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Metabolic alteration constitutes a hallmark of cancer. Glycolysis and antioxidant pathways in kidney cancer are
elevated, with frequent mutation of the VHL gene. Intratumor genetic heterogeneity has been recently demon-
strated in kidney cancer. However, intratumor metabolic heterogeneity has not been investigated. Here, we
used global metabolomics analysis and tissue slice tracer studies to demonstrate that different portions of a
human primary kidney tumor possess different metabolic characteristics and drug sensitivity. Pyruvate levels
were elevated and pyruvate metabolism was altered in some tumor sections. These observations indicated
that pyruvate metabolismmay constitute a possible vulnerability of kidney cancer; indeed, pyruvate stimulated
the growth of primary kidney cancer cells and pharmacological inhibition of pyruvate transporters slowed the
growth of patient-derived kidney tumors in mice. These findings deepen our understanding of the intratumor
metabolic heterogeneity of kidney cancer andmay informnovel therapeutic approaches inhuman kidney cancer.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Aerobic glycolysis in cancer tissue, the Warburg effect (Warburg,
1956), has been known for a long time. Recent metabolic analyses re-
vealed that the metabolism of cancer cells is altered to allow them to
maintain high proliferation rates in spite of fluctuating nutrient avail-
ability (Vander Heiden et al., 2009; Cairns et al., 2011). However, to
date, metabolic hallmarks of human cancer have not been fully clarified
by metabolomics analyses.

Renal cell carcinoma (RCC) is considered to be a suitable model for
studying altered metabolism in cancer as inherited predisposition to
RCC is reportedly associated with genes responsible for cellular metab-
olism (Linehan et al., 2010). Genes, such asVHL, PBRM1, SETD2,MET, and
NF2, are frequentlymutated in RCC (The Cancer GenomeAtlas Research
Network, 2013; Durinck et al., 2015). Recently, exome sequencing of
spatially separated portions of primary RCC revealed extensive
intratumor genetic heterogeneity (Gerlinger et al., 2012). Altered me-
tabolism, including enhanced glycolysis and antioxidant response path-
ways, has also been reported in clear cell RCC (Hakimi et al., 2016), but
to date, no study has explored intratumor metabolic heterogeneity in
kidney cancer.
. This is an open access article under
In this study, we addressed intratumor metabolic heterogeneity by
global metabolomics analyses of surgically resected primary kidney tu-
mors, some of which were obtained from spatially-separated different
sites within the same tumor. In addition, we investigated the roles of
pyruvate—the featuredmetabolite in ourmetabolic profiling—in kidney
cancer growth to identify potential clinical vulnerability in human kid-
ney cancer.

2. Materials and Methods

2.1. Tissue Collection

Our institutional committees approved the study experiments, and
informed consent was obtained from all participating patients. Kidney
tumors and adjacent normal kidney tissueswere obtained frompatients
after radical nephrectomy for RCC at the Kyorin University Hospital
(Tokyo Japan). Clinical and pathological characteristics of patients are
described in Table S1. Samples were collected from macroscopically
identified normal or tumor tissue. For global metabolomics analysis,
32 kidney tumor samples and 18 normal adjacent kidney tissue samples
were obtained from 18 patients (patients no. 20–38); multiple spatially
separated samples were obtained from tumors from eight patients (pa-
tients no. 21, 24, 30, 33–35, 37, and 38). For tissue slice tracer studies, 30
kidney tumor samples and 12 adjacent normal tissue samples were ob-
tained from two patients (patients no. 42 and 45). A patient-derived
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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kidney cancer cell line, 5K, and its paired normal kidney cell line, 5KN,
were established from the tissues of patient no. 5 and PDX tumors
were established from the tissues of patients no. 11, 12, 24, and 34.
For global metabolomic and genomic analyses, tissue samples were
soaked in liquid nitrogen immediately after resection and stored in liq-
uid nitrogen until analysis.

2.2. Global Metabolomics Analysis

Global metabolomics profiles were obtained by combining data de-
rived from three platforms: gas chromatography (GC) MS-MS, ion-
pair liquid chromatography (IP-LC) MS-MS, and lipidomics. Details are
included in the Supplemental Experimental Procedures.

2.3. Cell Culture and Growth Assays

Preparation of patient-derived cell cultures was performed accord-
ing to an existing protocol (Valente et al., 2011), withmodifications. Pa-
tient tissues were cut into small pieces and treated with 1 mg/mL
collagenase in culture medium, DMEM-F-12 (Gibco) supplemented
with 10% fetal bovine serum (FBS) (Hyclone) and human transferrin
(holo) (BBI Solutions). After 20min incubation at 37 °C with gentle stir-
ring, the cells were washed with Hank's balanced salt solution, and
seeded on a culture dish. The cells were maintained at 37 °C in 5% CO2

atmosphere.
For growth assays, the established 5K patient-derived RCC cells or

the respective paired normal 5KN cells were plated at a density of
2500 cells/well in 96-well plates, and cultured overnight. Next day, so-
dium pyruvate (Gibco), L-cystine (Sigma-Aldrich), 2-oxobutyrate
(Wako), or UK-5099 (Sigma-Aldrich), were added to the wells. After
5 days, cell viability was assessed using the Cell Titer-Glo Luminescent
Cell Viability Assay (Promega). RPMI-1640 medium containing 205
μM glutamine and 10% FBS was used in these experiments. Growth as-
says with UK-5099 were conducted in the presence of 1 mM sodium
pyruvate.

2.4. Tissue Slice Stable Isotopic Tracer Experiments

The ex vivo studies were performed using tissue slices according to
the modified method of Sellers et al. (2015). Briefly, the tumor and
the adjacent normal kidney tissue were resected and cut with a scalpel
into ca. slices (1-mm thick) within 2 h of surgery. The tissue slices were
then incubated for 24 h at 37 °C in a 5% CO2 atmosphere in DMEM sup-
plemented with 10% FBS (dialyzed) and either 10 mM [U-13C]-glucose
(Cambridge Isotope Laboratories, Inc.) or 2 mM [U-13C,15N]-glutamine
(Cambridge Isotope Laboratories, Inc.). The tissue fragments were
then washed in saline, frozen in liquid nitrogen, homogenized in meth-
anol using the TissueLyser II, and extracted for GC–MS analysis.

2.5. Stable Isotopic Tracer Experiments in Cell Culture

The 5K and 5KN cells were plated at a density of 1 × 105 cells/10mL
in a 10-cm dish in RPMI-1640 (Wako, 189-02025) supplemented with
10% FBS. The next day, themediumwas replacedwith glucose- and glu-
tamine-free RPMI-1640 (Wako, 185-02865 and 183-02165, respective-
ly) supplemented with 10% FBS and 2 g/L [U-13C]-glucose (Cambridge
Isotope Laboratories, Inc., CLM-1396) or 300 mg/L [U-13C,15N]-gluta-
mine (Cambridge Isotope Laboratories, Inc., 520-75,044). Cells were in-
cubated for 0.5, 1, or 4 h. Metabolites were extracted with methanol for
GC–MS analysis as described above. The RPMI-1640 media in this study
did not contain pyruvate or lactate.

2.6. Animal Experiments

The use of animals for this study was approved by Takeda Pharma-
ceutical Company Shonan Research Center Animal Ethics Committee
(Kanagawa, Japan), and all procedures were performed according to
protocols approved by the Institutional Animal Care andUse Committee
of the Pharmaceutical Research Division. Female C.B-17-Icr-scid-scidJcl
mice were purchased from CLEA Japan Inc. (Tokyo, Japan). Patient-de-
rived grafts were implanted subcutaneously into one flank of each 6–
8-week-old mouse. For the UK-5099 study, daily treatment of mice
with the vehicle (0.5% methylcellulose) or UK-5099 (10 mg/kg twice
daily or 100 mg/kg/day daily, po) was initiated 3 weeks after implanta-
tion of tumor grafts from patients no. 24 and 34. For the temsirolimus
(Pfizer Japan Inc., Tokyo, Japan) study, weekly treatment of mice with
the vehicle (saline) or temsirolimus (10 mg/kg/day, qw, iv) was initiat-
ed 3–4weeks after the implantation of tumor grafts frompatients no. 11
and 12. Tumor sizes were measured using calipers twice a week. The
tumor volume was expressed in mm3 using the formula 0.5 × a × b2,
where a is the largest diameter and b is largest diameter perpendicular
to a.

2.7. Statistical Analysis

Hierarchical clustering and heatmap analysis were performed using
Partek Genomics Suite 6.6 (Partek, Inc.). Differences between the con-
trol and treatment groups in cell growth assays were analyzed by Wil-
liams' test. Differences between the control and treatment groups in
PDX assays were analyzed by Welch's t or Dunnett's test.

3. Results

3.1. A Metabolic Cluster in Kidney Cancer Characterized by High Pyruvate
Levels

The metabolic patterns of 32 tumor tissues were separated into two
major clusters based on themetabolomics data (Table S1, Fig. S1a).Met-
abolic cluster 1 (MC1) was characterized by elevated levels of metabo-
lites of the glycolysis-pentose phosphate pathway (PPP), glutathione,
and amino acids; metabolic cluster 2 (MC2) was characterized by ele-
vated levels of metabolites such as pyruvate, cystine, and 2-oxobutyric
acid, with reduced levels of glycolysis-PPP metabolites and of the re-
duced form of glutathione (Fig. 1a).

Sequencing of 23 RCC-associated genes did not reveal any clear cor-
relation between the mutation status and the metabolic clusters (Table
S2). Similarly, clustering tumors according to gene expression did not
match the metabolic cluster classification (Fig. S1b); however, the
gene expression levels of lactate dehydrogenase A (LDHA) and pyruvate
dehydrogenase A1 (PDHA1), which convert pyruvate to lactate and ace-
tyl-CoA, respectively, were decreased in MC2 tumors (Fig. S1c).

3.2. Intratumor Heterogeneity in Kidney Cancer Revealed by Metabolomics
Analysis

Multiple spatially separated samples were obtained from tumors
from eight patients. The metabolic clustering data in Fig. S1a include
the multi-sampled tumor tissue. Metabolic patterns at different tumor
sites from five patients (no. 24, 30, 33, 35, and 38) were classified into
different metabolic clusters (Fig. S1a). Macroscopic observation of the
sampled sites and determination of levels of representative metabolites
clearly indicated that the tumor from patient no. 33 harbored bothMC1
(high level of glycolysis metabolites in 33K1 and 33K4) and MC2 (high
pyruvate levels in 33K2 and 33K3) domains (Fig. 1b). Metabolomics
analysis of other multi-sampled tumors demonstrated similar
intratumor metabolic heterogeneity (Fig. S1d). Intratumor genetic het-
erogeneity was confirmed, but genetic mutations were not associated
with metabolic patterns (Fig. 1b, Fig. S1d).

In addition to hydrophilic metabolites, we also analyzed lipid pro-
files in tumor samples, by lipidomics; the profiles were relatively uni-
form and did not highlight metabolic heterogeneity (Fig. S1e). Several
unfamiliar lipid species were detected specifically in tumor tissues;



Fig. 1. Intratumor heterogeneity in kidney cancer revealed by metabolomics analysis (a) Heat map of representative metabolites, with MC1- and MC2-specific features. The log2 (tumor/
normal) values of metaboliteswere used for the construction of the heatmap. Sample names are expressed as patient number and K (tumor) followed by sample site designated in Fig. 1b
and S1d. (b) Regions harvested from a nephrectomy specimen from patient no. 33, together with the tissue levels of representativemetabolites andmutation status. Themetabolite levels
are expressed as the tumor/normal ratio.
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these included cholesteryl esters (CEs) and triglycerols (TGs) which
harbor longer chain and more highly desaturated fatty acids (Fig. S1f).

3.3. Intratumor Heterogeneity Revealed by Stable Isotopic Tracer Studies

Metabolomics data provide a snapshot of metabolite levels. Here, a
question was raised about what metabolic flow is like in tumors; meta-
bolic flow better reflects the biological function and may explain the
presence of high-level pyruvate sites in tumors. Hence, we addressed
the intratumor metabolic heterogeneity by another approach, a stable
isotopic-tracer study using tissue slices obtained from multiple sites
within a tumor from patient no. 42. Incubation of the tumor and the ad-
jacent normal tissue slices with 13C6-glucose resulted in an equal frac-
tional enrichment of pyruvate (m + 3) in each tissue slice, but the
subsequent metabolic flow was not consistent in the tumor tissue
(Fig. 2a). The fractional enrichment of citrate (m + 2), the expected
product if 13C6-glucose–derived pyruvate would have been converted
to citrate by PDH,was higher in some tumor slices than in normal tissue
(Fig. 2a). Citrate (m+ 2) enrichment below or equal to that in the nor-
mal tissue was observed in other slices within the same tumor (Fig. 2a).

Image of Fig. 1


Fig. 2. Intratumor heterogeneity revealed by stable isotopic tracer studies. Tumor slices and the adjacent normal tissue from patient no. 42 were incubated for 24 h in the presence of
tracers, as described in Materials and Methods. (a) Eight tumor tissue slices and three normal kidney tissue slices were incubated with 13C6-glucose. The schematic illustrates the
production of 13C isotopologues of citrate by PC and PDH. Black circles denote 12C; blue and red circles denote 13C. (b) Seven tumor tissue slices and three normal kidney tissue were
incubated with 13C5, 15N2-glutamine. The schematic illustrates the fates of 13C and 15N isotopologues in glutamine metabolism. White, purple, and pink circles denote 12C, 13C, and 15N,
respectively. The y-axis represents the percent enrichment.
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This indicated different degrees of PDH activity at different siteswithin a
single tumor. Regarding the fractional enrichment of citrate (m + 3),
the expected product if 13C6-glucose–derived pyruvate would have
been metabolized by pyruvate carboxylase (PC), it was lower than or
the same as in the normal tissue in some parts of the tumor (Fig. 2a).
This suggested different degrees of PC activity at different sites within
a single tumor. Fractional enrichment of lactate (m+ 3) was compara-
ble in normal and tumor tissues (Fig. 2a). However, we did notmeasure
the lactate (m+ 3) in the conditioned medium. Therefore, LDH activity
in these tissues was unclear.
In addition, tissue slice tracer experimentswith 13C5, 15N2-glutamine
revealed intratumor heterogeneity, with a reciprocal relationship be-
tween the oxidative (citrate m+ 4) and reductive (citrate m+ 5) car-
boxylation pathways (Fig. 2b). Intratumor difference inmetabolite flow
was also confirmed in analogous labeled glucose or glutamine experi-
ments in samples from patient no. 45 (Fig. S2a and 2b).

These results clearly demonstrated the existence of intratumormet-
abolic heterogeneity in human kidney cancer. They also suggested that
reduced pyruvatemetabolismmay contribute to high pyruvate levels in
some portions of the tumor. These observations raised two questions:

Image of Fig. 2
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(1) does pyruvate metabolic pathway constitute vulnerability in kidney
tumors? (2) does metabolic heterogeneity correlate with cancer sensi-
tivity to a currently available anti-cancer drug?

3.4. Pyruvate Metabolism as a Vulnerability of Kidney Cancer

We proceeded to analyze the possible vulnerabilities of kidney can-
cer. Metabolomics data revealed that pyruvate, cystine, and 2-
oxobutyrate levels were clearly elevated in some tumor portions (Fig.
1). In addition, tissue slice tracer studies indicated that pyruvate fueled
the tricarboxylic acid (TCA) cycle in some tumor portions (Fig. 2). We
therefore focused on the role of the three metabolites in cell growth,
Fig. 3. Pyruvate fuels the TCA cycle and stimulates growth in kidney cancer cells. (a) The effects o
cells. Cellswere seeded in 96-well plates at a density of 2500 cells/well (n=4). Themetabolites
the control group (100%). Data represent the mean ± SD. *p b 0.025, **p b 0.005 in Williams
metabolites were measured, as described in Materials and Methods. Total metabolite levels
fates of 13C isotopologues in glycolytic pathway and TCA cycle. Black circles denote 12C; blue
and 5KN were calculated by Bonferroni's corrected t-test at 1 h and 4 h; *p b 0.05, **p b 0.01.
using 5K and 5KN cells derived from kidney cancer and normal kidney
tissues, respectively, from patient no. 5. Pyruvate, not cystine or 2-
oxobutyrate, stimulated the growth of 5K cells but not 5KN cells (Fig.
3a), suggesting that kidney cancer cells may bemore dependent on py-
ruvate than normal kidney cells.

Next, we performed tracer experiments with labeled glucose to in-
vestigate which pyruvate metabolic pathway was active in these cells.
5K and 5KN cells were treated with 13C6-glucose. The total amounts of
glucose in 5K and 5KN cells were not different (Fig. 3b), whereas the
total amounts of TCA metabolites such as pyruvate, fumarate, and ma-
late were lower in 5K cells than in 5KN cells (Fig. 3b). The fractional en-
richments of glucose (m + 6) and pyruvate (m + 3) did not differ
f pyruvate, 2-oxo-butyric acid, and cystine on the growth of 5K (cancer) and 5KN (normal)
were added the next day, and cell viabilitywas assessed after 5 d. Values are normalized to
' test. (b) 5K and 5KN cells (n = 3) were treated with 13C6-glucose, and the amount of
were calculated by summing up each labeled metabolites. The schematic illustrates the
and red circles denote 13C. Data are presented as the mean ± SD; p-values between 5K

Image of Fig. 3
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between 5K and 5KN cells (Fig. 3b), whereas the fractional enrichments
of citrate (m + 2), fumarate (m + 2), and malate (m + 2) in 5K cells
were higher than those in 5KN cells (Fig. 3b). These data suggested
that cataplerosis of TCA cycle metabolites might occur more efficiently
in 5K cells than in 5KN cells. Citrate (m + 3) was not detected in both
cell types (data not shown). Less lactate (M+ 3) enrichment occurred
in 5K cells than in 5KN cells (Fig. 3b). The lactate level in conditioned
medium of 5K cells after adding non-labeled glucose was also less
than that of 5KN cells (Fig. S2c), indicating that the LDH activity in 5K
cells was lower than that in 5KN cells. Taken together, these data sug-
gested that pyruvate fuels the TCA cycle through enhanced PDH-medi-
ated flux in cancer cells.

Because pyruvate is transported into mitochondria via a mitochon-
drial pyruvate carrier (MPC) (Bricker et al., 2012; Herzig et al., 2012)
to fuel the TCA cycle, we next investigated whether inhibition of pyru-
vate transport might be an effective therapeutic option for RCC. UK-
5099, an MPC inhibitor (Halestrap, 1975), suppressed the growth of
5K cells in the presence of pyruvate, but not the growth of 5KN cells
(Fig. 4a). Moreover, UK-5099 slowed the growth of patient-derived xe-
nograft (PDX) tumors in mice without severe loss of animal body
Fig. 4. AnMPC inhibitor suppresses cancer cell growth. (a) 5K and 5KN cells (n= 3)were seede
cell viability was assessed after 5 d. Values are normalized to the control group (100%). Data r
established from patient no. 24 were treated daily with 100 mg/kg of UK-5099. Mice (n = 6)
or daily with 100 mg/kg of UK-5099. Left, tumor volume; right, body weight. Data represent th
weight (Fig. 4b). Taken together, these results indicate that kidney can-
cer cells may be more dependent on pyruvate than normal kidney cells,
and suggest that pyruvate metabolism may be an exploitable vulnera-
bility in human kidney cancer.

3.5. Metabolic Pattern and Drug Sensitivity

Finally, we addressed the questionwhethermetabolic heterogeneity
correlates with drug sensitivity. We tested the response of PDX tumors
with different metabolic patterns to temsirolimus, a specific inhibitor of
mTOR (Cai et al., 2007), used for RCC treatment in clinical practice. Py-
ruvate levels were higher and fructose-1,6-phosphate and ribulose-5-
phosphate levels were lower in patient no. 11 PDX tumors in mice
(tumor 11K) than in patient no. 12 PDX tumors (tumor 12K) (Fig. 5a).
Tumor 11K responded better to temsirolimus than tumor 12K (Fig.
5a); further, temsirolimus treatment resulted in reduced pyruvate
levels in tumor 11K, but not in tumor 12K (Fig. 5b). These findings sug-
gest that tumors with high pyruvate content may respond well to
temsirolimus, and that the tumormetabolic pattern and drug sensitivity
may be associated.
d in 96-well plates at the density of 2500 cells/well. UK-5099was added the next day, and
epresent the mean ± SD. **p b 0.005, by Williams' test. (b) Mice (n = 5) bearing tumors
bearing tumors established from patient no. 34 were treated twice daily with 10 mg/kg
e mean ± SD. *p b 0.05 by Welch's t-test; ##p b 0.01 by Dunnett's test.

Image of Fig. 4


Fig. 5.Metabolic pattern and drug sensitivity. (a) Metabolite levels and anti-tumor activity of temsirolimus in patient-derived xenograft tumors from patients no. 11 (n= 4) and 12 (n=
5).Metabolite levelsweremeasured in tumorswithout drug treatment (top).Mice bearing tumorswere treatedweeklywith 10mg/kg of temsirolimus (bottom). Data represent themean
±SD. *p b 0.05 byWelch's t-test. F1,6P, Fructose 1,6-bisphosphate; Ru5P, ribulose-5-phosphate. (b)Metabolite levels in patient-derived xenograft tumors frompatients no. 11 (n=4) and
12 (n= 5) after once-weekly treatment with 10mg/kg of temsirolimus. Tumor samples were taken 24 h after the last administration. Data represent themean± SD. *p b 0.05, **p b 0.01
by Welch's t-test.
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4. Discussion

The existence of intratumor genetic heterogeneity in kidney cancer
is becoming increasingly clear, but metabolic heterogeneity within a
tumor had not been fully delineated until now. We demonstrated that
different parts of a primary kidney tumor are characterized by different
metabolic patterns and flows.

Currently, the cause of intratumor metabolic heterogeneity is un-
clear. Our metabolomics analysis indicated that RCCs exhibit the War-
burg-like effect regardless of the status of the VHL gene; further, we
did not find any clear correlations between gene mutations and meta-
bolic patterns. Further, metabolic clustering could not be explained by
gene expression. This is consistent with a recent report that metabolic
alteration in clear cell RCC is not necessarily correlated with an altered
expression of genes encoding metabolic enzymes (Hakimi et al.,
2016). This may be caused by a non-canonical metabolic flux, mismatch
between gene and protein expression levels, or the modulation of en-
zyme activity by cofactors. Indeed, our metabolomics analysis revealed
decreased levels of cofactors (NAD+, FAD, and pyridoxic acid) in tu-
mors. Nevertheless, somemetabolic changes did correlatewith gene ex-
pression of metabolic enzymes, e.g., pyruvate levels and LDHA and
PDHA1 gene expression. Elevated pyruvate levels in MC2 tumors may
be associated with reduced levels of LDHA and PDHA1, which
metabolize pyruvate. Similarly, tissue slice glucose tracer experiments
revealed different degrees of PDH activity in the tumor, supporting the
notion that decreased PDH activity might lead to high pyruvate levels.
Further studies are required to clarify the link between PDH activity
and pyruvate levels. Another possible cause of metabolic heterogeneity
that should be investigated in the future is histology anddifferent tumor
microenvironments.

We discovered that themetabolic pattern of primary kidney cancers
might be divided into twomajor clusters. MC1was consistent with pre-
vious reports (Catchpole et al., 2011; Li et al., 2014; Hakimi et al., 2016),
whereas the other metabolomics cluster, MC2, had not been described
until now.When considering the roles ofmetabolites inMC2, specifical-
ly pyruvate, cystine, and 2-oxobutyric acid, theymay be required for en-
ergy metabolism or an anti-oxidative stress response within the cell.
Equally possible, they may play a role after flowing to another portion
inside the tumor, in the process known as metabolic symbiosis
(Pisarsky et al., 2016; Sonveaux et al., 2008). MC2 domains may act as
an energy reservoir of kidney tumors.

We demonstrated that pyruvate stimulates the growth of kidney
cancer cells, but not normal kidney cells, both derived frompatient sam-
ples. Pyruvate is a multifaceted metabolite associated with the produc-
tion of energy, NADH, and a building block, via conversion into acetyl-
coenzyme A, lactate, oxaloacetate, alanine, or carbohydrate. Our isotope

Image of Fig. 5
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studies demonstrated higher PDH activity in kidney cancer cells than in
paired normal cells, and also in some tumor portionswhen compared to
that in the paired normal tissues. Further study is required to elucidate
how pyruvate exerts its growth-promoting effect in kidney cancer.

Studying how intratumor metabolic heterogeneity influences drug
sensitivity is challenging. We used two different PDX models (MC1,
tumor 12K; and MC2, tumor 11K) with different intratumor metabolic
patterns to investigate the response of cancer cells to temsirolimus.
Tumor 11K was more sensitive to temsirolimus than tumor 12K, sug-
gesting that a tumor site with high pyruvate levels may respond better
to temsirolimus. Since a PTEN mutation that activates mTOR was pres-
ent in tumor 12K but not in tumor 11K (data not shown),metabolic pat-
terns may exert a dominant effect over gene mutations in determining
the sensitivity to temsirolimus. Interestingly, intratumorpyruvate levels
were reduced by temsirolimus treatment only in tumor 11K. This may
contribute, at least partially, to the antitumor activity of temsirolimus,
although the mechanism for suppression of pyruvate by temsirolimus
is currently unclear. Taken together, it is tempting to speculate that
the metabolic pattern is associated with tumor sensitivity to
temsirolimus; however, we were unable to unambiguously determine
that because of the limited sample (model) size. Continued efforts are
needed to clarify the relationship between the metabolic heterogeneity
and drug sensitivity in cancer.

In contrast with hydrophilic metabolites, the lipid profile was rela-
tively uniform among samples and did not highlight their heterogene-
ity. The levels CEs with long-chain highly desaturated fatty acids were
elevated in tumors; this was consistent with the notion that clear cell
RCCs are rich in CEs and TGs (Gebhard et al., 1987; Drabkin and
Gemmill, 2012; Saito et al., 2016). Interestingly, our lipidomics platform
identified rare lipid species that were specific to tumor tissues and that
have not been reported before; these were typically CEs with very long
chains or TGs with ether links. Although the function of these lipid mol-
ecules remains to be elucidated, they have the potential to be exploited
as biomarkers for diagnosis or drug targeting.

Our metabolic analysis of kidney cancer samples revealed the exis-
tence of intratumormetabolic heterogeneity. The results led to the iden-
tification of pyruvate metabolism as a vulnerability of kidney cancer.
Hensley et al. most recently showedmetabolic heterogeneity by preop-
erative multimodality imaging combined with intraoperative 13C glu-
cose in human lung cancer, and tied this heterogeneity to differences
in PDH flux (Hensley et al., 2016).Wemust continue to identify exploit-
able vulnerabilities by further studying metabolic features of cancer in
patients.

Funding Source

This work was wholly supported by Takeda Pharmaceutical Compa-
ny Limited.

Conflicts of Interest

The authors declare no conflicts of interest.

Author Contributions

T.O. and T.H. designed and supervised the research. K.N. collected
clinical samples. M.M., Y.S., A.A., and K.H. performed metabolomics
studies. T.T., H.A., S.K., S.N., M.M., and T.H. performed the in vitro and
in vivo experiments. K.H. and S.N. performed the bioinformatics analy-
ses. S.N. and T.H. wrote the manuscript.

Acknowledgments

We thank Drs. Teresa W.-M. Fan, Andrew N. Lane, and Richard M.
Higashi of Markey Cancer Center (University of Kentucky) for their
technical advice regarding the tissue slice tracer experiments. We also
thank Mayumi Deki, a lab technician in Kyorin University School of
Medicine, for technical assistance, and the following employees of
Takeda Pharmaceutical Company Limited: Shunsuke Ebara, Ayako
Okamoto, Megumi Hirayama, Chisato Takahara, Ryuuichi Nishigaki,
Kuniko Kikuchi, Ryo Dairiki, Yoshinori Ishikawa, Hirokazu Tozaki, and
Koji Yamamoto for providing technical assistance.

Appendix A. Supplementary data

Supplemental Information includes Supplemental Experimental
Procedures, two figures, and two tables, and can be found with this ar-
ticle online.

References

Bricker, D.K., Taylor, E.B., Schell, J.C., Orsak, T., Boutron, A., Chen, Y.C., Cox, J.E., Cardon,
C.M., Van Vranken, J.G., Dephoure, N., et al., 2012. A mitochondrial pyruvate carrier
required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96–100.

Cai, P., Tsao, R., Ruppen, M.E., 2007. In vitrometabolic study of Temsirolimus: preparation,
isolation, and identification of the metabolites. Drug Metab. Dispos. 35, 1554–1563.

Cairns, R.A., Harris, I.S., Mak, T.W., 2011. Regulation of cancer cell metabolism. Nat. Rev.
Cancer 11, 85–95.

Catchpole, G., Platzer, A., Weikert, C., Kempkensteffen, C., Johannsen, M., Krause, H., Jung,
K., Miller, K., Willmitzer, L., Selbig, J., et al., 2011. Metabolic profiling reveals key met-
abolic features of renal cell carcinoma. J. Cell. Mol. Med. 15, 109–118.

Drabkin, H.A., Gemmill, R.M., 2012. Cholesterol and the development of clear-cell renal
carcinoma. Curr. Opin. Pharmacol. 12, 742–750.

Durinck, S., Stawiski, E.W., Pavía-Jiménez, A., Modrusan, Z., Kapur, P., Jaiswal, B.S., Zhang,
N., Toffessi-Tcheuyap, V., Nguyen, T.T., Pahuja, K.B., et al., 2015. Spectrum of diverse
genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47,
13–21.

Gebhard, R.L., Clayman, R.V., Prigge, W.F., Figenshau, R., Staley, N.A., Reesey, C., Bear, A.,
1987. Abnormal cholesterol metabolism in renal clear cell carcinoma. J. Lipid Res.
28, 1177–1184.

Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P.,
Matthews, N., Stewart, A., Tarpey, P., et al., 2012. Intratumor heterogeneity and
branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366,
883–892.

Hakimi, A.A., Reznik, E., Lee, C.H., Creighton, C.J., Brannon, A.R., Luna, A., Aksoy, B.A., Liu,
E.M., Shen, R., Lee, W., et al., 2016. An integrated metabolic atlas of clear cell renal
cell carcinoma. Cancer Cell 29, 104–116.

Halestrap, A.P., 1975. The mitochondrial pyruvate carrier. Kinetics and specificity for sub-
strates and inhibitors. Biochem. J. 148, 85–96.

Hensley, C.T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L., Ko, B., Skelton, R.,
Loudat, L., et al., 2016. Metabolic heterogeneity in human lung tumors. Cell 164,
681–694.

Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.L., Zamboni, N., Westermann, B., Kunji, E.R.,
Martinou, J.C., 2012. Identification and functional expression of the mitochondrial py-
ruvate carrier. Science 337, 93–96.

Li, B., Qiu, B., Lee, D.S., Walton, Z.E., Ochocki, J.D., Mathew, L.K., Mancuso, A., Gade, T.P.,
Keith, B., Nissim, I., et al., 2014. Fructose-1, 6-bisphosphatase opposes renal carcino-
ma progression. Nature 513, 251–255.

Linehan, W.M., Srinivasan, R., Schmidt, L.S., 2010. The genetic basis of kidney cancer: a
metabolic disease. Nat. Rev. Urol. 7, 277–285.

Pisarsky, L., Bill, R., Fagiani, E., Dimeloe, S., Goosen, R.W., Hagmann, J., Hess, C., Christofori,
G., 2016. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic
therapy. Cell Rep. 15, 1161–1174.

Saito, K., Arai, E., Maekawa, K., Ishikawa, M., Fujimoto, H., Taguchi, R., Matsumoto, K.,
Kanai, Y., Saito, Y., 2016. Lipidomic signatures and associated transcriptomic profiles
of clear cell renal cell carcinoma. Sci. Rep. 6, 28932.

Sellers, K., Fox, M.P., Bousamra 2nd, M., Slone, S.P., Higashi, R.M., Miller, D.M., Wang, Y.,
Yan, J., Yuneva, M.O., Deshpande, R., et al., 2015. Pyruvate carboxylase is critical for
non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698.

Sonveaux, P., Végran, F., Schroeder, T., Wergin, M.C., Verrax, J., Rabbani, Z.N., De Saedeleer,
C.J., Kennedy, K.M., Diepart, C., Jordan, B.F., et al., 2008. Targeting lactate-fueled respi-
ration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942.

The Cancer Genome Atlas Research Network, 2013. Comprehensive molecular character-
ization of clear cell renal cell carcinoma. Nature 499, 43–49.

Valente, M.J., Henrique, R., Costa, V.L., Jerónimo, C., Carvalho, F., Bastos, M.L., de Pinho, P.G.,
Carvalho, M., 2011. A rapid and simple procedure for the establishment of human
normal and cancer renal primary cell cultures from surgical specimens. PLoS One 6,
e19337.

Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., 2009. Understanding the Warburg ef-
fect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.

Warburg, O., 1956. On the origin of cancer cells. Science 123, 309–314.

http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0005
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0005
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0010
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0010
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0015
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0015
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0020
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0020
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0025
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0025
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0030
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0030
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0030
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0035
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0035
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0040
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0040
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0040
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0045
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0045
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0050
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0050
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0055
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0055
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0060
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0060
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf9000
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf9000
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0065
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0065
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0070
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0070
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0075
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0075
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0080
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0080
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0085
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0085
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0090
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0090
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0095
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0095
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0095
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0100
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0100
http://refhub.elsevier.com/S2352-3964(17)30152-4/rf0105

	Intratumor Heterogeneity in Primary Kidney Cancer Revealed by Metabolic Profiling of Multiple Spatially Separated Samples w...
	1. Introduction
	2. Materials and Methods
	2.1. Tissue Collection
	2.2. Global Metabolomics Analysis
	2.3. Cell Culture and Growth Assays
	2.4. Tissue Slice Stable Isotopic Tracer Experiments
	2.5. Stable Isotopic Tracer Experiments in Cell Culture
	2.6. Animal Experiments
	2.7. Statistical Analysis

	3. Results
	3.1. A Metabolic Cluster in Kidney Cancer Characterized by High Pyruvate Levels
	3.2. Intratumor Heterogeneity in Kidney Cancer Revealed by Metabolomics Analysis
	3.3. Intratumor Heterogeneity Revealed by Stable Isotopic Tracer Studies
	3.4. Pyruvate Metabolism as a Vulnerability of Kidney Cancer
	3.5. Metabolic Pattern and Drug Sensitivity

	4. Discussion
	Funding Source
	Conflicts of Interest
	Author Contributions
	Acknowledgments
	Appendix A. Supplementary data
	References


