Abstract
We have examined the number of "blobs" (cytochrome oxidase-positive cortical modules) in the primary visual cortex (area 17) of infant and adult rhesus monkeys. The density of these iterated circuits--about five per mm2--was not significantly different in three newborn and three mature animals. Measurement of the surface of area 17 in serial sections, however, showed that the total area occupied by the primary visual cortex increases by about 50% during maturation. Based on these measurements, the number of blobs in this species is about 8000 at birth and about 12,000 in maturity. Evidently, these complex functional units are added gradually to the developing primate brain over a period that extends into postnatal life.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carroll E. W., Wong-Riley M. T. Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. J Comp Neurol. 1984 Jan 1;222(1):1–17. doi: 10.1002/cne.902220102. [DOI] [PubMed] [Google Scholar]
- Condo G. J., Casagrande V. A. Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I. Adult patterns. J Comp Neurol. 1990 Mar 22;293(4):632–645. doi: 10.1002/cne.902930408. [DOI] [PubMed] [Google Scholar]
- Dekaban A. S. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978 Oct;4(4):345–356. doi: 10.1002/ana.410040410. [DOI] [PubMed] [Google Scholar]
- Goldman P. S., Nauta W. J. Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res. 1977 Feb 25;122(3):393–413. doi: 10.1016/0006-8993(77)90453-x. [DOI] [PubMed] [Google Scholar]
- Gottlieb M. D., Pasik P., Pasik T. Early postnatal development of the monkey visual system. I. Growth of the lateral geniculate nucleus and striate cortex. Brain Res. 1985 Jan;349(1-2):53–62. doi: 10.1016/0165-3806(85)90131-2. [DOI] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Shape and arrangement of columns in cat's striate cortex. J Physiol. 1963 Mar;165:559–568. doi: 10.1113/jphysiol.1963.sp007079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horton J. C., Hedley-Whyte E. T. Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos Trans R Soc Lond B Biol Sci. 1984 Jan 17;304(1119):255–272. doi: 10.1098/rstb.1984.0022. [DOI] [PubMed] [Google Scholar]
- Horton J. C., Hubel D. H. Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature. 1981 Aug 20;292(5825):762–764. doi: 10.1038/292762a0. [DOI] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones E. G., Burton H., Porter R. Commissural and cortico-cortical "columns" in the somatic sensory cortex of primates. Science. 1975 Nov 7;190(4214):572–574. doi: 10.1126/science.810887. [DOI] [PubMed] [Google Scholar]
- LaMantia A. S., Purves D. Development of glomerular pattern visualized in the olfactory bulbs of living mice. Nature. 1989 Oct 19;341(6243):646–649. doi: 10.1038/341646a0. [DOI] [PubMed] [Google Scholar]
- Livingstone M. S., Hubel D. H. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci. 1984 Jan;4(1):309–356. doi: 10.1523/JNEUROSCI.04-01-00309.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livingstone M. S., Hubel D. H. Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey. J Neurosci. 1987 Nov;7(11):3371–3377. doi: 10.1523/JNEUROSCI.07-11-03371.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livingstone M. S., Hubel D. H. Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6098–6101. doi: 10.1073/pnas.79.19.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOUNTCASTLE V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol. 1957 Jul;20(4):408–434. doi: 10.1152/jn.1957.20.4.408. [DOI] [PubMed] [Google Scholar]
- O'Kusky J., Colonnier M. Postnatal changes in the number of neurons and synapses in the visual cortex (area 17) of the macaque monkey: a stereological analysis in normal and monocularly deprived animals. J Comp Neurol. 1982 Sep 20;210(3):291–306. doi: 10.1002/cne.902100308. [DOI] [PubMed] [Google Scholar]
- Pomeroy S. L., LaMantia A. S., Purves D. Postnatal construction of neural circuitry in the mouse olfactory bulb. J Neurosci. 1990 Jun;10(6):1952–1966. doi: 10.1523/JNEUROSCI.10-06-01952.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong-Riley M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 1979 Jul 27;171(1):11–28. doi: 10.1016/0006-8993(79)90728-5. [DOI] [PubMed] [Google Scholar]