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In vitro studies have shown that the host cytidine deaminase APOBEC3G causes lethal hypermutation in
human immunodeficiency virus type 1 reverse transcripts unless its incorporation into virions is blocked by Vif.
By examining stably archived sequences in resting CD4� T cells, we show that hypermutation occurs in most
if not all infected individuals. Hypermutated sequences comprised >9% of archived species in resting CD4�

T cells but were not found in plasma virus. Mutations occurred in predicted contexts, with notable hotspots.
Thus, defects in Vif function in vivo give rise to hypermutated viral genomes that can be integrated but do not
produce progeny viruses.

A component of innate immune defense against viruses is
ABOBEC3G, a cytidine deaminase which causes G3A hyper-
mutation in retroviral genomes (9, 11, 16, 18, 26, 35, 36).
ABOBEC3G is incorporated into assembling virions and then
deaminates cytidines of the single-stranded viral cDNA that is
initially synthesized by reverse transcriptase (RT) upon entry
of the virus into a new host cell (11, 16, 18, 35, 36). This C3U
deamination on the minus strand of the reverse transcript leads
to fixation of G3A mutations. Pioneering work by Sheehy et
al. identified APOBEC3G as an antiviral factor and showed
that human immunodeficiency virus type 1 (HIV-1) Vif over-
comes its effects (26). Vif counteracts APOBEC3G by inhib-
iting its translation and accelerating its degradation, thereby
preventing APOBEC3G incorporation into HIV-1 virions (19,
20, 25, 27, 30). Studies of target sequence specificity of
ABOBEC3G have revealed a context dependence for the two
nucleotides immediately upstream of the targeted dC (1, 11,
35), consistent with reports of G3A hypermutation in HIV-1
sequences from infected individuals (3, 8, 13). In these studies,
minus-strand C3U deamination resulted in fixation of G3A
mutations within GA and GG dinucleotides with an extreme
bias for GGG sequences (3, 13, 31). Within hypermutated
sequences, 20 to 94% of guanine nucleotides in these contexts
were mutated (13). Recent studies have delineated the pref-
erences of ABOBEC3G and ABOBEC3F, a closely related
protein of similar function (33, 34), as GG and GA, respec-
tively (17, 33).

Most studies of the antiviral effects of APOBEC3G have
utilized Vif� HIV-1 constructs, and there remains uncertainty
about how often G3A hypermutation occurs in HIV-1-in-
fected individuals and about the fate of hypermutated viruses.
Janini et al. found hypermutation in 43% of patient samples

(13). Hypermutated sequences had in-frame stop codons that
would interfere with the production of viral proteins (13).
However, the replication defect shown by Vif� viruses may
actually operate at an early, postentry stage in viral replication
and decrease the formation of proviruses (29, 32). One possi-
bility is that the deoxyuridines produced by deamination un-
dergo uracil excision by uracil-DNA glycosylases, exposing the
viral cDNA to nucleases (11).

To understand the nature and distribution of hypermutated
sequences in vivo, we analyzed the protease and RT regions of
HIV-1 sequences obtained from resting CD4� T cells of nine
patients who had prolonged suppression of viremia to below
the limit of detection on highly active antiretroviral therapy
(HAART). In patients on successful long-term HAART, labile
unintegrated forms of HIV-1 decay (2, 22), and resting CD4�

T cells harbor stably integrated, latent viral genomes, some of
which are replication competent (4, 5, 10). This cellular reser-
voir persists in patients on HAART (6, 21, 28) and continually
releases virus into the plasma at low levels (12, 14). We ana-
lyzed hypermutation in both the cellular and plasma compart-
ments of these patients.

Resting CD4� T cells were isolated from peripheral blood
mononuclear cells by use of negative selection to remove
monocytes, natural killer (NK) cells, B cells, CD8� T cells, and
activated CD4� T cells as previously described (7). The result-
ing populations were �90% pure. pol gene sequences from
resting cells were obtained by a single genome sequencing
method (P. Kwon, M. Wind-Rotolo, and R. F. Siliciano,
unpublished data). Plasma sequences were obtained by fre-
quent sampling over a 3-month period and an ultrasensitive
RT-PCR capable of separately genotyping RT and protease
from patients with viral loads below 50 copies/ml (14). Se-
quences were analyzed using a program (www.hiv.lanl.gov/HY-
PERMUT/hypermut.html) that compares each patient se-
quence to a patient-specific consensus to determine the
frequency and context of G3A mutations (23). Hypermutated
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sequences were defined as having �5% of the total Gs mutated
to A but �1% A3G mutations.

Of 2,024 independent RT and protease sequences from the
plasma virus of nine patients, not a single one was hypermu-
tated. In contrast, from a total of 317 independent pol clones
from the latent cellular reservoir, hypermutation was detected

in 19 of 302 (6.3%) protease sequences and 21 of 309 (6.8%)
RT sequences. Both protease and RT were hypermutated in 12
clones. Thus, there were a minimum of 28 (8.8%) hypermu-
tated genomes among the 317 pol clones. This is a minimal
estimate, because sequencing repeatedly failed for some pol
clones (15 protease and 8 RT sequences), possibly due to

FIG. 1. Representative phylogenetic tree of RT sequences from patient 136. Independent sequences obtained from resting CD4� T cells (F)
and from plasma (‚) of patient 136 are displayed along with the consensus sequences from the other patients and the reference sequence HXB2
(15). Independent isolates with identical sequences are represented by one symbol, with the number of isolates indicated next to the symbol. A
hypermutated sequence (136.G2) with 21 G3A mutations is enclosed in a square. The reference sequence HXB2 was used as an outgroup.
Neighbor-joining phylogenetic analysis of RT positions 2640 to 3233 (relative to HXB2) was carried out as previously described (24).

TABLE 1. Analysis of frequency and sequence context of G 3 A mutations

Region Length (no. of
nucleotides)

Total no.
of G 3 A
mutations

% Of Gs
mutated

Total no.
of A 3 G
mutations

% Of As
mutated

% Of mutationsa

GG GA GT GC GGG

RT (n � 21) 710 332 11 11 0.18 40 18 1 1 40
Protease (n � 19) 297 165 13.5 9 0.44 59 17 0 2 22

a The percentages of the total G 3 A mutations occurring within the indicated di- or trinucleotide contexts are indicated. The mutated G is underlined.
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hypermutation, and because sequencing additional regions of
the viral genome, particularly env and the 5� half of nef (35),
may have revealed additional hypermutation. At least one hy-
permutated sequence was found with each patient studied.
Phylogenetic analysis showed patient-specific clustering and
extreme divergence of the hypermutated sequences within pa-
tient-specific clusters (Fig. 1). The routine detection of hyper-
mutated sequences in resting CD4� T cells of patients with
prolonged suppression of active viral replication on HAART
suggests that hypermutated viral genomes can enter the stable
pool of integrated HIV-1 DNA in these cells. The absence of
hypermutated plasma sequences indicates that hypermutation
blocks virus production from these proviruses.

Within hypermutated sequences, G3A mutations were
found at an average of 11% (RT) and 13.5% (protease) of all
Gs (range, 5 to 22%), while only 0.18% (RT) and 0.44%
(protease) of As were mutated to guanine (Table 1). In 98% of
the cases, mutations were found in either GA or GG dinucle-
otides, with about 20% in GA and 80% in either GG or GGG
sequences. In contrast, Janini et al. (13) noted a 3F-like pref-
erence for mutation within the GA context in protease se-
quences from unfractionated peripheral blood mononuclear
cells of viremic patients. We found a preference for hypermu-
tation at Gs preceded by T, consistent with a recent study
defining TGGG as the tetranucleotide consensus sequence for
ABOBEC3G (35). Our results are consistent with the idea of
both ABOBEC3G and ABOBEC3F contributing to in vivo
hypermutation.

Mutational hotspots, defined as G3A mutations in �50%

of hypermutated sequences, were identified in the protease
and RT genes (Table 2 and Table 3). The substitution at
nucleotide (nt) 125 in protease was found in 63% of sequences
and resulted in a stop codon. Four other hotspots resulted in a
change at a glycine residue. This is as expected, since glycine
codons (GGN) contain the targeted GG dinucleotide. In RT,
nine hotspots were identified (Table 3). The Gs at nt 151, 263,
333, and 690 occurred at the beginning of GGG trinucleotides
and were mutated in 80 to 95% of sequences. RT mutations
resulted in substitutions at methionine (n � 4), tryptophan (n
� 2), or glycine (n � 2). The mutations in methionine codons
(ATG) produced changes to isoleucine (ATA), one of which
was at amino acid 184 and corresponded to a known interme-
diate in the pathway to lamivudine resistance. The mutations
within tryptophan codons resulted in stop codons at amino
acids 88 and 212. The mutation at nt 333 produced a synony-
mous change detected in 95% of the sequences.

We have detected hypermutated sequences in resting CD4�

T cells from patients who had prolonged suppression of vire-
mia on HAART. Hypermutated sequences with characteristic
APOBEC3G/F-mediated changes constituted �9% of the viral
genomes in this compartment and were found in every patient.
This level may reflect some degree of accumulation of defec-
tive genomes that do not direct the synthesis of a full comple-
ment of viral proteins, thereby sparing the infected cell from
viral cytopathic effects. Our data suggest that mutated viral
genomes are able to integrate into cellular DNA and persist in
resting CD4� T cells even when viral replication is halted with
HAART. However, these hypermutated genomes are subse-

TABLE 3. Detailed analysis of G 3 A mutations in the RT gene of 21 hypermutated sequences from the resting CD4� T cells of nine
patients on HAART

nt positiona 48 52 85 123 124 130 133 134 151 157 212 213 215 233 246 263 264 277 295 296 327

G 3 A contextb GGN GG GAN GGN GAN GAN GGG GGN GGG GAN GGN GAN GAN GAN GAN GGG GGN GGN GGG GGN GGN

99.E15 A A A A A
113.I6 A A A A A A A A A A A A A
113.I16 A A A A A
113.I49 A A A A A A A A
113.I96 A A A A A A A A A
134.D14 A A A A A A A
134.D26 A A A A A A A A
135.F35 A A A A A
135.F36 A A A A A A
135.F39 A A A A A A A
136.G2 A A A A A A A A A A
139.F1 A A A A A A
139.F21 A A A
139.H1 A A A A A A
147.E8 A A A
147.E11 A A A A A A A A A
147.E13 A A
147.E22 A A A A A A
148.G4 A A A
154.F12 A A A A
154.F7 A A A A A A A A A
% Of sequences

with mutation
52 24 14 57 10 19 57 10 90 14 24 10 19 14 14 81 24 38 19 14 33

Amino acid positionc 16 41 45 51 88
Substitutiond M-I M-I G-R/K G-R W-�

a The nucleotide (nt) position of the hypermutated G within the RT gene is given. Only positions where at least 10% of the sequences have a mutation are shown.
Nucleotide positions where more than 50% of the hypermutated sequences contained G 3 A mutations are indicated in boldface type. Designation in first column
represent sequences.

b The hypermutated G (underlined) and following two 3� nucleotides are shown.
c The corresponding amino acid position within the RT gene where hot spot G 3 A mutations occur is shown.
d The amino acid substitution occurring as a result of a hot spot G 3 A mutation. A stop codon is labeled with an asterisk (�). The amino acid change at position

184 is shown in boldface type to indicate a known drug resistance site.
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quently incapable of producing virus, as indicated by the fact
that the viruses released into the plasma at low level in patients
on HAART were completely devoid of hypermutated se-
quences.
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