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Abstract

Type 2 diabetes (T2D) is increasing worldwide, making identification of biomarkers for detection, 

staging, and effective prevention strategies an especially critical scientific and medical goal. 

Fortunately, advances in metabolomics techniques, together with improvements in bioinformatics 

and mathematical modeling approaches, have provided the scientific community with new tools to 

describe the T2D metabolome. Among the metabolomics signatures associated with T2D and 

obesity include increased levels of lactate, glycolytic intermediates, branched-chain and aromatic 

amino acids, and long-chain fatty acids. Conversely, tricarboxylic acid cycle intermediates, betaine 

and other metabolites decrease. Future studies will be required to fully integrate these and other 

findings into our understanding of the diabetes pathophysiology and to identify biomarkers of 

disease risk, stage, and responsiveness to specific treatments.
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Introduction

While type 2 diabetes mellitus (T2D) is defined by elevations in plasma glucose levels, it is 

not simply a disorder of carbohydrate metabolism. Alterations in glucose, lipid, and protein 

metabolism accompany insulin resistance and disordered pancreatic β-cell function, and are 

present years before the disease is clinically diagnosed (1–3). Given the increasing 

prevalence of T2D worldwide (4), it is especially important to identify the earliest, 

potentially pathogenic disruptions which confer disease risk in order to improve approaches 

to treatment.

More than 40 years ago, Pauling and Robinson postulated that the functional status of a 

biological system was reflected in the pattern of metabolites in biological fluids (5), now 

termed the metabolome. With the recent advent of high-throughput and comprehensive 

approaches to quantify the plasma and tissue metabolome, this hypothesis has been 

repeatedly tested and verified. In this review, we will summarize studies of the metabolome 

related to the pathophysiology and identification of biomarkers of T2D and obesity.

Correspondence: Mary-Elizabeth Patti MD, Research Division, 1 Joslin Place, Boston, MA 02215, Phone: 617-309-1966, FAX: 
617-309-2593, mary.elizabeth.patti@joslin.harvard.edu. 

Conflict of Interest:
AG-F, AB, EI, and MEP declare no conflict of interest related to this manuscript.

HHS Public Access
Author manuscript
Curr Diab Rep. Author manuscript; available in PMC 2017 August 01.

Published in final edited form as:
Curr Diab Rep. 2016 August ; 16(8): 74. doi:10.1007/s11892-016-0763-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Techniques for Analyzing the Metabolome

Analysis of the metabolome commonly utilizes mass spectrometry (MS) and/or nuclear 

magnetic resonance (NMR) techniques (reviewed in (6)). Samples are typically separated 

using gas (GC) or liquid chromatography (LC) prior to MS; and compounds are identified 

by mass and fragmentation patterns. By contrast, NMR spectroscopy measures all the 

metabolites at once, with no need for separation, but this method is less sensitive (7, 8). For 

targeted metabolomics, stable isotope-labeled standards are added to the sample prior to 

extraction in order to quantify absolute concentrations of a limited number of known 

metabolites (7–9). Conversely, untargeted metabolomics approaches can detect and 

determine relative concentrations of a large number of metabolites by measuring the 

differences between two experimental conditions (7, 9). Untargeted approaches are limited 

by incomplete spectral and chemical libraries, leading to incomplete identification of all 

spectral peaks (7).

Glycolysis and TCA Cycle Metabolites in T2D

Not surprisingly, plasma hexose sugars are positively associated with T2D, and largely 

accounted for by disease-defining elevations in glucose (10). Nevertheless, elevations in 

other carbohydrates, such as fructose, mannose, and sorbitol, and related compounds such as 

lactate and malate, have been consistently associated with T2D (10–16). Changes in plasma 

lactate during an oral glucose tolerance test (OGTT) are inversely correlated with fasting 

insulin, indicating that insulin resistance can be reflected through the metabolite’s response 

to a glucose challenge (17).

Intracellular metabolite profiles also indicate perturbations in glycolytic and tricarboxylic 

acid (TCA) cycle metabolism in multiple tissues. For example, glucose-stimulated insulin 

secretion (GSIS) requires glucose-stimulated increases in late glycolytic and early TCA 

cycle metabolites; these metabolites are unchanged in clonal lines lacking GSIS (18). 13C-

NMR studies have also revealed a role for altered pyruvate cycling in lipid-induced 

impairments in GSIS (19, 20).

Similar defects in metabolism are characteristic of insulin resistant muscle. For example, 

lipid-induced insulin resistance results in reduced pyruvate dehydrogenase (PDH) activity 

(21) and incomplete fatty acid (FA) oxidation, and is accompanied by decreases in 

downstream TCA cycle and electron transport chain (ETC) metabolites (22, 23). TCA cycle 

intermediates are also decreased in liver and skeletal muscle of genetically obese mice, in 

parallel with increased glycolytic intermediates in muscle (24). Muscle from high-fat diet 

(HFD)-fed mice have decreased labelling of TCA intermediates during glucose tracing 

experiments (25). Distinct patterns have been observed in adipose from obese mice, with 

increases in TCA cycle metabolites in ob/ob and similar trends in db/db (24).

Metabolomics-based studies of urine samples have provided more contradictory data. 

Urinary α-ketoglutarate levels are decreased in obese vs. lean individuals (26). Additionally, 

decreases in urinary fumarate and succinate contribute to the differentiation of patients with 

T2D from healthy individuals in a principal component analysis (27). By contrast, urinary 
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succinate and lactate are increased, and α-ketoglutarate decreased, in rodents with genetic 

obesity and T2D (db/db mice, fa/fa rats). Similarly, NMR metabolomics analysis reveals 

increased urinary glucose, lactate and several TCA intermediates in diabetic mice (28).

Differences between studies could arise from differences in platform, species, gender, 

urinary excretion patterns for specific metabolites, and/or the experimental model used. 

Nevertheless, alterations in TCA cycle intermediates provide support for the central role of 

this pathway as a marker, and perhaps mediator, of perturbed energetic metabolism in the 

insulin resistant state. In turn, such defects may be related to impaired anaplerotic flux (12, 

29), potentially due to incomplete FA oxidation (23) and amino acid metabolism (26, 30), as 

described below.

Amino acids and derivative metabolites

Increases in plasma levels of amino acids, particularly branched-chain and aromatic amino 

acids (BCAA and AAA), have long been recognized as a marker of obesity-associated 

insulin resistance (31). Similar patterns have been confirmed in more recent metabolomics 

analyses (26, 32, 33). Additional amino acids are also elevated in obesity e.g. alanine, 

phenylalanine, tyrosine, glutamate/glutamine, aspartate/asparagine, and arginine (26). In a 

Japanese population (34), alanine, glutamate, tryptophan, tyrosine and BCAA were 

positively correlated with visceral adiposity, while glycine was inversely correlated.

Amino acid metabolites are also perturbed in insulin resistance and T2D. An untargeted 

study demonstrated that the branched-chain ketoacid 3-methyl-2-oxovalerate strongly 

predicted impaired fasting glucose (IFG) (16). In this same study, other branched-chain 

ketoacids (4-methyl-2-oxopentanoate and 3-methyl-2-oxobutyrate) and the downstream 

BCAA metabolic products propionylcarnitine, alpha-methylbutyrylcarnitine and 

isovalerylcarnitine were also elevated in IFG and T2D. Another product of amino acid 

catabolism, α-hydroxybutyrate, is also increased in insulin resistance, potentially reflecting 

oxidative stress (35).

Plasma levels of BCAA and AAA also predict risk for developing T2D in healthy 

individuals (32, 33). High levels of three amino acids (isoleucine, phenylalanine and 

tyrosine) were associated with a five- to seven-fold increased risk of developing diabetes in 

one cohort, and a similar two-fold risk in a second case-control cohort (33). Interestingly, 

fasting concentrations of these amino acids were already elevated as early as 12 years before 

the onset of T2D (33). Alanine has also been associated with hyperglycemia and T2D risk 

(36–38).

Conversely, other amino acids are reduced in insulin resistance. Low glycine is associated 

with insulin resistance (36) and predicts both IGT and T2D (39); these associations may be 

related to glycine’s role as an upstream precursor for glutathione synthesis and antioxidant 

responses (40). Glutamine levels are also reduced in insulin resistance (38); higher levels of 

glutamine or the glutamine-to-glutamate ratio are associated with lower risk of incident 

diabetes, even after adjustment for BMI and BCAA (32, 36). Indeed, supplementation of 

mice with glutamine improves glucose tolerance and reduces blood pressure (36). Similarly 

plasma levels of the methyl donor betaine are reduced in individuals with insulin resistance 
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(41). Betaine may be particularly important for hepatic lipid metabolism, as betaine 

supplementation of mice with diet-induced obesity reduces hepatic lipid and improves 

whole-body metabolism via FGF21-dependent mechanisms (41).

Amino acids may also serve as biomarkers for response to medical therapies for established 

T2D (42) or preventive strategies (41, 43). BCAA and AAA decrease with sulfonylurea 

therapy, and after gastric bypass (44), but surprisingly increase in response to metformin 

(42). Plasma betaine levels not only increase in response to lifestyle and pharmacologic 

therapies, but also predict their success (43).

Taken together, multiple studies consistently report that amino acids are altered in insulin 

resistance and predict T2D. Indeed, amino acid metabolites add predictive value to standard 

clinical measures. For example, the odds of developing future diabetes are increased by 57% 

to 102% for each SD increment in a panel of 5 BCAA and AAA (33). Such increases in 

relative risk are comparable to or higher than risk associated with BMI, increased age, 

fasting glucose, or genetic polymorphisms linked to T2D risk (45).

While amino acids are consistently increased in T2D, it remains uncertain whether these 

patterns simply result from insulin resistance and reduced inhibition of proteolysis, or from 

increased dietary intake or absorption. Regardless, such perturbations in amino acids may 

also contribute to the onset of overt diabetes by reducing both insulin action and secretion 

(30, 46–49). The cellular and tissue mechanisms responsible for these mechanisms remain 

uncertain. BCAA can modulate cellular insulin action (50, 51), stimulating Tor-dependent 

pathways while inhibiting proximal steps in insulin signaling. Whether specific amino acids 

have unique roles remains uncertain, as rodent studies of BCAA supplementation have 

yielded discordant data. For example, leucine supplementation produced beneficial 

metabolic effects in one study (52), while supplementation with multiple BCAA typically 

induces insulin resistance in parallel with increases in acylcarnitines (26). These data formed 

the basis of the “BCAA overload” hypothesis, which posits that BCAA contribute to insulin 

resistance and T2D in the context of HFD-feeding (26, 53). Moreover, HFD-fed mice null 

for the BCAT2 gene, which encodes the first enzyme in BCAA catabolism, have improved 

glucose homeostasis and insulin sensitivity, indicating that products of BCAA oxidative 

metabolism may confer insulin resistance. Further studies will be required to clarify these 

possibilities.

The Lipid Metabolome

Given the importance of obesity as a risk factor for T2D, it is not surprising that adipose-

derived metabolites are increased in insulin resistant individuals. Free fatty acids (FFAs, also 

known as non-esterified fatty acids or NEFAs) are released from adipose as a consequence 

of increased lipolysis when levels or action of insulin are reduced, such as with fasting, 

obesity, and insulin resistance. Elevations in plasma FFAs in turn promote increased tissue 

uptake of lipids and ectopic deposition of triglycerides (TG) in liver and muscle. Other lipids 

or metabolic byproducts such as diacylglycerides, ceramides, acylcarnitines, and reactive 

oxygen species (ROS) are proposed to mediate adverse effects on both insulin signaling and 

metabolism (54–61). Collectively, these intermediates may ultimately lead to reduced 
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insulin-stimulated glucose uptake in muscle, increased hepatic glucose production in liver, 

and β-cell dysfunction.

Not all lipid species have detrimental effects on whole-body metabolism. For example; 

omega-3 FA, palmitoleate, and other unsaturated FA have beneficial effects (62–66). 

Specific FA constituents of circulating TG also confer differential risk for T2D. For 

example, LC/MS analysis of fasting plasma from individuals at risk for T2D indicates that 

TG of lower carbon number and double bond content (i.e. saturated and monounsaturated 

species) are associated with increased T2DM risk, whereas TG of increased carbon number 

and double bond content are associated with decreased risk (65). Moreover, insulin resistant 

patients have a blunted decrease in TG with lower carbon number during OGTT.

Novel lipids have recently been identified as both plasma biomarkers and contributors to 

T2D pathophysiology. An early GC/MS-based study by Newgard and colleagues revealed 

that five FFA were increased in obesity (C14:0, C16:1, C16:0, C18:1, C20:4), while the 

polyunsaturated linoleic and linolenic acids (C18:3 and C18:2) were unchanged (26). Lipids 

with even longer chain length (adrenate and arachidonate, C22:4 and C20:4) are elevated in 

IFG (16). Conversely, some lipid species, such as heptanoate, pelargonate and 5-

dodecenoate (C7:0, C9:0 and 12:1) are decreased in T2D (16). Moreover, both FAs and by-

products of FA oxidation (C14:0, C16:1, C16:0, alpha-C18:3. C18:2, C18:1, C18:0, C22:6, 

hydroxybutyrate and other ketones) are inversely correlated with acute insulin secretion (30).

New lipid candidates have recently been identified. Yore and colleagues (67) reported novel 

lipids with a branched ester linkage between a FA and a hydroxyl-FA, termed fatty-acid-

hydroxy FA (FAHFA). Sixteen FAHFAs family members were identified, with palmitic-

acid-9-hydroxy-stearic acid (9-PAHSA) being the most upregulated in adipose from 

GLUT4-null mice (67). However, PAHSA was decreased in serum and adipose from insulin 

resistant humans and mice. Such reductions in PAHSA could impact on key facets of 

metabolism, as this lipid can increase GSIS in human islets, increase insulin-stimulated 

glucose transport via GPR120 and GLUT4 translocation, and exert anti-inflammatory effects 

in vivo. Thus, reduced PAHSA may contribute to T2D risk (67).

Acylcarnitines have also been studied as T2D predictive biomarkers given their key roles in 

both lipid and amino acid metabolism, including transport of long-chain FAs into the 

mitochondria for oxidation. Newgard and colleagues reported that 4 of 37 acylcarnitines 

were increased in obese humans (C3, C5, C6, C8:1)(26). Moreover, the combination of C3 

and C5 acylcarnitines, together with BCAAs and AAAs, methionine, and glutamate/

glutamine, was particularly most robust for differentiating lean from obese patients. Since 

C3 and C5 acylcarnitines accumulate to a greater extent with BCAA supplementation, these 

may reflect BCAA catabolism. Huffman and colleagues also found elevations in some 

medium-chain acylcarnitines (C8:1, C10:3), which were inversely associated with 

disposition index (30). By contrast, decanoylcarnitine (C10) and the lysophospholipid 1-

lineoylglycerophosphocholine were decreased in and predictive of insulin resistance in 

another study (35).
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Genome links with the metabolome

Complex interactions between many factors, both genetic and environmental, converge to 

influence the metabolite profile of a given individual. Recent studies have utilized genome-

wide association studies (GWAS) to examine the impact of genetic variation on plasma 

metabolites. For example, one GWAS study of 163 metabolites identified genetic variants 

linked to metabolite levels, or to ratios of enzymatic product to substrates (68). The majority 

of validated loci were located within or near genes encoding enzymes or carriers, including 

many related to β-oxidation, FA and phospholipid biosynthesis, and amino acid metabolism. 

Interestingly, these loci explained up to 36% of the variance in metabolites, pointing to an 

important role for genetics. Similarly, genetic variants associated with glycine, serine, and 

betaine levels have been identified (69); but these variants were not clearly linked to 

diabetes-related traits.

Environmental factors affecting the metabolome

Beyond disease state and genetic background, additional environmental factors such as diet, 

activity, medication, age, developmental history, and the microbiome influence the 

metabolome (70). Metabolomics profiles can be influenced by dietary macronutrients, and 

thus are highly valuable for studies of nutritional epidemiology (71); an estimated one-third 

of all compounds associated with a given nutritional pattern can be linked to environmental 

factors. Plasma metabolites are also highly influenced by acute or prolonged exercise, with 

increased levels of glucose-6-phosphate (indicator of glycogenolysis); succinate, malate and 

fumarate (TCA-related); glycerol (lipolysis product); panthothenate (related to FA 

oxidation); and niacinamide. Moreover, β-aminoisobutyric acid (BAIBA) concentrations are 

increased with exercise and inversely related to markers of metabolic risk (72). Metabolomic 

patterns can also be influenced by gender (30) and age (73). Collectively, these studies 

highlight the importance of considering differences in subjects’ diet, physical activity, 

gender, and age as potential confounding factors for metabolomics study design and data 

interpretation.

The composition of the gut microbiome is increasingly recognized as an important 

contributor to both host systemic metabolism and metabolomics profiles (74–76). In turn, 

microbiota composition is influenced by the host genome, dietary macronutrients, activity, 

and antibiotic use (especially during early life). For example, obesity and T2D are 

characterized not only by altered microbial profiles but also reduced microbial diversity (77–

79), although differences in diversity are still controversial (80, 81). Microbiome profiles can 

be profoundly modified in response to bariatric surgery-induced weight loss, paralleling 

changes in bile acid profiles (82–84). Whether these altered microbe populations actually 

contribute to, or are a consequence of disease, is difficult to address in humans. Differences 

in microbial populations can modulate host intestinal development, secretion of incretin 

peptides regulating insulin secretion and whole-body metabolism, and intestinal 

inflammation (85), thus contributing to impaired glucose homeostasis, insulin resistance, 

and non-alcoholic fatty liver disease (NAFLD) (86). Perhaps the most convincing are 

microbiota transplantation studies; germ-free mice transplanted with obese microbiota gain 

more weight than recipients of microbiota from lean mice (87, 88). Moreover, 

transplantation of microbiota from post-bariatric surgical patients results in reduced fat mass 

Gonzalez-Franquesa et al. Page 6

Curr Diab Rep. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in germ-free recipient mice (89). Human data are more limited, but insulin sensitivity 

improved in patients with metabolic syndrome after transplantation of healthy lean 

microbiota (90).

Identification of the specific microbes or microbial metabolites responsible for host 

metabolic regulation is an important goal. The microbiome of Western diet-fed mice 

produces more end-products of bacterial fermentation, such as lactate, acetate and butyrate 

(88). Bacteria which produce butyrate and those which alter bile acid composition may be 

particularly important modulators of insulin sensitivity and diabetes risk. The relative 

primacy of host genotype vs. environmental effects on the microbiome and related 

metabolite profiles remains uncertain at this time.

Another metabolite which has drawn attention to the role of the microbiota in the systemic 

metabolome is trimethylamine N-oxide (TMAO), an oxidized derivative of trimethylamine 

(TMA) produced by gut microbial metabolism. Plasma levels of choline, betaine and TMAO 

are strongly correlated with cardiovascular disease (CVD) (91). Moreover, increased TMAO 

has also been linked to increased cardiovascular risk (92), accelerated atherosclerosis (93), 

and heart failure in rodents (94).

Modelling approaches to integrating metabolomics data

Pathway mapping and visualization tools have become integral to the analysis of 

metabolomics experiments (reviewed in (95)). Systems biology tools that model metabolic 

networks have made in silico studies of metabolic disease feasible. Gene expression and 

metabolomics data can be incorporated to generate causal networks that map to genetic 

regions correlating with metabolite levels (96). Tissue-specific models have been developed 

to predict metabolic responses to hormones and nutrients; the predictions have correlated 

with known biomarkers and experimentally measured metabolites (97–101).

Flux balance analysis (FBA) has been used to model muscle metabolism and the impact of 

increased substrate availability (as observed in insulin resistance) in order to identify 

enzymatic reactions that may contribute to disease risk (100). Using this approach, Nogiec 

and colleagues found that perturbations in a single enzyme were insufficient to mimic 

insulin resistant metabolism e.g. decreased ATP synthesis, TCA flux, and metabolic 

inflexibility. However, combined inhibition of two enzymes, such as PDH and electron-

transferring-flavoprotein dehydrogenase (ETFDH), was able to replicate insulin resistant 

phenotypes, indicating that defects in multiple pathways may be required to prevent 

compensatory effects and impact net metabolic flux (100). An integrated multi-tissue model, 

which was developed to simulate the metabolic interdependence of organs in diabetes, found 

differentially expressed reactions which could yield observed increases in FFA and lactate 

(99). Further technical improvements in computational models are needed to extend these 

findings and fully integrate metabolomics with transcriptomics and proteomics data sets.

Metabolomic studies in pregnancy and childhood

Metabolomic analysis of maternal or infant biofluids (e.g. plasma, urine, amniotic fluid, 

breast milk) provides valuable insights into the metabolic status of the mother and the 

developing child, and thus may be a promising strategy for identifying women at risk for 
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adverse pregnancy outcomes, and infants at increased risk for future metabolic disease. 

Metabolomic analysis has shown promise for the early detection of pregnancy complications 

(e.g. preterm delivery, pre-eclampsia, intrauterine growth restriction (IUGR), fetal 

macrosomia, gestational diabetes (GDM), etc.) (102–107), but is not yet widely used beyond 

the research setting.

Altered maternal lipid metabolism is a potential biomarker for at-risk pregnancies. For 

example, increased maternal glycerol in the first trimester predicts subsequent pre-eclampsia 

(107), while lower levels of phospholipids, lysolipids, monoacylglyerols and FA binding 

protein predict fetal macrosomia (105). Small for gestational age (SGA) can be predicted by 

a panel of maternal metabolites assayed at 15 weeks of pregnancy, including sphingolipids, 

phospholipids, and carnitines (108). Other groups have described associations between 

lower maternal urinary acetate, tyrosine, and TMA levels during the first trimester and 

subsequent risk of SGA (103). The mechanisms responsible for these associations remain 

uncertain.

Gestational diabetes (GDM) is a strong risk factor for the subsequent development of overt 

diabetes in mothers, and for childhood obesity and diabetes in offspring. Not surprisingly, 

metabolomic analyses in GDM have identified signatures similar to other insulin resistant 

states, including elevations in NEFA and ketones (109–114). Elevations in FA, cholesterol, 

and lipoproteins may precede and predict GDM (115). Increased BCAA are identified in 

some GDM studies (110, 111), but not all, perhaps due to differences in timing of sample 

collection (116, 117). The fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-

furanpropanoic acid (CMPF) (118) is also increased in GDM and may potentially contribute 

to β-cell dysfunction, via impaired mitochondrial function and oxidative stress. Infants of 

mothers with GDM have reduced cord blood glucose (consistent with neonatal 

hyperinsulinemia), together with increases in pyruvate, amino acids, ornithine, and the 

BCAA metabolite alpha-ketoisovaleric acid (116, 119).

Low birth weight resulting from either prematurity or intrauterine growth restriction is 

associated with increased risk of insulin resistance and diabetes in later life (120, 121); 

identification of metabolic patterns associated with risk would be helpful to target preventive 

strategies. Studies of cord blood metabolites have revealed lower levels of glucose, 

glutamine, alanine, and proline, and higher phenylalanine and citrulline in low birth weight 

infants (122–124) than controls. Accelerated postnatal weight gain, or “catch-up growth”, 

which often follows intrauterine growth restriction, independently increases adult risk of 

diabetes and obesity (125, 126). In a nested case-control study of cord blood from neonates 

with accelerated postnatal weight gain and early-childhood obesity vs. controls with normal 

postnatal growth, Isganaitis et al. reported reduced tryptophan and one-carbon metabolism-

related metabolites, and reduced glutamine:glutamate ratio (127). These findings parallel 

results from insulin resistant adults (36). Other groups have observed positive associations 

between accelerated postnatal weight gain and plasma LPC14:0 and glutamine, and inverse 

associations with urine myoinositol (128, 129).
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Childhood metabolome and disease risk

Several groups have reported that the plasma metabolome is altered in obese vs. lean 

children (130–132), but patterns are distinct from adults. For example, increased levels of 

acylcarnitines are found in adult obesity, yet variable in children (131, 133, 134). Some, but 

not all, reports indicate increased BCAA in obese and/or insulin resistant children and 

adolescents (130, 131, 133, 135). Such differences may reflect the impact of age, growth, 

pubertal stage, or the longitudinal changes in insulin secretion that precede T2D onset.

SUMMARY and CONCLUSIONS

In summary, advances in technical and computational methods to assess the metabolome 

have been invaluable for the investigation of the pathogenesis of T2D and related risk 

factors. Results from these studies (Figure 1) have consistently highlighted perturbations in 

both amino acid and lipid metabolism, as evidenced by increased BCAA and AAA, long-

chain FAs, and short and odd-chain acylcarnitines. In parallel, glycolytic intermediates are 

increased, and TCA cycle intermediates are decreased. Collectively, these data support the 

hypothesis that impaired amino acid and FA metabolism could contribute to reduced 

anaplerotic flux and complete oxidative metabolism, thus contributing to reduced cellular 

energetics in insulin resistance and T2D. Emerging data also indicate that the gut 

microbiome is an important contributor to host metabolism. However, additional studies will 

be required to define the contribution of host vs. microbiome metabolism to specific 

metabolomics patterns, and identify the species and concrete mechanisms responsible for 

these important interactions. Development of expanded computational techniques to 

integrate transcriptomic and proteomic data with metabolomics profiles, and to model 

cellular and interorgan flux, will be essential for improving our understanding of metabolic 

pathophysiology associated with T2D risk. From a clinical perspective, understanding 

mechanisms responsible for altered metabolomics profiles will be essential for identifying 

specific biomarkers to guide improved prediction, prevention, and treatment of T2D.
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Figure 1. 
Obesity and T2D-related metabolome. Metabolomics experimental workflow from 

biological samples to interpretation of the results. NMR: nuclear magnetic resonance; GC: 

gas chromatography; LC: liquid chromatography; MS: mass spectrometry; T2D: type 2 

diabetes; FA: fatty acid; TCA: tricarboxylic acid; TMAO: trimethylamine N-oxide; BCAA: 

branched-chain amino acid; AAA: aromatic amino acid.
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