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ABSTRACT The use of rRNA/DNA ratios derived from surveys of rRNA sequences in
RNA and DNA extracts is an appealing but poorly validated approach to infer the ac-
tivity status of environmental microbes. To improve the interpretation of rRNA/DNA
ratios, we performed simulations to investigate the effects of community structure,
rRNA amplification, and sampling depth on the accuracy of rRNA/DNA ratios in clas-
sifying bacterial populations as “active” or “dormant.” Community structure was an
insignificant factor. In contrast, the extent of rRNA amplification that occurs as cells
transition from dormant to growing had a significant effect (P � 0.0001) on classifi-
cation accuracy, with misclassification errors ranging from 16 to 28%, depending on
the rRNA amplification model. The error rate increased to 47% when communities
included a mixture of rRNA amplification models, but most of the inflated error was
false negatives (i.e., active populations misclassified as dormant). Sampling depth
also affected error rates (P � 0.001). Inadequate sampling depth produced various
artifacts that are characteristic of rRNA/DNA ratios generated from real communities.
These data show important constraints on the use of rRNA/DNA ratios to infer activ-
ity status. Whereas classification of populations as active based on rRNA/DNA ratios
appears generally valid, classification of populations as dormant is potentially far less
accurate.

IMPORTANCE The rRNA/DNA ratio approach is appealing because it extracts an
extra layer of information from high-throughput DNA sequencing data, offering a
means to determine not only the seedbank of taxa present in communities but also
the subset of taxa that are metabolically active. This study provides crucial insights
into the use of rRNA/DNA ratios to infer the activity status of microbial taxa in com-
plex communities. Our study shows that the approach may not be as robust as pre-
viously supposed, particularly in complex communities composed of populations
employing different growth strategies, and identifies factors that inflate the errone-
ous classification of active populations as dormant.
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Studies of microbial community composition are increasingly concerned with iden-
tifying metabolically active populations linked to ecosystem processes. Although

amplification and sequencing of rRNA genes effectively document the microorganisms
present in a community (1–4), the abundance of an organism in a community DNA
survey is an unreliable indicator of its activity. Given the frequent presence of starving
cells, spores, or other dormant forms of cells (5–8), nonviable cells with residual DNA (9),
or extracellular DNA (10, 11), only a portion of the microbial DNA detected in the
environment represents metabolically active cells (12). To identify the metabolically
active members of microbial communities, sequencing of rRNA has been employed.
Because rRNA is a structural component of ribosomes and ribosomes are expected to
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increase with metabolic activity (13–16), rRNA abundance is a potential marker of
growth and metabolism. Additionally, RNA generally degrades faster than DNA after
cell death, so detection of rRNA is more likely to indicate active or recently living cells
(17).

Different approaches have been used to characterize active microbial populations
via rRNA sequencing. One approach is to characterize only the rRNA pool and infer that
this represents active populations (18, 19). However, the presence of rRNA is not always
a reliable indicator of activity because dormant forms of cells harbor ribosomes in order
to resume protein synthesis when environmental conditions improve (20). Comparison
of rRNA and DNA quantities is a more sophisticated approach. As cellular activity
increases, the ratio of rRNA to rRNA genes is expected to increase because ribosome
abundance increases much more than the genome copy number in active cells.
Consequently, organisms with a higher abundance of rRNA than DNA in community
surveys are proposed to be active (21, 22). A critical detail of the rRNA/DNA method
used in microbial community analyses is that the true ratios of rRNA to DNA occurring
within cells are not measured; instead, the relative abundance of a taxon in a commu-
nity survey of rRNA is compared to its relative abundance in a community survey of rrn
genes. Although a number of studies have used rRNA/DNA ratios to characterize active
microbial populations in environmental samples (23–25), there has been little effort to
investigate factors that may affect data interpretation.

In this study, we performed simulations to test the effects of community structure,
variation in rRNA amplification, and sampling depth on the identification of active
populations on the basis of rRNA/DNA ratios. The simulation results were used to guide
the interpretation of empirical sequence data generated from forest floor microbial
communities. The simulation data revised our original interpretation of the empirical
data, demonstrating the potential of these simulations to inform other studies that
employ rRNA/DNA ratios.

RESULTS
rRNA amplification data. It is well accepted that the number of ribosomes (and

therefore rRNA) in cells increases with the growth rate (26). Yet, the precise number of
ribosomes in cells in different metabolic states is very uncertain. Among 18 studies
published between 1986 and 2013, the quantity of ribosomes reported in bacterial cells
varied 3,600-fold (see Table S1 in the supplemental material). The median quantity in
stationary-phase cells was 200 (n � 3 studies; range, 20 to 8,000), and the median
quantity in growing cells was about 5,100 (n � 18 studies and 13 species; range, 92 to
72,000). Given the uncertainty and large spread of published estimates, we defined
three rRNA amplification models—low, medium, and high—to represent a range of
possibilities for the increase in the ribosome content of cells across four metabolic
states (Fig. 1). Among the three models, the cellular ribosome content ranged from 1
in dead cells to a maximum of 10,000 in growing cells.

Effects of community structure and rRNA amplification model on rRNA/DNA
ratios. Simulations of communities with 5,000 populations showed that community
structure did not have a significant effect on the accuracy of population activity
assessments derived from rRNA/DNA ratios (by analysis of variance [ANOVA], degree of
freedom [df] � 2, F � 0.002, and P � 0.99) (Table 1). These results were obtained from
simulations (100 runs each) that represented three community structures and the three
ribosome amplification models described in Fig. 1. Given a constant rRNA amplification
model, the false detection rate (false positives [FP] plus false negatives [FN]) with
different community structures was nearly identical (Table 1). For example, the false
detection rates ranged from 21.3 to 21.5% for three community structures with the low
rRNA amplification model (Table 1; similar results [not shown] were obtained from
simulations with 1,000 runs). The data suggest that dramatic differences in community
structure would not undermine the use of rRNA/DNA ratios to infer population activity
status.
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In contrast, rRNA amplification models had a significant effect on false detection
rates (by ANOVA, df � 2, F � 3,869, and P � 0.0001). The combined FP and FN rates
ranged from 16 to 28%, and the highest rate occurred with the high rRNA amplification
model. The distribution of rRNA/DNA ratios in these simulations is illustrated in Fig. 2.
The mean of the rRNA/DNA ratios was 1, but the mode shifted from 1 to 1.1 under the
high rRNA amplification model. Similarly, the maximum rRNA/DNA ratio increased from
ca. 2.4 in the low and medium models to 3.5 in the high rRNA amplification model.

Taken together, these data show that rRNA/DNA ratios are insensitive to variation in
community structure, whereas variation in evolved growth strategy (i.e., rRNA amplifi-
cation) among populations or communities can substantially influence the interpreta-
tion of rRNA/DNA ratios.

Effect of partial sampling on rRNA/DNA ratios. Simulations with partial sam-
pling—analogous to incomplete sampling of natural communities—showed that sam-
pling depth had a significant effect on misclassification rates (Table 2) (by ANOVA, df �

4, F � 17.65, and P � 0.0001; similar results [not shown] were obtained from simula-
tions with 1,000 runs). In these simulations, a community with a lognormal population
distribution (standard deviation of 1) was used and random samples of increasing size
were drawn (Fig. 3; Table 2). The simulations showed two major effects of sampling
depth. First, undersampling of the communities produced a spread of rRNA/DNA ratios
much greater than 1.0. For example, in simulations with the medium rRNA amplification
model, rRNA/DNA ratios as high as 46.8 occurred when the sampling depth was 1 to
100 times the total number of populations (5,000) in the community (Fig. 3). At a
sampling depth of 1,000�, the maximum rRNA/DNA ratio was only 6.0 (Fig. 3) and the
distribution of rRNA/DNA ratios began to resemble the distribution in completely
sampled communities (Fig. 2, middle panel) that had a maximum rRNA/DNA ratio of
2.4. Second, undersampling significantly inflated the misclassification rate for activity

FIG 1 rRNA amplification and random assignment of cells to metabolic states. Three different rRNA
amplification models were used to represent variation in the abundance of ribosomes in cells in four
metabolic states. The number of ribosomes per cell in each of the activity metabolic states with the
different rRNA amplification models is indicated. Data for the rRNA amplification models were based on
data from Table S1. For simulations, each population in a community represented a mixture of cells in
different metabolic states. The number of cells in a given population was determined from a community
structure model. The cells in a population were randomly assigned to four metabolic states, and the net
activity status of each population was calculated.

TABLE 1 Effect of community structure and ribosomal amplification on misclassifications

Ribosomal
amplification Community structure Avg % FP � SDa Avg % FN � SDa

Low Lognormal �1 10.7 � 1.9 10.8 � 1.9
Low Lognormal �2 10.7 � 0.6 10.6 � 0.6
Low Even 10.7 � 0.5 10.6 � 0.4
Medium Lognormal �1 8.4 � 1.8 8.1 � 1.8
Medium Lognormal �2 8.1 � 0.7 8.1 � 0.6
Medium Even 8.0 � 0.5 8.0 � 0.6
High Lognormal �1 13.9 � 1.5 14.1 � 1.8
High Lognormal �2 14.0 � 0.6 13.9 � 0.6
High Even 13.9 � 0.5 14.0 � 0.6
aPercentages of the 5,000 input populations in 100 independent runs per simulation are shown.
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status (by ANOVA, P � 0.001), and the degree of this effect depended significantly on
the rRNA amplification model (by ANOVA, df � 2, F � 10.85, and P � 0.005). Moreover,
partial sampling increased the FN rate compared to the FP rate (by paired-sample
two-tailed Student t test, P � 0.006). Increasing the sampling depth from 1� to
10,000� the total population richness reduced the combined FN and FP rate from an
average of 38% to an average of 22% (Table 2), and the latter level was similar to levels
observed in completely sampled communities (Table 1). These findings show that

FIG 2 Effects of rRNA amplification models on rRNA/DNA ratios. Shown are histograms of rRNA/DNA ratios for each
population generated from the simulations. The simulations represent the low, medium, and high rRNA amplifi-
cation models run under the lognormal �1 community structure model. Qualitatively similar data were obtained
with the �0 and �2 community structure models, so the data are not shown. Each histogram represents the
cumulative data of 100 independent runs of a simulation.

TABLE 2 Effect of sample size on misclassifications

Sample size
Ribosomal
amplification Avg % FP � SDa Avg % FN � SDa

5,000 (1�)b Low 18.4 � 0.6 20.2 � 0.7
5,000 (1�) Medium 17.3 � 0.7 19.4 � 0.7
5,000 (1�) High 17.8 � 0.7 20.4 � 0.7
50,000 (10�) Low 14.7 � 0.6 16.2 � 0.6
50,000 (10�) Medium 13.2 � 0.6 14.5 � 0.6
50,000 (10�) High 15.3 � 0.6 16.9 � 0.6
500,000 (100�) Low 14.1 � 0.6 14.5 � 0.7
500,000 (100�) Medium 9.2 � 0.6) 9.8 � 0.5
500,000 (100�) High 14.0 � 0.6 14.7 � 0.6
5,000,000 (1,000�) Low 10.8 � 0.7 10.8 � 0.6
5,000,000 (1,000�) Medium 8.3 � 0.6 8.4 � 0.6
5,000,000 (1,000�) High 14.1 � 0.7 14.1 � 0.7
50,000,000 (10,000�) Low 10.7 � 0.6 10.5 � 0.7
50,000,000 (10,000�) Medium 8.1 � 0.6 8.1 � 0.6
50,000,000 (10,000�) High 14.0 � 0.6 14.0 � 0.7
aThe error rates are expressed as percentages of the populations that were detected in both DNA and RNA
sampling profiles, and each value is the average of 100 independent iterations � the standard deviation).
With low sampling depths, the number of detected populations was less than the 5,000 input populations.

bThe parenthetical factors indicate the sampling depth as a multiple of the number of input populations
(5,000) in the simulated community.
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sampling depth is an important concern when using rRNA/DNA ratios to infer the
activity of microbial populations.

Effect of mixed rRNA amplification on rRNA/DNA ratios. Given that species have
evolved different growth strategies, rRNA amplification is expected to vary among
populations in natural communities. For example, a species with an inherently low
growth rate is expected to have a lower number of ribosomes per cell (i.e., low
ribosomal amplification) than a species with an inherently high growth rate when both
species are in the active growth phase (15). To evaluate this effect, we constructed
communities with a mixture of three rRNA amplification models. In these simulations,
populations were randomly assigned to one of the three rRNA amplification models,
yielding a community in which populations can have identical activity levels (i.e., they
are equally active) but different ribosome counts. These simulations showed a dramatic
increase in the total misclassification rate (47% versus 16 to 28%) of population activity
status from rRNA/DNA ratios in comparison to simulations with a single rRNA amplifi-
cation model (Table 3 versus Table 1). The increased error rate arose mainly from an
increase in the FN rate to 34%, which was more than twice the 13% FP rate from a
single rRNA amplification model (Table 3). When the populations that comprised the FP
and FN detections were identified, 100% of the FP populations had the high rRNA
amplification model, whereas only 1.4% of the FN populations harbored the high

FIG 3 Effects of partial sampling on rRNA/DNA ratios. Each panel represents a different sampling depth,
ranging from random samples of 1 to 1,000 times the input population richness. The simulation data
presented are for a lognormal �1 community structure with the medium rRNA amplification model and
5,000 populations. Data from other model permutations were qualitatively similar (data not shown). Each
histogram represents illustrative data from a single run of a simulation. Summary statistics of combined
data from 100 independent runs are included in the insets. The reported proportions of RNA and DNA
sampled refer to the average proportions of the 5,000 input taxa that were detected in the samples.
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amplification model (Table 3). Conversely, ca. 99% of the FN populations were from the
low and medium rRNA amplification models. These results suggest that a high FN rate
is a likely characteristic of rRNA/DNA ratios from natural communities where growth
strategies vary among populations, and therefore, “dormant” status may often be an
incorrect inference. In contrast, the majority of populations classified as “active” from
rRNA/DNA ratios are likely to be valid, but “active” status may be biased toward species
with high rRNA amplification growth strategies.

Empirical sequencing data and rRNA/DNA ratios. rRNA/DNA ratios were calcu-
lated for operational taxonomic units (OTUs) found in each of 12 forest floor soil
communities that were sampled from four sites across a 500-km transect in Michigan,
USA. The sequence surveys represented only a portion of the total diversity of the
samples, as indicated by Good’s coverage (27), which ranged from ca. 61 to 70% across
the sequence libraries. The rRNA/DNA ratios calculated from the surveys ranged from
0.003 to 53 (Fig. 4A). Qualitatively, the distribution of rRNA/DNA ratios appeared similar
to the distributions from undersampled communities in silico (Fig. 3).

To investigate possible relationships between taxonomy and rRNA/DNA ratios, every
OTU in the empirical sequencing data was assigned to a phylum level taxonomic bin.
The rRNA/DNA ratios within each of the seven numerically dominant phyla (defined as
those consistently present at �5% abundance in the sequence libraries) are presented
in Fig. 4B. In this analysis, OTUs within the phyla Acidobacteria, Actinobacteria, Bacte-
roidetes, and Proteobacteria mostly had mean rRNA/DNA ratios close to or equal to 1.0,

TABLE 3 Effect of a mixed community on misclassifications

Error
% of total
misclassificationa

% of error from ribosome amplification
modelb

Low Medium High

FP 12.8 0 0 100
FN 33.8 49.2 49.4 1.4
aPercentage of misclassifications in the entire community (5,000 populations, 100 runs per simulation).
bPercent contributions of the different amplification models to the FP and FN error rates.

FIG 4 rRNA/DNA ratios in empirical sequence data. (A) Histogram of the ratios of OTUs from forest floor sequence
libraries. Ratios were calculated individually for every OTU from 12 paired replicate sequence libraries. (B)
Relationship between rRNA/DNA ratios and taxonomy. Each point represents an individual OTU. Only phyla that
were present across all of the sequence libraries and accounted for �5% of the sequences are displayed. Given the
large range of rRNA/DNA ratios, the y axis is displayed as a log scale. The dashed line represents an rRNA/DNA ratio
of 1. OTUs above the line would be classified as active, and those below the line would be classified as dormant.
The boxes denote the interquartile range of the rRNA/DNA ratios, with the notch denoting the mean. Phylum
abbreviations: Acid, Acidobacteria; Act, Actinobacteria; Bac, Bacteroidetes; Plan, Planctomycetes; Pro, Proteobacteria;
Ver, Verrucomicrobia.
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whereas the rRNA/DNA ratios of OTUs within the phylum TM7 (Candidatus Saccharib-
acteria [28]) were almost exclusively �1.0 (Fig. 4B).

DISCUSSION

Our simulations verified that rRNA/DNA ratios can identify active populations but
false detections can occur. False detection rates increased as the sampling depth
decreased (Table 2). More importantly, the false detection rate was dramatically higher
(48% versus 16 to 28%) when communities had populations that differed in rRNA
amplification (Table 3). We did not test the combined effect of undersampling and
mixed rRNA amplification, but the combined factors are likely to inflate false detection
rates even more. Given the high diversity of most terrestrial microbial communities and
the range of physiologies and growth rates among populations, high false detection
rates are anticipated when rRNA/DNA ratios are used to infer activity status in complex
environmental samples. The strong bias toward inflation of FN over FP (Tables 2 and 3)
shows that classification of populations as “dormant” is less reliable than classification
as “active.”

We expected the misclassification error to be higher in communities with a strong
dominance pattern—that is, a less even species abundance distribution— but simula-
tions did not support this hypothesis. The logic of our hypothesis was that increased
dominance would exacerbate measurement errors in the RNA or DNA abundance of
rare types, giving rise to greatly distorted rRNA/DNA ratios of rare types. Why? Because
a statistical characteristic of community survey data is that the relative measurement
error of taxon abundance is greater for rare taxa than for abundant taxa in community
surveys. We can only speculate that a community structure effect was not observed
because the misclassification of activity status depends foremost on the distribution of
activity levels among species, not species abundance. Our simulations used a normal
distribution of activity levels, owing to the representation of each taxon as a random
mixture of four metabolic states. This is an important caveat for future studies: a
different distribution of activity levels may produce different misclassification error
rates.

Given the propensity for FN to occur with rRNA/DNA ratios from complex commu-
nities (Tables 2 and 3), inferring the dormancy of a specific taxon in natural commu-
nities should be done with caution. In our forest floor samples, OTUs within the phylum
TM7 almost exclusively showed rRNA/DNA ratios of �1 (Fig. 4B), possibly indicating
consistent dormancy along the 500-km transect we sampled. Our simulations, however,
suggest the alternative explanation that TM7 bacteria may simply be more prone to
misclassification as FN. This phylum may be misclassified as dormant if it has evolved
a low rRNA amplification strategy, whereas co-occurring active taxa have medium to
high rRNA amplification (Table 3). This simulation-informed insight demonstrates the
value of using modeling to guide the interpretation of empirical data, especially when
a foundation of empirical ground truth is absent.

The findings from simulations improve the interpretation of rRNA/DNA ratios of
natural communities. A characteristic feature of rRNA/DNA ratios derived from our
natural communities and found in other empirical studies is a wide spread of ratios
much greater than 1. The highest ratio we observed was 53 (Fig. 4A), and ratios of up
to 122 were reported in aerosol samples (29). Although it is tempting to move beyond
the classification of taxa as active or dormant and use rRNA/DNA ratios to distinguish
degrees of activity (also known as “specific activity” [29]), several considerations suggest
that the practice is generally unsound. First, insufficient sampling depth can dramati-
cally distort rRNA/DNA ratios, as our simulations showed (Fig. 3). Second, for some
species, rRNA/DNA ratios are misleading indicators of their general activity status
(active versus dormant), much less the degree of activity, because of eccentric biology.
For example, the cyanobacterium Aphanizomenon ovalisporum forms dormant cells
called akinetes that contain a greater abundance of ribosomes than vegetative cells do
(30), and among members of the genus Bacillus, high ribosome content may be a
prerequisite to enter dormancy (20). Finally, the species-specific interplay among
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genomic factors (discussed below), ribosome content, and growth strategy makes
fine-scale interpretation of rRNA/DNA ratios difficult. The scaling of rRNA/DNA ratios
with specific activity levels is likely to vary considerably among species, such that two
species with the same rRNA/DNA ratio can have different activity levels or vice versa.
Recently, Blazewicz et al. (31) reviewed various biological factors that affect the use of
rRNA as a general indicator of activity. Our simulations showed that both methodolog-
ical and biological factors can confound the use of rRNA/DNA ratios to infer specific
activity.

Our simulations captured the effects of several biological factors that could con-
tribute to rRNA and rRNA gene counts in natural communities. The use of different
community structures captured variation in rRNA gene abundance among populations
that may arise not only from differences in cellular abundance but also from several
genomic factors, namely, variation in the copy number of rrn genes within genomes,
genome ploidy, and growth rate. In bacteria, rRNA gene copy numbers vary from 1 to
as many as 15 per genome (32, 33) and some species of bacteria are polyploids that
harbor multiple copies of their genome (34, 35). “Epulopiscium” sp. is an extreme
polyploid case with thousands of copies of the genome per cell during normal growth
(36). The copy number of rRNA genes per cell can also increase transiently as the
growth rate increases owing to the presence of multiple genome replication forks per
cell (37, 38). All of these factors contribute to the observed abundance distribution of
rRNA gene sequences—the community structure—in targeted metagenomic surveys of
natural communities.

Genome factors and other regulatory phenomena also contribute to differences
among species in growth strategy—a multifaceted evolutionary trait that includes how
species manage ribosome content (rRNA abundance). Our use of three different rRNA
amplification models reflected the uncertainty in the current state of knowledge
concerning the ribosome content of cells in different physiological states, as well as the
variation in growth strategy among species in natural communities. Detailed informa-
tion about rRNA amplification among species with different growth strategies is a large
knowledge gap that merits further attention and careful physiological studies.

Given our observations and the paucity of data on the growth strategies of most
bacterial species, the safest application of rRNA/DNA ratios may be time series studies,
in which the activity of a population is assessed relative to an initial baseline instead of
relative to an assumption of a universal (across microbial phyla) scaling of rRNA/DNA
ratios with population activity status. A substantial change in the rRNA/DNA ratio of a
taxon can indicate a shift in activity level, reducing dependence on a universal
threshold value (e.g., 1.0) for classification of populations as active or dormant. Time
series analysis also mitigates the problem of legacy effects, wherein an rRNA/DNA point
measurement reflects a prior activity status and fails to reveal populations that may be
transitioning to a new activity status (12).

Conclusion. With a modest simulation effort, we gained important insights into the

interpretation of the rRNA/DNA ratios of real communities. Our study showed that
highly asymmetric FP and FN error rates are possible when rRNA/DNA ratios are applied
to complex communities to infer population activity status. Inference of active status
appears generally sound, whereas inference of dormant status is undermined by a
potentially high misclassification error rate. Insufficient sampling depth and evolved
physiological variation among species significantly inflate the FN rate (i.e., active
populations misclassified as dormant). Validation of rRNA/DNA ratios with orthogonal
techniques to measure population activity, such as stable isotope probing (39) or
nanoscale secondary ion mass spectrometry (40), would improve the interpretation of
metabolic activity. Finally, additional physiological studies that accurately characterize
the relationship between ribosome content and specific growth rates, or activity status,
among different species would also improve the modeling and interpretation of
rRNA/DNA ratios.
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MATERIALS AND METHODS
Simulations. Simulations and statistical analyses were performed with the R software package (41).

Every simulation represented a community made up of cells belonging to 5,000 populations. Each
simulation involved three parameters, described below.

Community structure (i.e., abundance distribution of populations). Three community structures
were tested. The community structures differed in the extent of population dominance, with dominance
ranging from high to none. The community structures were as follows: a lognormal distribution with a
standard deviation of 2, a lognormal distribution with a standard deviation of 1, and a uniform
distribution with a standard deviation of 0 (i.e., equal abundance of all populations). These population
abundance distributions were used to represent the abundance of cells (and rrn gene abundance) in
each population.

Metabolic states. Each population was represented as a collection of cells in different metabolic
states. This approach was used because microbial populations in natural environments are seldom
expected to be metabolically homogeneous, owing to factors such as fluctuating and patchy resource
distributions and complex ecological gradients created by nonuniform distributions of other interacting
populations. For modeling, each cell in a population was assigned to one of four metabolic states— dead,
dormant, maintenance, or growing (Fig. 1). The key characteristics of the metabolic states are as follows:
(i) dead, cells contain DNA but very limited rRNA; (ii) dormant, cells have low ribosome numbers but are
capable of resuscitation (e.g., spores); (iii) maintenance, cells are alive and metabolically active but
maintain a low metabolic rate with little, if any, reproduction; (iv) growing, cells have high activity and
are multiplying. The four metabolic states were based on those proposed by Blazewicz et al. (31). For
each population, the fraction of cells in each metabolic state was assigned randomly, with the constraint
that the sum of the fractions equals 1 (Fig. 1). Random assignment of the metabolic states within each
population created an approximately normal distribution of activity levels among the 5,000 populations
in each community.

rRNA amplification. We created three rRNA amplification models describing how ribosome abun-
dance changes among the four cellular metabolic states (Fig. 1A). We derived the models on the basis
of data from studies examining ribosome abundance in stationary-phase or growing cells of 13 bacterial
species (see Table S1). Given a specific rRNA amplification model and the fractions of a population in the
four metabolic states, the rRNA count of a population could be explicitly calculated as the sum of
ribosomes in cells in the four metabolic states. The resulting relative abundance of rRNA of each
population in a community could then be compared with the relative rrn gene abundance from the
community structure model to calculate the rRNA/DNA ratio. Populations with an rRNA/DNA ratio of �1
were classified as active, and those with an rRNA/DNA ratio of �1 were classified as dormant, as in a
previous study (21).

The simulations consisted of the following seven sequential steps. (i) Assign a community structure.
(ii) Randomly assign cells within each population to four metabolic states. (iii) Select an rRNA amplifi-
cation model. (iv) Calculate the resulting rRNA/DNA ratios explicitly, or create random subsamples of the
rRNA and rrn gene pools, and use these surveys to calculate rRNA/DNA ratios. (v) Use the ratios to classify
populations as active versus dormant. (vi) Calculate misclassification (FN and FP) rates. (vii) Repeat the
simulation over 100 iterations.

To assess the accuracy of rRNA/DNA ratios for identifying population activity status (active versus
dormant), misclassification rates were calculated. FP were populations that were known to be inactive
(i.e., �50% of the cells were in the dead or dormant state) but had observed rRNA/DNA ratios of �1.
Conversely, FN were populations that were known to be active (i.e., �50% of the cells were in the
maintenance or growing state) but had rRNA/DNA ratios of �1. With these metrics, it was possible to
quantify the effects of community structure, rRNA amplification model, and sampling depth on the
accuracy of activity assessments derived from rRNA/DNA ratios.

The R code to perform these simulations is included in the supplemental material.
Empirical sequence data. Forest floor samples were collected in October 2011 at four sites (three

replicates per site) over an approximately 500-km latitudinal gradient. Extraction of DNA and RNA and
nucleic acid sequencing were described previously (22, 42). The primers employed to amplify bacterial
16S rRNA genes from DNA and cDNA were targeted to the V5 and V6 region of the gene as described
by Claesson et al. (43). Sequencing was performed via 454 FLX Titanium at the Los Alamos National
Laboratory. The resulting sequences were quality checked in the mothur software package v.1.27.0 (44)
by using the PyroNoise algorithm (45). Potentially chimeric sequences were identified by using the
mothur implementation of Perseus (46), and all prospective chimeras were removed from further
analysis. The bacterial 16S rRNA sequences were aligned in mothur against the SILVA bacterial reference
alignment (47), and OTUs were determined by clustering sequences by average neighbor clustering in
mothur with a 97% sequence identity threshold.

The rRNA/DNA ratios of the empirical sequencing data were calculated after randomly subsampling
paired DNA and rRNA libraries to the same number of reads to remove potential biases due to differences
in sampling depth. The proportional abundance of each OTU was then determined (dividing the number
of reads for each OTU by the number of reads in the sample). Only OTUs that were detected in both the
rrn gene survey and the rRNA survey were employed to calculate rRNA/DNA ratios. The rRNA/DNA ratio
of each OTU was determined by dividing the relative abundance of the OTU in the rRNA survey by its
relative abundance in the rrn gene survey.

The taxonomic identities of OTUs in the empirical sequencing data were determined with the
mothur-implemented Bayesian classifier (48) to compare OTU representative sequences against the
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SILVA reference database (47), release 123. Only taxonomic assignments with a confidence score
of �70% are reported.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.00696-17.

SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.
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