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Much of the uncertainty in estimates of the anthropogenic forcing
of climate change comes from uncertainties in the instantaneous
effect of aerosols on cloud albedo, known as the Twomey effect
or the radiative forcing from aerosol–cloud interactions (RFaci),
a component of the total or effective radiative forcing. Because
aerosols serving as cloud condensation nuclei can have a strong
influence on the cloud droplet number concentration (Nd), previ-
ous studies have used the sensitivity of the Nd to aerosol proper-
ties as a constraint on the strength of the RFaci. However, recent
studies have suggested that relationships between aerosol and
cloud properties in the present-day climate may not be suitable
for determining the sensitivity of the Nd to anthropogenic aerosol
perturbations. Using an ensemble of global aerosol–climate mod-
els, this study demonstrates how joint histograms between Nd
and aerosol properties can account for many of the issues raised
by previous studies. It shows that if the anthropogenic contribu-
tion to the aerosol is known, the RFaci can be diagnosed to within
20% of its actual value. The accuracy of different aerosol proxies
for diagnosing the RFaci is investigated, confirming that using the
aerosol optical depth significantly underestimates the strength of
the aerosol–cloud interactions in satellite data.

aerosols | clouds | radiative forcing

The radiative forcing due to anthropogenic aerosols is the
most uncertain component of the anthropogenic radiative

forcing (1), with the interaction between aerosols and clouds
generating much of this uncertainty. As cloud droplets form on
aerosol particles, changes in the aerosol number concentration
can change the cloud droplet number concentration (Nd ), gener-
ating an instantaneous radiative forcing by increasing the cloud
brightness, known as the Twomey effect (2) or radiative forcing
from aerosol–cloud interactions (RFaci) (1) (referring only to
liquid clouds in this work). Together with other changes in cloud
properties due to changes in Nd (e.g., ref. 3), the RFaci is a com-
ponent of the total or effective radiative forcing (ERFaci).

Due to the sparse nature of preindustrial (PI) observations of
cloud properties, the influence of aerosols on cloud properties is
often inferred from observations of the present-day spatiotem-
poral variability of aerosol and cloud properties (e.g., refs. 4–7).
Although much of the variation between aerosol and cloud prop-
erties can be attributed to variations of meteorological factors
(e.g., refs. 8 and 9), the sensitivity of Nd to aerosol optical depth
(AOD) is thought to be largely independent of these factors. It
is therefore often used in observational estimates of the strength
of aerosol–cloud interactions (7, 10, 11). This sensitivity (5) has
been shown to be a useful “emergent constraint” on the strength
of the ERFaci in general circulation models (12), providing a
method to calculate the change in Nd from the PI to the present

day (PD), when combined with an estimate of the correspond-
ing anthropogenic change in AOD (such as ref. 13). Two main
assumptions are made in this process: that the AOD is a suitable
proxy of the cloud condensation nuclei (CCN) concentration at
the cloud base and that the relationships between aerosol and
the Nd in the PD (determined by spatiotemporal variability) are
indicative of the actual sensitivity of cloud properties to aerosol
perturbations.

Recent work has called both of these assumptions into ques-
tion. Observational (14) and model-based (15) studies have
shown a disconnect between AOD and CCN. Because the AOD
is a column-integrated measurement, it does not provide vertical
information about the location of the aerosol. It also lacks infor-
mation about the composition of the particles and is weighted
preferentially toward larger particles (4), missing information
about smaller aerosol particles that are often emitted from
anthropogenic activities (16).

Second, it has been shown that the PD AOD–Nd relationship
may not be representative of the true strength of the interac-
tion between aerosols and cloud properties due to the differing
PI and PD aerosol environments (17). Additionally, it has been
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shown (18) that in many global aerosol–climate models the PD
sensitivity of Nd to CCN variations (the slope of the linear regres-
sion between Nd and CCN concentrations) is in many cases not
representative of the sensitivity of Nd to the anthropogenic per-
turbation of CCN (the PD–PI change in Nd divided by the cor-
responding change in CCN evaluated from climate simulations).
This suggests that it would be challenging to constrain the mag-
nitude of the RFaci using only PD observations of the sensitivity
of Nd to aerosol variations.

In this work, techniques are presented to address these chal-
lenges. To account for nonlinearity in the aerosol–Nd relation-
ship and the differing PI and PD aerosol environments, normal-
ized joint histograms are used to characterize the relationship
(following ref. 11). A variety of different global aerosol–climate
models that contributed to the AeroCom intercomparison (18,
19) are used to investigate the utility of different aerosol prox-
ies for diagnosing the anthropogenic change in cloud-top Nd .
Together with joint histograms, this work investigates how accu-
rately the RFaci could be diagnosed under ideal conditions, using
PD relationships between aerosol and cloud properties.

Results
Aerosol–Nd Relationships. Two-dimensional (“joint”) histograms
of Nd and aerosol properties are used in this work to account
for the influence of nonlinearities in the relationship (11). Each
column of the joint histogram is normalized so that it sums to 1,
such that it becomes an array of conditional probabilities. For
example, the top left histogram in Fig. 1 shows the probabil-
ity of finding a specific Nd , given that a certain AOD has been
observed.

Joint histograms of cloud-top Nd versus an aerosol proxy for
a selection of models from the AeroCom intercomparison (18,
19) (gridded to 2.5◦ by 2.5◦) are shown in Fig. 1. Although there
is a general increase in cloud-top Nd with increasing AOD (Fig.
1, first and second columns), the nature of this increase varies
significantly among the models. Some of the models (the CAM5
variants) show a strong increase in Nd at lower AOD, followed by

Fig. 1. Joint histograms between aerosol properties (AOD and CCN1km, respectively, x axis) and cloud-top Nd (y axis) for each of the general circulation
models (GCMs) used in this study. The first and second columns show the AOD-Nd joint histograms for the PD and the PI simulations, respectively. The
histograms are normalized so each column sums to 1, such that the histograms show the probability of observing a specific cloud-top Nd , given a certain
AOD (or CCN1km). The black line shows the mean Nd at each AOD and gray regions indicate missing data. The third column shows the difference between
the PD and the PI relationships. The second set of three columns are the same as the first three but use CCN1km at 0.3% supersaturation instead of AOD as
the independent variable.

a saturation at higher AOD, where the Nd only weakly increases
with increasing AOD. Others show a weak AOD–Nd relation-
ship at low AOD, followed by a stronger relationship as the AOD
increases (ECHAM6-HAM and SPRINTARS). The enforced
lower bound to the Nd apparent in some simulations may be
responsible for the lower sensitivity of Nd to AOD ( dNd

dln(A)
) at

low AODs in these models (12), although low sensitivities at low
AOD have also been observed in satellite data (11).

All of the models show some difference in the AOD–Nd rela-
tionship between the PD and the PI (Fig. 1, third column), mostly
with higher Nd s for a given AOD in the PD simulation com-
pared with the PI. It is stronger at high AODs, suggesting that
this effect is due to the different composition of aerosols in
the PD compared with the PI. When the atmosphere is clean
(low AOD), the aerosol composition is similar in the PI and the
PD simulations. However, high-AOD conditions occur mainly in
dusty regions in the PI simulation (where the aerosol is a poor
CCN), but in the PD simulation these high-AOD conditions are
often the result of anthropogenic pollution (which on average is
a much better CCN).

The situation is very different when using CCN at 1-km alti-
tude and 0.3% supersaturation (CCN1km) instead of the AOD
as the parameter representing the aerosol (Fig. 1, fourth col-
umn). The CCN1km–Nd relationships are still mostly nonlin-
ear, although there is less variation between the models than
for the AOD–Nd joint histograms. Importantly, the PD and
PI CCN1km–Nd relationships are very similar, showing much
smaller differences in the joint histograms than are evident for
the AOD–Nd relationship (Fig. 1, sixth column). At lower super-
saturations (0.1%) the CCN is weighted toward larger particles
and the PD and PI relationships are not as close (Fig. S1). How-
ever, the PD global CCN1km–Nd joint histogram is a reasonable
indicator of the PI relationship, as long as there is enough data
at low CCN concentrations to properly create a joint histogram.

It is also clear that the nonlinearity of these relationships
will influence any calculations made using a linear regression,
where the sensitivity would otherwise depend on the prevailing
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aerosol environment (17). By normalizing the joint histograms
by the aerosol occurrence, this dependence is removed and with
the appropriate choice of aerosol proxy (such as CCN1km) the
PD spatiotemporal variability is a good approximation of the
PI variation and thus the actual sensitivity of clouds to aerosol
perturbations.

Diagnosing ∆Nd . Using regional joint histograms (15◦ by 15◦

regions), similar to those from Fig. 1, and probability histograms
for CCN1km from the PI and PD simulations, a prediction for
the geographic distribution of ∆Nd is constructed in Fig. 2. The
“actual” ∆Nd for each model (the difference in Nd between the
PD and PI simulations) is shown in the first column of Fig. 2.
Both the PI and PD simulations are nudged to the same horizon-
tal winds, such that the “actual” ∆Nd is due to the difference in
aerosol emissions. The ∆Nd diagnosed using the PD CCN1km -
Nd joint histogram and the PD–PI CCN1km change (Eq. 1) is
shown in the second column.

There is a good correspondence between the diagnosed and
the actual ∆Nd (Fig. 2, third column). The correlation coef-
ficients between the diagnosed and actual ∆Nd are between
0.84 and 0.92, explaining between 70% and 85% of the vari-
ance (Fig. 3A). These correlations decrease slightly if a single
global joint histogram is used (Fig. 3A). The difference between
the diagnosed and the actual ∆Nd in the fourth column of Fig.
2 varies between the models, partially due to remaining differ-
ence between the daily mean CCN1km and the cloud-base CCN.
This seems to be important for the ECHAM6-HAM simula-
tion over ocean (Fig. 2), where the 1-km level is more often
above the cloud tops in stratocumulus regions (20) than in the
other models. Repeating the analysis using the total column
CCN at 0.3% supersaturation (“colCCN”) improves the ∆Nd

and RFaci diagnosis for ECHAM6-HAM (Fig. 3 B and C), possi-
bly due to the extra information provided about cloud-base CCN.
Regime-dependent updrafts may also play a role in controlling
the remaining 20% of the variability in ∆Nd (Fig. 3B). It is possi-
ble that there is further variability in ∆Nd from PI–PD differ-

Fig. 2. Using joint histograms of CCN1km versus Nd from 15◦ by 15◦ regions to diagnose ∆Nd (Hist CCN regional). For each model used, the first column
shows the annual-mean “actual” ∆Nd (the Nd difference between the PI and PD simulations). The second shows ∆Nd diagnosed using the PD CCN1km–Nd

joint histogram and the change in the CCN1km between the PI and PD simulations. The third column shows the relationship between the actual and the
diagnosed ∆Nd , and the final column shows the absolute difference between the diagnosed and the actual ∆Nd , with red indicating an overestimation in
∆Nd diagnosed from the PD relationships compared with the actual value. The same color scale is used for all maps and all of the Nd units are centimeters−3.

ences in the parameterized updrafts (which might be reduced
by the nudging procedure), but this is a small component of the
total variability and so is not further considered in this analysis.
These results show that through the ability of the PD CCN1km–
Nd relationship to provide information on the “actual” CCN1km–
Nd relationship, the PD relationship can be used to provide an
accurate estimate of the ∆Nd due to anthropogenic aerosol per-
turbations, as long as that perturbation is known.

Comparison of Aerosol Proxies. Although ∆Nd can be diag-
nosed through the PD CCN1km–Nd relationship, observations
of CCN1km are sparse in both space and time, necessitating the
use of other aerosol proxies for diagnosing ∆Nd . The aerosol
index [AI, AOD multiplied by the Ångström exponent (4)] is
routinely observed by satellites and provides more informa-
tion about aerosol size than the AOD. Although not currently
retrieved by satellites, colCCN provides extra information about
the aerosol chemistry. For each of these proxies, the determi-
nation coefficient (r2) between the diagnosed and the actual
∆Nd is shown in Fig. 3A (see Figs. S2–S10 for other aerosol
proxies). For comparison with earlier work, linear regressions
between the Nd and aerosol proxies are also used to character-
ize the PD aerosol–Nd relationship (OLS). The relationships are
determined at several different scales: 2.5◦ by 2.5◦ (“local”), 15◦

by 15◦ (“regional”), and a single global relationship (“global”).
The local scale is only used with the OLS method, as there are
not enough data within each grid box to generate a full joint
histogram.

Using separate regional PD joint histograms between CCN1km

and Nd (Fig. 3A, Hist regional) is best able to predict ∆Nd

for each of the models investigated here (excluding ECHAM6-
HAM). A single global joint CCN1km–Nd histogram (Hist
global) results in a slight decrease in the ability to predict ∆Nd .
There is again a slight weakening in predictive ability when mov-
ing to the colCCN as a proxy for diagnosing ∆Nd . The AI also
provides a reasonable parameter for characterizing the aerosol,
in many cases producing an accurate estimate of ∆Nd (Fig. 3B).
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Fig. 3. Comparison of different methods and proxies for calculating ∆Nd .
“Hist” indicates the use of a joint histogram and “OLS” the use of an ordi-
nary least-squares regression. (A) The determination coefficient between
the diagnosed and the actual values of the ∆Nd at a 2.5◦ by 2.5◦ resolution
globally. (B) The relative size of the global mean ∆Nd . (C) The relative size
of the implied global mean RFaci, with a percentage less than 100% indicat-
ing an underestimate in the estimated RFaci. The horizontal bars are at 80%
and 120%. The plots summarized in this figure are shown in Figs. S2–S10.

Using regional AI–Nd joint histograms for diagnosing ∆Nd gives
r2 values between the diagnosed and the actual ∆Nd (0.61 to
0.81) approaching those of the CCN1km . Because the models do
not provide the RFaci, the relative error in the RFaci is esti-
mated by weighting ∆Nd by the observed liquid cloud fraction
and cloud albedo susceptibility (Fig. 3C, see Materials and Meth-
ods for details). In general, the regional joint histograms pro-
vide a more accurate diagnosis of RFaci, although using a sin-
gle global histogram results in only a small increase in the error,
even though the r2 value decreases for all of the models (Fig.
3A). The AOD performs worst as a parameter for characteriz-
ing aerosol in the models when diagnosing ∆Nd and RFaci. The
local linear regressions have the lowest r2 values of all of the
methods and proxies investigated, although the RFaci estimate
when using AOD is slightly improved compared with the regional
linear regression, possibly due to the reduced aerosol type vari-
ability for a local regression (Fig. 3C).

From these results, it is clear that estimates of the aerosol
forcing that rely on the relationship between AOD and Nd for
characterizing the strength of aerosol–cloud interactions (such
as many observational estimates) are likely to underestimate the
anthropogenic perturbation of Nd by at least 30% (up to 90%).
This would lead to an underestimate in the strength of the radia-
tive forcing from aerosol indirect effects in these studies of at
least 20% (up to 90%).

Satellite-Based Estimate. Although using the AOD as an aerosol
proxy can lead to an underestimate when diagnosing the aerosol
forcing, the AI is almost as good a proxy for the aerosol as the

CCN1km when attempting to diagnose ∆Nd and the RFaci (Fig.
3C). Given this improved accuracy compared with using AOD as
an aerosol proxy, AI and Nd data from the moderate-resolution
imaging spectroradiometer (MODIS) are used to generate both
regional joint histograms (Hist AI regional, 15◦ by 15◦ regions)
and a single global joint histogram (Hist AI global), using 10 y
of data (2004–2013). These are then combined with the annual
mean MODIS liquid cloud fraction and the cloud susceptibil-
ity derived from MODIS and Clouds and the Earth’s Radiant
Energy System (CERES) (Eq. 3) to provide an updated estimate
of the RFaci (Fig. 4).

Using the PI-to-PD AI changes from each of the models gives
a range of RFaci estimates for the regional method between
−0.18 and −0.58 Wm−2 and between −0.29 and −1.01 Wm−2

if using a single global AI–Nd joint histogram (Fig. S11). The
RFaci is generally higher over the ocean due to the higher liq-
uid cloud fraction and cloud susceptibility, despite the smaller
oceanic ∆Nd (Fig. 2). Although this is not a large selection of
models, the mean value of −0.29 Wm−2 for the regional method
and −0.49 Wm−2 for the global histogram are instructive to com-
pare with the −0.2 Wm−2 mean value using a single global AOD-
Nd histogram (Fig. 4C), −0.2 Wm−2 using local OLS with AOD
(7) and −0.4 Wm−2 using local OLS and AI (21).

There are some caveats to this estimate. First, the MODIS AI
has little quantitative skill over land (22) and in some regions a
positive RFaci is diagnosed from changes in the Nd (Fig. 4). This
has a larger impact on the regional histogram method and may
result in a reduction in the strength of the implied aerosol forc-
ing. However, only a small fraction of the forcing comes from
continental regions, similar to the findings from ref. 7, so this
may not result in a large bias in the global mean RFaci. Also,
the global histogram method is more likely to overestimate the
RFaci (Fig. 3C), suggesting that the actual value is between the
two estimates, perhaps around −0.4 Wm−2 (this only includes
changes to cloud albedo and not other rapid cloud adjustments).
It is also possible that systematic biases in the MODIS AI or Nd

retrieval could further affect this result, although the magnitude
and sign of these effects is unclear. It should also be noted that
this estimate is strongly dependent on the estimate of the anthro-
pogenic aerosol fraction. Because all of the AeroCom models in
this work use the same emissions database, the diversity in the

A

B

C

Fig. 4. The mean of the individual model RFaci estimates (Fig. S11), using
MODIS data to create (A) regional histograms, (B) a single global AI–Nd his-
togram, and (C) a single global AOD–Nd histogram, combined with model
estimates of the anthropogenic AI/AOD contribution.
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forcing estimates from the models is unlikely to fully represent
the full uncertainty in the radiative forcing from changes in cloud
albedo.

Discussion
Previous work has shown that the PD CCN–Nd relationship sam-
pled from spatiotemporal variability is not necessarily represen-
tative of the “actual” sensitivity of Nd to aerosol changes since
the PI. This is partially due to the large errors in the sensitiv-
ity of the Nd to CCN in clean regions, where there is little CCN
variation and consequently little Nd variation in the PD climate.
However, these regions are usually regions with a small anthro-
pogenic CCN contribution and so make only a small contribu-
tion to the global ∆Nd . Although the nudging process might
reduce the variability in ∆Nd from variations in the in-cloud
updrafts, this work demonstrates that the CCN1km–Nd relation-
ship is representative enough in regions where there is a large
∆Nd to make an accurate prediction of the global ∆Nd and
RFaci.

It is also interesting to note that the big increases in Nd occur
in regions with large changes in CCN (over land, the North-
ern Hemisphere) in all of the models investigated here (Fig. 2).
Although these models implement aerosol activation parameter-
izations that result in a saturation of the Nd at high CCN con-
centrations, this behavior is not evident in many of the joint his-
tograms of Fig. 1 for the CCN1km versus the Nd . Although there
are other nonlinearities in the pathway between CCN changes
and a change in top-of-atmosphere albedo (e.g., ref. 11), strong
aerosol–cloud interaction effects also occur in regions of stronger
aerosol perturbation for the CMIP5 models (albeit less concen-
trated in the Northern Hemisphere) (23), supporting the idea
that the RFaci in remote regions such as the southern ocean does
not dominate the total RFaci.

Finally, the results of this work demonstrate the importance
of including aerosol size information when making estimates of
the aerosol impact on cloud properties. Previous work has shown
that the AI correlates better than the AOD with the cloud-base
CCN (15). This work shows that it also offers significant ben-
efits as an aerosol proxy when calculating ∆Nd and the radia-
tive forcing from aerosol–cloud interactions. The large increase
in predictive ability of ∆Nd when moving from AOD to AI for
characterizing the aerosol shows the importance of a measure of
aerosol size, especially given the strong changes in aerosol type
between the PI and the PD simulations. Although there is also
a clear benefit from including vertical information (CCN1km is a
better proxy than colCCN for most GCMs), this increase in the
accuracy when diagnosing the radiative forcing is smaller than
that when using AI compared with AOD. The change in pre-
dictive ability when moving from AI to column-integrated CCN
is the smallest change, suggesting that information on aerosol
composition is the least important of the three factors (vertical
location, size distribution, and composition) that limit the abil-
ity of the AOD–Nd relationship to characterize the strength of
aerosol–cloud interactions (24).

Conclusions
In this work, multiple aerosol–climate models have been used
to investigate how a change in Nd can be predicted from PD
aerosol–cloud relationships.

The use of joint histograms normalized by aerosol occurrence
is demonstrated, accounting for nonlinearities in the aerosol–Nd

relationship. It also removes the influence of the aerosol environ-
ment on the strength of the aerosol–Nd relationship, such that
the PD and PI aerosol–Nd relationships are nearly identical with
the correct choice of aerosol proxy (Fig. 1).

Although diagnosing the true sensitivity of Nd to CCN remains
a difficult problem using only PD relationships (18), determining

∆Nd is much easier because it weights the calculation toward
regions with a larger change in CCN, where the relationship can
be determined with greater accuracy (Fig. 2). If the change in
CCN at 1-km altitude (CCN1km) between the PI and the PD is
known, then the PD relationship between CCN1km and the Nd

is enough to diagnose the PD–PI change in Nd (∆Nd ) to within
20% of the value determined by the climate simulations (Fig. 3).
Using joint histograms to account for nonlinearities in the CCN–
Nd relationship, a single global relationship between CCN1km

and Nd can be used, with only a small reduction in the accuracy
of diagnosing ∆Nd and the instantaneous radiative forcing due
to changes in cloud albedo (RFaci).

Although vertical information is shown to be important in
predicting ∆Nd , these results imply that information about the
aerosol size distribution makes a dominant contribution to the
accuracy of the predictions of ∆Nd , with the AI showing signifi-
cant gains over the AOD, similar to previous work (15). The esti-
mates of the anthropogenic change in AI provided by the models
in this work combined with AI–Nd joint histograms from satel-
lite data provide a revised RFaci estimate of around −0.4 Wm−2,
although there is a large diversity between the model estimates,
ranging from −0.18 to −1.01 Wm−2. The larger ∆Nd suggested
by this work also suggests a larger ERFaci than previous stud-
ies (11), but this is not investigated here. Because estimates of
the PD–PI aerosol environment are often generated from mod-
els, estimates of the PD–PI AI change could be calculated along-
side AOD changes. Using AI has the advantage over using CCN
because it is currently retrieved by satellite instruments [although
retrieving CCN may be possible in certain situations (25)]. This
suggests that the AI is potentially a useful parameter to use when
calculating observational constraints on the strength of RFaci in
liquid clouds and where possible should be considered for future
observation-based investigations.

Materials and Methods
Throughout this work, output from several global aerosol–climate simula-
tions performed as part of the AeroCom model intercomparison project (18,
19) is used to provide simulations of the PD and PI atmospheres. Both PD
and PI simulations are nudged to the same horizontal winds (2006–2010)
and include PD greenhouse gases, sea surface temperatures, and natural
forcings. All of the models include interactive aerosol modules that inter-
act with the cloud via a modification of Nd , ice crystal number concentra-
tion, and radiative fluxes. This affects the radiation as well as the precipi-
tation formation in liquid clouds via autoconversion, leading to more com-
plex effects on the cloud properties. The model data are regridded to a
2.5◦ by 2.5◦ resolution and averaged to daily temporal resolution. Because
this analysis focuses on liquid water clouds, only grid boxes with an ice
water path of less than 5 g ·m−2 are used. Six of the nine available simula-
tions were selected to provide a wide selection of models and microphysics
schemes. The models themselves are self-consistent, such that an imper-
fect modeling of the aerosol or the cloud properties does not affect the
conclusions.

∆Nd is diagnosed for each 2.5◦ by 2.5◦ grid box using the PD relation-
ship between the aerosol parameter (A) and the Nd and the known change
in the aerosol parameter between the PD and PI simulations. Eq. 1 shows
how ∆Nd is diagnosed within each grid box using a joint probability his-
togram between the aerosol and Nd created from PD relationships and the
probability histograms of the PI and PD aerosol parameter in each grid box:

∆Nd =
∑
Nd

Nd

∑
A

P(Nd|A)PD ×
(
P(A)PD − P(A)PI

)
. [1]

If the OLS method is used, the calculation for ∆Nd is conceptually similar,

using the ACI metric
(

ACIA =
dNd

dln(A) PD

)
from ref. 5:

∆Nd = ACIA ×
(

ln(APD)− ln(API)
)

, [2]

where the overbar denotes an average over a distribution. To investigate
the impact that errors in diagnosing ∆Nd have on the RFaci, the Twomey
formula (26) is used to calculate the change in cloud albedo (αcld). The cloud
albedo is calculated from the CERES TOA SW all-sky albedo and the MODIS
Aqua L3 (MYD08 D3) collection 6 cloud optical properties cloud fraction
(27), using only grid boxes with zero ice cloud. This is combined with the
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MODIS annual mean liquid cloud fraction (fliq) and the down-welling solar
flux (F↓) to produce a simple estimate of the RFaci (∆F↑) (28):

∆F↑ = −F↓fliq
αcld(1− αcld)

3Nd
∆Nd. [3]

The MODIS AI is used to provide an observational constraint on the RFaci by
generating AI–Nd joint histograms from observations. For these histograms,
the Nd is calculated using the adiabatic approximation, as specified in ref.
11. The AI is calculated from the AOD–Ångström exponent joint histogram
in the MODIS MYD08 D3 product using only grid boxes where no ice cloud is
detected (to reduce possible cirrus contamination). Because the relative error
of the MODIS AOD and hence the Ångström exponent and AI is large at low
AOD (<0.03), the Nd is assumed constant at AI values below 0.03.
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