of detection (LLD) was used for all cytokines with values < LLD.

able to relate ex vivo interferon responses at baseline with in vivo virus
load during infection.

The technique of nasosorption involves pressing against the mucosa
without friction against the surface, as opposed to conventional swab
sampling where rotation against the mucosa is required. This has the
major advantage of allowing repeat or serial nasosorption sampling at
regular intervals. Our group has shown that nasosorption can be repeat-
ed every 10 min over an hour, and produce reproducible cytokine and
chemokine levels (data not shown).

Nasosorption and bronchosorption of MLF involves sampling from a
distinct mucosal compartment, and it is speculated that the cytokines
and chemokines detected in MLF reflects the underlying mucosal tissue
inflammation. In addition, MLF from the larger bronchi is expected to be
influenced by events in the peripheral small airways through the
mucociliary escalator. The biological significance of these MLF
chemokines and cytokines is open to conjecture, with many
chemokines (including CXCL8/IL-8) generally present in respiratory
MLF at high levels, while all nasal and bronchial MLF mediators mea-
sured have been diluted during elution in immunoassay buffer.

We studied adults with allergic asthma and compared them with
healthy non-allergic controls. In exacerbations of asthma taking place

in a natural clinical context there may be different signatures of inflam-
mation according to the individual patient's asthma phenotype. It will
be relevant to employ nasosorption in large scale natural history and ep-
idemiology studies on a range of asthma phenotypes, including non-al-
lergic and severe asthma. There is also the need to compare
nasosorption and bronchosorption sampling techniques with other
sampling methods in a range of asthma phenotypes, and to correlate
biomarkers with a range of clinical outcomes. Indeed it will be relevant
to assess mucosal lining fluid from different locations in the airways in a
range of respiratory diseases, to assess whether disease-specific signa-
tures and useful biomarkers can be identified.

This study did not include any therapeutic intervention, but since
absorption can be used to quantitate cytokines of the type 2 pathway
in the upper and lower airway, future clinical studies could be designed
to assess whether these biomarkers can be used to select patients for
monoclonal antibody therapy directed against IL-5 and IL-13 (Chung,
2015). Indeed, the need for new biomarkers of inflammation in asthma
has been highlighted in a recent study of an IL-13 neutralising monoclo-
nal antibody (Brightling et al., 2015), where measurement of airway IL-
13 levels might be a more relevant biomarker than blood eosinophils
and serum periostin. Since endobronchial mucosal biopsy in severe
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asthma is sometimes clinically indicated (Doberer et al., 2015),
bronchosorption could be performed during the same bronchoscopy
procedure. Hence, we speculate that precision sampling of airway lining
fluid, enabling assessment of interferon and type 2 immune responses
in the nose and bronchi, has the potential for selection and monitoring
of asthmatics in relation to monoclonal antibody therapy.
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