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Using determinantal quantum Monte Carlo, we compute the
properties of a lattice model with spin 1

2 itinerant electrons tuned
through a quantum phase transition to an Ising nematic phase.
The nematic fluctuations induce superconductivity with a broad
dome in the superconducting Tc enclosing the nematic quantum
critical point. For temperatures above Tc , we see strikingly non-
Fermi liquid behavior, including a “nodal–antinodal dichotomy”
reminiscent of that seen in several transition metal oxides. In addi-
tion, the critical fluctuations have a strong effect on the low-
frequency optical conductivity, resulting in behavior consistent
with “bad metal” phenomenology.

superconductivity | non-Fermi liquid | quantum criticality

Upon approach to a quantum critical point (QCP), the cor-
relation length, ξ, associated with order parameter fluctua-

tions diverges; consequently microscopic aspects of the physics
are averaged out and certain properties of the system are
universal. Asymptotically close to criticality, exact theoretical
predictions concerning the scaling behavior of some measurable
quantities are possible. However, in solids, it is rarely possible
to convincingly access asymptopia; there are few experimentally
documented cases in which a thermodynamic susceptibility grows
as a function of decreasing temperature, T , in proportion to
a single power law χ∼T−x over significantly more than one
decade of magnitude. This is particularly true of metallic QCPs,
where the metallic critical point may be preempted by the occur-
rence of a superconducting dome, a fluctuation-driven first-order
transition, or some other catastrophe.

However, there is a looser sense in which a QCP can serve
as an organizing principle for understanding properties of solids
over a range of parameters: In the “neighborhood” of a QCP,
where χ is large (in natural units) and ξ is more than a few lat-
tice constants, it is reasonable to conjecture that quantum criti-
cal fluctuations play a significant role in determining the proper-
ties of the material and that, at least on a qualitative level, those
properties may be robust (i.e., not strongly dependent on micro-
scopic details), even if they are not universal.

With this in mind, we carried out extensive numerical “exper-
iments” on a simple 2D lattice model of itinerant electrons cou-
pled to an Ising-like “nematic” order parameter field, Eq. 1. By
varying a parameter in the Hamiltonian, h , the system can be
tuned through a quantum or thermal transition from a disor-
dered (symmetric) phase to a nematic phase that spontaneously
breaks the lattice symmetry from C4 to C2. Related models of
nematic quantum criticality have been studied extensively (1–
27), using various analytic methods, and can also be studied with
minus-sign–free determinantal quantum Monte Carlo (DQMC)
(28–30). Recent Monte Carlo studies have examined the scal-
ing structure of nematic and related QCPs (31, 32) as well as
the role of fluctuations in promoting superconductivity (33, 34).
Moreover, the model is particularly topical, as there is good evi-
dence that a nematic QCP underlies the superconducting dome
in many (possibly all) of the Fe-based superconductors (35–41)

and possibly even the cuprate high-temperature superconductors
(42–44).

In a previous study (31) of this model, we focused on the criti-
cal scaling at the putative metallic QCP with a moderate dimen-
sionless coupling between the itinerant electrons and the nematic
fluctuations α= 1/2. We found that, although superconducting
fluctuations are enhanced when the tuning parameter h is close
to the quantum critical value, hc , the superconducting Tc (if any)
is below the accessible range of temperatures. We documented a
possible mild breakdown of Fermi liquid behavior and identified
a broad range of small T and |h − hc | in which some correla-
tion functions are well approximated by simple scaling functions.
However, other correlations with the same symmetries do not
exhibit the same scaling behavior. This implies that the regime
we accessed is far enough from criticality that corrections to scal-
ing are significant or that the scaling behavior we see does not
reflect the properties of a metallic QCP at all.

In the present paper, we have focused on the properties of the
model in the critical neighborhood and have taken larger val-
ues of α= 1− 1.5 so that all of the energy scales are enhanced,
making them easier to document in numerical experiments. Our
principal findings are as follows:

i) As shown in Fig. 1, there is a broad superconducting dome
with its Tc maximum roughly coincident with the value h =
hc at which the nematic transition temperature, Tnem→ 0.
The maximum Tc is found to be about 0.03EF , where EF is
the Fermi energy.

ii) Fig. 2 shows the electron spectral function, A(~k , ω), inte-
grated over a range of energies of order T about the Fermi
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Fig. 1. Phase diagram as a function of the transverse field h and temper-
ature T , both measured in units of the fermion hopping t. The solid and
dashed black lines indicate, respectively, the boundary of the nematic phase
(Tnem) and a crossover (T∗

nem, defined shortly before Eq. 2) marking the edge
of the quantum critical fan. The superconducting Tc is indicated by the blue
solid line. The color scale shows a proxy for the DC resistivity in units of ~/e2,
defined from the fit in Eq. 4. Here, α= 1.5, V = 0.5t, µ= t. Error bars reflect
finite-size errors, as described in SI Appendix.

energy, as defined in Eq. 2. The nematic fluctuations are
exceedingly effective in destroying quasiparticles and indeed
produce a striking nodal–antinodal dichotomy in which some
remnant of the Fermi surface is still visible along the zone
diagonal. This is associated with the existence of “cold spots”
(2, 45) on the Fermi surface that are required by symmetry.

Away from the cold spots, the imaginary part of the
(Matsubara) self-energy, shown in Fig. 3, is dramatically
unlike that of a Fermi liquid throughout the quantum crit-
ical regime.

iii) Transport properties are also strongly affected in the quan-
tum critical regime above Tc . Because analytic continuation
of imaginary time data to real time is numerically ill posed,
we carried out two different procedures to obtain proxies for
the resistivity. These proxies, plotted in Fig. 5, track the DC
resistivity under certain assumptions described below. The
first proxy, ρ1, is derived from a simple two-component fit to
the DQMC data (Fig. 4) whereas the second, ρ2, defined in
Eq. 7, is extracted directly from the long (imaginary) time
behavior of the current–current correlation function. The
results obtained by the two methods are qualitatively similar.
At h = hc both proxies are roughly linearly increasing func-
tions of T . For the larger value of the coupling constant, the
proxies exceed the quantum of resistance, ρq = ~/e2, at high
temperatures (but still much below EF ). Outside the quan-
tum critical fan, the proxies are substantially smaller than ρq
for all T (Fig. 1).

The Model
Our model is defined on a 2D square lattice, where every site has
a single Wannier orbital. Each link has a pseudospin-1/2 degree
of freedom that couples to the fermion bond density. The system
is described by the Hamiltonian

H = Hf + Hb + Hint,

Hf = −t
∑
〈i,j〉,σ

c†iσcjσ − µ
∑
i,σ

c†iσciσ,

Hb = V
∑

〈〈i,j〉;〈k,l〉〉

τ zi,j τ
z
k,l − h

∑
〈i,j〉

τ xi,j ,

Hint = αt
∑
〈i,j〉,σ

τ zi,j c
†
iσcjσ, [1]

where c†jσ creates a fermion on site j with spin σ= ↑, ↓, 〈i , j 〉
denotes a pair of nearest-neighbor sites, t and µ are the hopping
strength and chemical potential, respectively, τai,j (a = x , y , z )
denotes pseudospin-1/2 operators that live on the bond connect-
ing the neighboring sites i and j , V > 0 is the Ising interac-
tion between nearest-neighbor pseudospins (here, 〈〈i , j 〉; 〈k , l〉〉
denotes a pair of nearest-neighbor bonds), h is the strength
of a transverse field that acts on the pseudospins, and α is
the dimensionless coupling strength between the pseudospin
and the fermion bond density. In the ordered phase where V
dominates, τ zi,j adopts a staggered configuration, taking differ-
ent values on horizontal and vertical bonds, thereby generating
nematic order.

DQMC Results
A typical phase diagram is shown in Fig. 1, for α= 1.5,V =
0.5t , µ= t . In addition to the nematic and symmetric phases,
there is a “dome” of superconductivity with maximum critical
temperature near hc , as anticipated (3, 11, 15, 46). The pair wave
function in the superconducting state has spin singlet s-wave sym-
metry in the symmetric phase and mixed s- and d-wave symmetry
in the nematic phase. A value of α> 1 is problematic microscopi-
cally, since the effective hopping matrix element along one direc-
tion changes sign deep in the ordered phase. However, we view
Eq. 1 as an effective model designed to give a nematic QCP and
so do not restrict the value of α. Hereafter, we use units in which
t = ~= e2 = 1.

The boundary of the nematic phase Tnem and the crossover
temperature T ?

nem are both derived from an analysis of
the thermodynamic nematic susceptibility χ(h,T )≡ 1

L2

∑
i,j∫ β

0
dτ〈Ni(τ)Nj (0)〉, where the nematic order parameter is

defined as Ni =
∑

j ηij τ
z
ij , where η is a d-wave form factor:

ηij = 1/4 for rij =±x̂, ηij =−1/4 for rij =±ŷ, and ηij = 0 oth-
erwise. Tnem is determined using finite-size scaling appropriate
to a 2D classical Ising transition, whereas T ?

nem(h) is defined
implicitly according to χ(h,T ∗nem) = 1

2
χ(hc ,T

?
nem). The super-

conducting critical temperature Tc is determined by analysis of
the superfluid stiffness (47, 48) and can also be estimated by

Fig. 2. The low-frequency fermionic spectral weight G(~k) (Eq. 2) at temper-
ature T = 0.17, shown for the noninteracting band structure (α= 0) and for
α= 1.5 for several values of h. For h = 2.3, a small C4 symmetry-breaking
field has been applied in the simulation. Data are for a 20× 20 system
with various combinations of periodic and antiperiodic boundary condi-
tions. Other parameters are V = 0.5 and µ= 1.0.
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Fig. 3. The imaginary part of the fermion self-energy for two values of
parameters α= 1.5,V = 0.5, µ= 1.0 (Top row) and α= 1.0, V = 1.0, µ=

0.5 (Bottom row), for various temperatures and with the nominal Fermi
momenta ~kd and ~kh along the (0, 0)− (π, π) and (0, π)− (π, π) directions,
respectively. Data are shown for a 20× 20 system both near hc (Left column)
and far in the symmetric phase (Right column). (Top Left) Data points below
Tc are connected by dashed lines.

other methods, yielding similar results. (Further details of the
finite-size scaling analysis, the resistivity proxies, the form of the
self-energy in the superconducting state, and additional data can
be found in SI Appendix.)

The presence of superconductivity limits the region in which
any scaling behavior of nematic fluctuations can be identi-
fied. That said, for temperatures well above Tc , the thermody-
namic nematic susceptibility near hc is similar in structure to
that reported in ref. 31. Nematic fluctuations at nonzero fre-
quency have somewhat different structure than those previously
reported and have a reduced dependence on momentum.

Turning to single-particle properties, we examine (49)

G(~k) ≡ 2G̃

(
~k , τ =

β

2

)
=

∫
dω

A(~k , ω)

cosh [βω/2]
, [2]

where G̃ is the imaginary time fermion Green function and A is
the real frequency spectral function. Roughly, G measures spec-
tral weight within an energy range of order T of the Fermi level,
so that a sharp peak in the momentum dependence of G indicates
an underlying Fermi surface. In a Fermi liquid, G(~k) is peaked
at the Fermi surface with a peak amplitude that approaches the
quasiparticle residue Z~k as T→ 0.

Fig. 2 shows color plots of G at fixed temperature T = 0.17 for
the noninteracting case (α= 0) and for α= 1.5 at a variety of val-
ues of h . For h = 5.5, deep in the symmetric phase, there is a clear
Fermi surface similar to that of the noninteracting problem. For
h = 2.3, in the ordered phase, there is also a clear Fermi surface
consisting of open sheets, reflecting a substantial nematic distor-
tion. For h = 2.8, near hc , a Fermi surface appears well defined
near the cold spots along the zone diagonal, but is increasingly
ill defined away from these high-symmetry points. The higher
degree of coherence along the zone diagonal is expected by sym-
metry: Long-wavelength nematic fluctuations cannot couple to
fermions with momentum along the zone diagonal.

A complementary probe of single fermion properties is the
self-energy, extracted from the Green function G(~k , νn) and the
noninteracting Green function G0(~k , νn) according to Σ(~k , νn)≡
G−1

0 (~k , νn)−G−1(~k , νn). (Henceforth, νn = 2πT (n + 1/2) and
ωn = 2πTn designate the fermionic and bosonic Matsubara fre-

quencies.) In a Fermi liquid at asymptotically low temperature,
−Im[Σ(~kF , νn)] = γ~k + (1/Z~k − 1)νn +O(ν2n) for νn > 0, where
γ~k (T )�T is the inelastic scattering rate. More generally, γ~k is
obtained by extrapolating−Im[Σ] to zero frequency. In Fig. 3 we
plot−Im[Σ(~k , νn)] vs. νn , both close to hc and deep in the disor-
dered phase. We show data for a variety of temperatures for ~k at
the nominal Fermi momenta ~kd and ~kh along the (0, 0)− (π, π)
and (0, π)− (π, π) directions, respectively.

In the disordered phase, the frequency and temperature
dependences of Im[Σ] at both ~kd and ~kh are consistent with
Fermi liquid theory—the extrapolated νn→ 0 intercept (γ~k ) is
well below T and the slope is finite (corresponding to 1>Z~k > 0)
and hardly T dependent. Even for h ≈ hc , Fermi liquid theory
is loosely consistent with the data at ~kd , but not remotely so at
~kh where γ~kh exceeds T , and appears not to vanish in the T→ 0

limit. In the quantum critical regime and above Tc , quasiparticles
far from the cold spots are not even marginally well defined. (The
upturn of Im[Σ] at low frequency, visible especially for α= 1.5,
is associated with the onset of a superconducting gap.)

The intervention of superconductivity complicates any analy-
sis of the putative low-temperature Fermi liquid properties as
h→ hc . However, to obtain a rough sense of trends, one can esti-
mate the dispersion of the quasiparticle-like features as a func-
tion of h and T at different parts of the Fermi surface (see SI
Appendix, section S-II for details). We see a tendency for the
dispersion to become substantially flatter as h→ hc (i.e., a large
increase in the “effective mass”), although any such renormal-
ization is much weaker or nonexistent at the cold spots on the
Fermi surface. The electronic spectral function A(~k , ω), calcu-
lated from G(~k , νn) using the maximum-entropy method, is con-
sistent with such behavior (SI Appendix, section S-III). Near the
cold spots A(~k , ω) has a well-defined dispersive peak, whereas in
the hot regions at h ≈ hc there are only broad features without a
clear dispersion. Below the superconducting Tc , A(~k , ω) clearly
displays a superconducting gap in both the cold spots and the hot
regions (with a larger gap in the hot regions).

The breakdown of Fermi liquid theory seen in the fermion
Green function suggests that transport properties may also be
strongly altered near the QCP. One quantity of great interest is
the DC conductivity, but the DC limit of transport is particularly
difficult to access using analytic continuation of imaginary time
data. The analysis we carry out below yields information about

Fig. 4. (A) The current−current correlator for a 16× 16 system with
h = 2.6≈ hc, T = 0.17, for α= 1.5, V = 0.5, µ= 1. Error bars are compara-
ble to the symbol size. The solid red line is a least-squares fit to two com-
ponents of the form of Eq. 4. (B) The corresponding real part of the optical
conductivity for parameters in A, as well as two higher temperatures, show-
ing how the Drude-like peak sharpens on cooling. The temperature depen-
dence of the half-width at half-maximum Γ of the Drude-like peak, as well
as its weight D, is shown in A, Inset, with error bars estimated as described
in SI Appendix, section S-I, C.
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the optical conductivity at frequencies of order the temperature,
but any statements about the DC conductivity rest on additional,
nontrivial assumptions.

We measured the imaginary time-ordered current–current
correlator Λ̃ii(τ)≡〈T Ji(τ)Ji(0)〉, where Ji is the uniform cur-
rent operator in direction i = x or y . (We henceforth leave
the directional indexes implicit.) Λ(ωn), the Fourier transform
of Λ̃(τ), is shown in Fig. 4A for α= 1.5,V = 0.5, µ= 1, h ≈ hc
and T = 0.17≈ 1.5Tc . In a nonsuperconducting state, Λ(ωn) is
related to the real part of the optical conductivity σ′(ω) by

Λ(ωn) =

∫
dω

π

ω2σ′(ω)

ω2 + ω2
n

. [3]

A clear feature, present throughout the nonsuperconducting
portions of the phase diagram, is a substantial jump in Λ(ωn)
between the zeroth and the first Matsubara frequency. This is
evidence of a Drude-like component of σ′(ω) peaked at low fre-
quencies, with a width less than or comparable to T . The slow
decrease of Λ(ωn) for n > 1 is indicative of an additional broad
feature with optical weight spread over a range of frequencies
large compared with T .

We performed a simple analytic continuation of our data via a
least-squares fit. The fitting function is a sum of two terms (Eq. 4
must be modified to account for the discretization of imaginary
time, as discussed in SI Appendix, section S-I, B):

Λfit(ωn) =
2∑

j=1

Aj

ω2
n + γj |ωn |+ Ω2

j

. [4]

Λfit can then be analytically continued to give

σ′(ω) =

2∑
j=1

Aj γj
(Ω2

j − ω2)2 + γ2
j ω

2
. [5]

As illustrated in Fig. 4A, the fit agrees with the data within
a few percent. The corresponding optical conductivity is shown
in Fig. 4B for a variety of temperatures above Tc ; it consists
of a Drude-like component with its maximum at ω= 0 (i.e.,
γ1>

√
2Ω1) that broadens with increasing temperature and a

broad, largely temperature-independent background with a max-
imum at ω=

√
|Ω2|2 − |γ2|2/2> 0. The zero-frequency limit of

this fitted conductivity yields a proxy ρ1 for the DC resistivity.
Although physically plausible and in agreement with our

data, the fitting analysis is not unique—analytic continuation of
numerical data is a famously ill-conditioned problem (50). As
one check on our results, we performed the analytic continuation
using standard maximum-entropy methods; the results, as shown
in SI Appendix, section S-I, E, are very similar to those obtained
above. On the other hand, as also shown in SI Appendix, section
S-I, D, the quality of the fit is similar if we mandate a third com-
ponent with width far less than the temperature, which would of
course drastically alter the DC conductivity. Such a narrow peak
may arise if there is an emergent nearly conserved momentum
(23, 51).

Analysis of the current–current correlator in the time domain
yields additional information. The value and the derivatives of
Λ̃(τ) near τ =β/2 contain information about the moments of
the low-frequency part of the optical conductivity:[

∂2m
τ Λ̃

]
τ=β/2

=

∫
dω

2π

ω2m+1σ′(ω)

sinh
(
βω
2

) . [6]

The first two such moments obtained from our QMC simu-
lations are shown in SI Appendix, section S-I, A. (Interestingly,
these moments can also be straightforwardly computed from
empirical data, enabling direct comparison with experiment.)

The two lowest-order moments can be combined into a quan-
tity with units of resistivity according to

ρ2 ≡
[
∂2
τ Λ̃
/

(2πΛ̃2)
∣∣
τ=β/2

. [7]

This quantity tracks the DC resistivity at low tempera-
tures whenever the low-frequency (ω.T ) conductivity can be
described by a single Drude-like component that has either
Lorentzian shape or a width of order T . This is a parsimonious
(although not unassailable) assumption and consistent with our
data. With caveats in place, we now describe the behavior of the
two resistivity proxies ρ1,2 defined above.
ρ1(h,T ) is represented in the coloring of the symmetric metal-

lic region of the phase diagram in Fig. 1. It exhibits a nonmono-
tonic dependence on h , with a maximum near hc . The tempera-
ture dependence of ρ1 and ρ2 is shown in Fig. 5 in the ordered
and disordered phases as well as at hc , for both α= 1.5,V =
0.5, µ= 1.0 and α= 1.0,V = 1.0, µ= 0.5. ρ1 and ρ2 are qualita-
tively similar over a wide range of temperatures. Both are signif-
icantly higher at h ≈ hc than deep in the ordered and disordered
phases. In the ordered phase, the data are roughly consistent with
the T 2 temperature dependence expected of a Fermi liquid. In
the disordered phase, the temperature dependence in the range
of T >Tc can be fitted to a linear function of T with small slope
and a slightly negative extrapolated value at T→ 0. (Recalling
that small resistivities correspond to a sharp Drude-like feature
in the resistivity—precisely the sort of feature that is most diffi-
cult to capture reliably from imaginary time data—we have not
attempted a serious analysis of the apparently non-Fermi liquid
character of this last observation.)

At h ≈ hc , the behavior depends somewhat on parameters.
For α= 1.0,V = 1.0, µ= 0.5, there is an apparent T -linear
behavior over about a decade of temperature. For α= 1.5,V =
0.5, µ= 1.0, the high Tc leaves an insufficient dynamical range to

Fig. 5. The temperature dependence of the resistivity proxies (in units
of ~/e2) for parameters α= 1.5, V = 0.5, µ= 1 (Top row, for h = 2.0< hc,
h = 2.6≈ hc, and h = 5.5> hc) and α= 1.0, V = 1.0, µ= 0.5 (Bottom row,
for h = 4.0< hc, h = 4.6≈ hc, and h = 7.0> hc). For h< hc, a small
symmetry-breaking field has been applied, and the smaller component of
the resistivity proxy is shown. Values shown are for the largest system size
simulated (L = 16 or 18 depending on temperature), with error bars esti-
mated as described in SI Appendix, section S-I, C.
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establish a clear power-law temperature dependence, but both ρ1
and ρ2 exceed the Ioffe–Regel limit of ~/e2 at a temperature of
approximately 3Tc . Subject always to the uncertainties in ana-
lytic continuation, the behavior of our model near hc is strikingly
reminiscent of the bad metal phenomenology seen in many cor-
related materials (52–54).

We performed additional simulations at lower fermionic den-
sities, with results summarized in SI Appendix, section S-IV.
Much of the phenomenology appears to be robust: Close to hc ,
the imaginary part of the fermionic self-energy at ~kh approaches
a constant and the resistivity is of order of the quantum of resis-
tance. However, the temperature dependence of the resistivity is
not linear. Also, for certain values of the couplings, we find evi-
dence that the nematic transition becomes weakly first order at
low temperatures.

Discussion
We studied the vicinity of a nematic QCP in a simple lattice
model of a metal. The QCP is masked by a dome-shaped super-
conducting phase. The normal-state quantum critical regime
does not exhibit clear scaling behavior; however, it displays
strong anomalies that we associate with the approach to the
QCP. In particular, the fermion self-energy is strikingly non-
Fermi liquid-like over much of the Fermi surface. The optical

conductivity at frequencies .T is also strongly affected by the
critical fluctuations. Assuming a simple form of σ(ω), we find
that the DC resistivity is anomalously large (exceeding the Ioffe–
Regel limit for α> 1) and nearly linear in temperature.

Although our model does not accurately describe the micro-
scopics of any specific material and ignores physical effects that
may be important (55–58), it is plausible that the qualitative
behavior proximate to the QCP is relatively insensitive to micro-
scopic details. Our results bear striking similarities to the behav-
ior seen in certain high-temperature superconductors: In several
iron-based superconductors, the resistivity is anomalously large
and T linear near the putative nematic QCP (36, 59), and the
fermionic spectral properties of our model in the critical regime
are reminiscent of the nodal–antinodal dichotomy reported in
the “strange metal” regime of certain cuprates (60, 61).
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