Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Aug;87(15):5792–5796. doi: 10.1073/pnas.87.15.5792

Species-specific sequences of abalone lysin, the sperm protein that creates a hole in the egg envelope.

V D Vacquier 1, K R Carner 1, C D Stout 1
PMCID: PMC54414  PMID: 2377618

Abstract

Abalone eggs are contained within a rigid, elevated vitelline envelope through which the sperm must pass before reaching the egg cell membrane. Abalone spermatozoa possess an acrosomal protein called lysin that creates a hole in the egg vitelline envelope by a nonenzymatic mechanism. Lysins from two species of abalone, termed pink and red, which share the same habitat, exhibit species specificity in the dissolution of isolated egg envelopes. Cloning and sequencing the cDNAs for pink and red abalone lysins reveal transcript lengths of approximately 660 nucleotides. The open reading frames of 465 (pink) and 462 (red) nucleotides show a 13% difference. The 3' untranslated regions before the poly(A) tails are 170 (pink) and 165 (red) nucleotides long and differ from each other by about 7%. The protein sequences show nearly identical signal sequences of 18 amino acids for both lysins. The mature protein is 137 amino acids in the pink abalone and 136 in the red abalone; the two mature lysins differ in 29 of 137 amino acids (21%). The most variable region, which may account for lysin's species specificity, is at the NH2 terminus, where 11 of the 15 amino acids differ between the two species. Predictions of secondary structure indicate that both lysins contain four homologous amphiphilic alpha-helices.

Full text

PDF
5792

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baginsky M. L., Stout C. D., Vacquier V. D. Diffraction quality crystals of lysin from spermatozoa of the red abalone (Haliotis rufescens). J Biol Chem. 1990 Mar 25;265(9):4958–4961. [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  5. Fridberger A., Sundelin J., Vacquier V. D., Peterson P. A. Amino acid sequence of an egg-lysin protein from abalone spermatozoa that solubilizes the vitelline layer. J Biol Chem. 1985 Aug 5;260(16):9092–9099. [PubMed] [Google Scholar]
  6. Gao B., Klein L. E., Britten R. J., Davidson E. H. Sequence of mRNA coding for bindin, a species-specific sea urchin sperm protein required for fertilization. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8634–8638. doi: 10.1073/pnas.83.22.8634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Getzoff E. D., Parge H. E., McRee D. E., Tainer J. A. Understanding the structure and antigenicity of gonococcal pili. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S296–S299. doi: 10.1093/cid/10.supplement_2.s296. [DOI] [PubMed] [Google Scholar]
  8. Glabe C. G., Lennarz W. J. Species-specific sperm adhesion in sea urchins. A quantitative investigation of bindin-mediated egg agglutination. J Cell Biol. 1979 Dec;83(3):595–604. doi: 10.1083/jcb.83.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glabe C. G., Vacquier V. D. Species specific agglutination of eggs by bindin isolated from sea urchin sperm. Nature. 1977 Jun 30;267(5614):836–838. doi: 10.1038/267836a0. [DOI] [PubMed] [Google Scholar]
  10. Haino-Fukushima K., Kasai H., Isobe T., Kimura M., Okuyama T. The complete amino acid sequence of vitelline coat lysin. Eur J Biochem. 1986 Feb 3;154(3):503–510. doi: 10.1111/j.1432-1033.1986.tb09426.x. [DOI] [PubMed] [Google Scholar]
  11. Hinegardner R. Cellular DNA content of the Mollusca. Comp Biochem Physiol A Comp Physiol. 1974 Feb 1;47(2):447–460. doi: 10.1016/0300-9629(74)90008-5. [DOI] [PubMed] [Google Scholar]
  12. Hong K., Vacquier V. D. Fusion of liposomes induced by a cationic protein from the acrosome granule of abalone spermatozoa. Biochemistry. 1986 Feb 11;25(3):543–549. doi: 10.1021/bi00351a004. [DOI] [PubMed] [Google Scholar]
  13. Jacobson A. Purification and fractionation of poly(A)+ RNA. Methods Enzymol. 1987;152:254–261. doi: 10.1016/0076-6879(87)52028-6. [DOI] [PubMed] [Google Scholar]
  14. Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. 1987 Aug 20;196(4):947–950. doi: 10.1016/0022-2836(87)90418-9. [DOI] [PubMed] [Google Scholar]
  15. Krebs K. E., Phillips M. C. The helical hydrophobic moments and surface activities of serum apolipoproteins. Biochim Biophys Acta. 1983 Nov 29;754(2):227–230. doi: 10.1016/0005-2760(83)90165-0. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lewis C. A., Leighton D. L., Vacquier V. D. Morphology of abalone spermatozoa before and after the acrosome reaction. J Ultrastruct Res. 1980 Jul;72(1):39–46. doi: 10.1016/s0022-5320(80)90133-1. [DOI] [PubMed] [Google Scholar]
  18. Lewis C. A., Talbot C. F., Vacquier V. D. A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism. Dev Biol. 1982 Jul;92(1):227–239. doi: 10.1016/0012-1606(82)90167-1. [DOI] [PubMed] [Google Scholar]
  19. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  20. Rees D. C., DeAntonio L., Eisenberg D. Hydrophobic organization of membrane proteins. Science. 1989 Aug 4;245(4917):510–513. doi: 10.1126/science.2667138. [DOI] [PubMed] [Google Scholar]
  21. Vacquier V. D., Moy G. W. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2456–2460. doi: 10.1073/pnas.74.6.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  23. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES