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The applicability of many computational approaches is dwelling
on the identification of reduced models defined on a small set
of collective variables (colvars). A methodology for scalable prob-
ability-preserving identification of reduced models and colvars
directly from the data is derived—not relying on the availability of
the full relation matrices at any stage of the resulting algorithm,
allowing for a robust quantification of reduced model uncertainty
and allowing us to impose a priori available physical information.
We show two applications of the methodology: (i) to obtain a
reduced dynamical model for a polypeptide dynamics in water
and (ii) to identify diagnostic rules from a standard breast cancer
dataset. For the first example, we show that the obtained reduced
dynamical model can reproduce the full statistics of spatial molec-
ular configurations—opening possibilities for a robust dimension
and model reduction in molecular dynamics. For the breast cancer
data, this methodology identifies a very simple diagnostics rule—
free of any tuning parameters and exhibiting the same perfor-
mance quality as the state of the art machine-learning applica-
tions with multiple tuning parameters reported for this problem.

dimension reduction | Markov state models | clustering |
computer-aided diagnostics | Bayesian modeling

Model reduction and identification of a most appropriate
(small) set of collective variables are essential prerequi-

sites for many computational methods and modeling techniques
in a number of applied disciplines ranging from biophysics and
bioinformatics to computational medicine and image processing.
A variety of methods for the identification of collective variables
can be roughly subdivided into two major groups: (i) methods
that are based on some user-defined agglomeration of the orig-
inal degrees of freedom into collective variables (e.g., based on
the physical intuition) (1) and (ii) methods that produce/derive
these agglomerations of original system’s variables based on a
reduced approximation of some system-specific relation matri-
ces. These matrices can be defined, for example, as covariance or
kernel covariance matrices (2, 3), partial autocorrelation matri-
ces of autoregressive processes (4), Gaussian distance kernel
matrices (5, 6), Laplacian matrices [as in the case of spectral clus-
tering methods for graphs (7, 8)], adjacency matrices [in commu-
nity identification methods for networks (9)], or Markov tran-
sition matrices [as in spectral reduction methods for Markov
processes (10, 11)]. In most of these reduction methods, the rela-
tion matrices are assumed a priori available—and this assump-
tion is true, for example, in social sciences, network science, and
many areas of biology. However, in many particular applications
(e.g., in biophysics and many medical applications; examples 1
and 2 below), one first needs to estimate these matrices from
available data. For systems with a large number of dimensions
(for continuous data) or categories (for categorical data) and
short available statistics, these matrix estimates will be subject
to uncertainty and may lead to biasedness of the derived colvars.
Some other reduction approaches that allow for computing the
reduced representation from the data directly [e.g., the Prob-
abilistic Latent Semantic Analysis (PLSA; used in mathemati-

cal linguistics and information retrieval for analysis and reduc-
tion of texts and documents)] (12–14) impose strong assumptions
on the data and exhibit issues related to the computational cost
scaling (Fig. 1 and SI Appendix, section S5 have detailed discus-
sion), making them practically not applicable to nonsparse data
in such areas as, for example, the model and data reduction in
biophysics and bioinformatics. Another problem arises when try-
ing to identify the colvars for dynamical systems while simulta-
neously trying to preserve some essential conservation properties
(e.g., conservation of energy or probability) in the reduced rep-
resentation. For example, deploying spectral methods based on
Euclidean eigenvector projections [such as principal component
analysis (PCA) and spectral clustering methods] to reduction of
probability measures would not guarantee that the components
of the projected/reduced representation will also add up to one
and all be bigger than or equal to zero (i.e., the resulting reduced
models may not be probability preserving).

In this paper, we present an algorithmic framework that is scal-
able for realistic dynamical systems and is designed for the infer-
ence and analytically computable uncertainty quantification of
reduced probability-preserving Bayesian relation models directly
from the data.

Methodology
Below, we will give a brief description of the methodology—
detailed derivation can be found in SI Appendix, section S1.
Our aim is to come out with a reduction method intending to
preserve causality relations—measured in terms of the matrix
of conditional probabilities between two categorical processes
Y and X . Process Y will serve as a reference process, mean-
ing that it will not change when process X is reduced. The
terms “categorical process” and “categorical variables” mean
that—in every particular case s (e.g., at any given time s or for
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Fig. 1. Numerical comparison of the PLSA Expectation Maximization reduc-
tion (13, 14) and the DBRM reduction algorithms: (A) for the average number
of iterations required until reaching the same convergence tolerance, (B) for
the average central processing unit time until algorithms reach the same con-
vergence tolerance, and (C) for the average relative log-likelihood difference
between the optima achieved with the DBRM and the optima obtained with
the exact iterative maximization of Eq. 3. For every combination of problem
dimensions n and m, averaging was performed over the ensemble of 1,000
randomly generated datasets that were subject to reduction with K = 2
for both of the algorithms. Convergence tolerance was measured in terms
of the same normalized log-likelihood measure 1/mn L̂. Average relative
log-likelihood difference was computed as E[|L̂exact∗ − L̂DBRM∗ |/|L̂exact∗ |],
where L̂ is defined in Eq. 3. MATLAB code generating this comparison is
available at https://github.com/SusanneGerber. The code implementing PLSA
Expectation Maximization methods (13, 14) is openly available at the Math-
Works webpage (https://ch.mathworks.com/matlabcentral/fileexchange/
56302-probabilistic-latent-sematic-analysis–tempered-em-and-em-). EM, Ex-
pectation Maximization.

any given instance s in the dataset)—Y (s) is taking one and
only one of the possible values from m categories {y(1),
y(2), . . . , y(m)} and X (s) is taking values from one and only
one of the n categories {x (1), x (2), . . . , x (n)}. For example,
in biomolecular dynamics simulations of polypeptides with N
amino acid residues, every peptide residue i at any time s can
be assigned to one and only one of three Ramachandran states
dependent on its current combination of torsion angle values
φi(s) and ψi(s) (SI Appendix, Fig. S1). Also, every global con-
figuration/conformation X of the entire polypeptide molecule
at any time can then be assigned to one of the n ≤ 3N cat-
egories {x (1), x (2), . . . , x (n)}—where every particular x (k) is
defined by a vector of Ramachandran state combinations [e.g.,
x (k) is a category when junction 1 is being in state 1, junc-
tion 2 is being in state 2, and so on]. Efficient approaches
based on the Markov state modeling (MSM) framework have
been recently introduced, allowing for automated transforma-
tion of continuous-valued processes [e.g., molecular dynamics
(MD) coordinates time series] into categorical time series (15,
16). Because the system cannot be in two different categories
simultaneously, these categories are disjointed, and a relation
between the probability for Y (s) to attain a category y(i) in
its instance/realization s and the probabilities for X (s) can be
formulated exactly via the conditional probabilities and the law
of the total probability (17). Defining the column vectors of
probabilities ΠY (s) = {P[Y (s) = y(1)], . . . ,P[Y (s) = y(m)]},
ΠX (s) = {P[X (s) = x (1), . . . , and P[X (s) = x (n)]}, we can
write the exact relation between the variables X and Y in a
matrix vector form:

ΠY (s) = ΛΠX (s), [1]

where matrix elements {Λ}ij =P[Y (s) = y(i)|X (s) = x (j )] are
conditional probabilities. If known, they can be used as indicators
for existence of causality relations between the variables Y and
X in the randomized studies: if {Λ}ij =P[Y (s) = y(i)] for all j
and s , the processes are then independent—meaning that infor-
mation about the variable X provides no additional advantage
in computing the probability of the outcomes of Y . If {Λ}ij 6=
P[Y (s) = y(i)] for some j , consequently, there exists some rela-
tion between X and Y (18). To be able to interpret these con-
ditional probabilities as a measure of the true causality relations
in practical studies when {Λ}ij are estimated from the available
observations of X and Y , one needs to guarantee that the data
are appropriately randomized.

In a particular case, where m =n , with s being the time index
and X (s)≈Y (s − τ) (where τ is a time step), the above for-
mulation (Eq. 1) is equivalent to a so-called master equation of a
Markov process [and thereby, is a particular time-discrete case of
the well-known time-continuous Fokker–Planck equation (17)].
The n×n matrix Λ in this case will be a transpose of the Markov
transition operator (19). If matrix Λ is known, it provides full
information about the relations between processes Y and X—
and can be used to predict Y if X is available.

In many applications, the relation matrix Λ is not known and
needs to be first estimated from the available observational data
{X (1),X (2), . . . ,X (S)} and {Y (1),Y (2), . . . ,Y (S)} [e.g., by
means of the maximum log-likelihood approach that allows us to
provide the analytical estimates of the most likely parameter val-
ues Λ∗ and their uncertainties (lemma 1 in SI Appendix)]. How-
ever, in realistic applications (e.g., in the MD example below),
the number of categories n can grow exponentially with the phys-
ical dimension of the problem (“curse of dimension”)—leading
to the exponential growth of overall uncertainty for the Λ∗ esti-
mates when the available statistics size S and a number m of
Y -categories are fixed (lemma 2 in SI Appendix). This prob-
lem also means that the uncertainty of all additional physical
observables obtained from Λ∗ (e.g., the uncertainty of eigenval-
ues, eigenvectors, metastable sets, etc.) will be growing with the
growing n , making practical deployment of Eq. 1 problematic
for realistic systems with a “large” n and “small” S . Therefore,
if we want to reduce the dimensionality n—for example, through
identification of a small number K of collective categorical vari-
ables that agglomerate the original n categories of process X
into K groups/boxes—then this methodology should not rely on
a direct estimation of the full Bayesian causality matrix Λ in these
situations.

To circumvent this problem, one can try to identify a latent
reduced categorical process {X̂ (1), X̂ (2), . . . , X̂ (S)} (being a
reduced representation of the full categorical process X ) that is
defined on a reduced statistically disjoint complete set of (the
yet unknown) categories {x̂ (1), x̂ (2), . . . , x̂ (K )} with K <n .
Deploying a law of a total probability, we can establish the
Bayesian relations between X̂ and X on one side (by means of
the conditional probabilities Γ̂kj =P[X̂ (s) = x̂ (k)|X (s) = x (j )])
and between X̂ and Y on the other side (by means of the con-
ditional probabilities λ̂ik =P[Y (s) = y(i)|X̂ (s) = x̂ (k)]). Then,
it is straightforward to validate (a detailed derivation is in SI
Appendix, section S2) that an optimal probability-preserving
reduced approximation of the full relation model (Eq. 1) for K
colvars takes a form

Π̂Y (s) = λ̂Γ̂ΠX (s), [2]

where {Π̂Y (s)}i =P[Y (s) = y(i)] and i = 1, . . . ,m . For every
particular combination of k and j , Γ̂k,j defines a probability
for the colvar to be in a reduced collective categorical variable
k when the observed original process X is in a category x (j ),
and therefore, it can be understood as a discrete analog of the
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continuous projection and reduction operators deployed in
methods like PCA; λ̂ is a reduced version of the matrix Λ from
the full relation model (Eq. 1). Please note that, being basically
a reformulation of the exact law of the total probability, reduced
model (Eq. 2) is exact in the Bayesian sense, and no additional
approximations have been involved.

A similar approach to latent variable dependency modeling
is used in the PLSA (13, 14) (that is, used in mathematical
linguistics and information retrieval for identification of latent
dependency structures in texts and documents). Deploying the
definition of a conditional probability, PLSA allows one to param-
eterize a joint probability distribution P[X and Y ] with the help
of the latent process X̂ as P [X (s) = x (j ) and Y (s) = y(i)] =

P [X (s) = x (j )]
∑K

k=1 λ̂ik Γ̂kj . To estimate the parameters, one
deploys an Expectation Maximization algorithm having the
computational iteration complexity of O (K ·min{mn,S}) and
requiring O ((K + 1) ·min{mn,S}) memory in a general non-
sparse situation (i.e., when the underlying matrix Λ is not assumed
to be sparse a priori). However, as shown in SI Appendix, sec-
tion S5, this problem requires imposing additional strong inde-
pendence and stationarity assumptions on the latent variable X̂ .
Moreover, as shown in Fig. 1A, the total average number of Expec-
tation Maximization iterations for this problem grows rapidly
with problem dimensions m and n—resulting in the overall algo-
rithm complexity that grows polynomially in n and m (Fig. 1B).
Applying standard statistical methods of polynomial regression
fitting and discrimination (20, 21), one obtains that the statisti-
cally optimal fit of the red surface (corresponding to the PLSA)
from Fig. 1B is given by a polynomial of the third degree in
n and m . Extrapolation to the typical physical problem sizes
(e.g., m =n = 105, K = 2) that, for example, emerge in biophys-
ical applications like the protein molecules indicates that such
an inference procedure based on the Expectation Maximization
algorithm and PLSA would require approximately 1,450 years of
computations on a single laptop personal computer. Detailed
methodological description of the PLSA methodology and its
relation to the reduced Bayesian model reduction methods is pro-
vided in SI Appendix, section S5.

In the following section, we will suggest several computational
procedures for the scalable inference of reduced Bayesian rela-
tion model parameters (Eq. 2) directly from the observed data
{X (1),X (2), . . . ,X (S)} and {Y (1),Y (2), . . . ,Y (S)}. The op-
timal parameter estimates Γ̂∗ and λ̂∗ that maximize the observa-
tion probability (called likelihood) of the given data in Eq. 2 can
be obtained by solving the following log-likelihood maximization
problem subject to equality and inequality constraints:

L̂ =

m∑
i=1

n∑
j=1

Nij log

({
λ̂Γ̂
}

ij

)
→ max

λ̂,Γ̂
, [3]

λ̂ik ≥ 0,

m∑
i=1

λ̂ik = 1, for all i , k , [4]

Γ̂kj ≥ 0,

K∑
k=1

Γ̂kj = 1, for all k , j , [5]

where Nij =
∑S

s=1 χ(Y (s) = yi)χ(X (s) = xj ) (with χ being an
indicator function). It is straightforward to observe that, for
any fixed λ̂, the original exact log-likelihood maximization
problem (Eqs. 3–5) can be decomposed into n optimization
problems for the n columns of Γ̂—and each of the column
problems with (K − 1) optimization arguments is concave and
can be solved independently from the other column problems.
This observation can help in designing a convergent algo-

rithm requiring much less memory than the Expectation Maxi-
mization [O (K (m +n) + min{mn,S}) instead of O ((K + 1)·
min{mn,S}) for Expectation Maximization] and with compu-
tational iteration complexity ofO

(
(m − 1)3K 3 +n(K − 1)3). It

can be used for identification of the reduced Bayesian relation
model parameters in the situations when m and K are relatively
small and n is large (e.g., as in the medical example 2 below).
Detailed derivation of this algorithm is given in SI Appendix, sec-
tion S4. However, when m or K is large (as in a case of the MSM
inference in MD, where m =n ≈ 103− 109), this scaling would
not allow us to apply this method to large realistic systems.

It turns out that substituting the function L̂ with its lower-
bound approximation L̂ ≥ l̂ =

∑m
i=1

∑n
j=1

∑K
k=1 Nij Γ̂kj log(λ̂ik )

(which directly results from applying the Jensen’s inequality to
Eq. 3) allows for providing a computational method that can
solve this approximate model reduction problem with a much
better scaling and allows analytically computable uncertainty
estimates for the obtained reduced models.

Properties of this approximate model reduction procedure are
summarized in the following theorem.

Theorem. Given the two sets of categorical data {X (1),X (2), . . . ,
X (S)} and {Y (1),Y (2), . . . ,Y (S)} (where for any s,X (s) ∈
{x (1), x (2), . . . , x (n)} and Y (s) ∈ {y(1), y(2), . . . , y(n)}), the
approximate maximum log-likelihood parameter estimates for λ̂
and Γ̂ in the reduced model (Eq. 2) can be obtained via a maxi-
mization of the lower bound l̂ of the above log-likelihood function
L̂ from Eq. 3:

L̂ ≥ l̂ =

m∑
i=1

n∑
j=1

K∑
k=1

Nij Γ̂kj log
(
λ̂ik

)
→ max

λ̂,Γ̂
, [6]

subject to the constraints (Eqs. 4 and 5). Solutions of this prob-
lem exist and are characterized by the discrete/deterministic opti-
mal matrices Γ̂ that have only elements zero and one. Solutions of
Eqs. 4–6 can be found in a linear time by means of the monotoni-
cally convergent Direct Bayesian Model Reduction (DBMR) Algo-
rithm shown below, with a computational complexity of a single-
iteration scaling asO(K ·min{mn,S}) and requiring no more than
O(K (m−1)+n+min{mn,S}) of memory. Asymptotic posterior
uncertainty of the obtained parameters λ̂∗ (characterized in terms
of the posterior parameter variance) can be computed analytically
as Var{P[λ̂ik |λ̂∗, Γ̂∗X ,Y ]} = λ̂∗ik (1− λ̂∗ik )/

∑m
i=1

∑n
j=1 Nij Γ̂

∗
kj .

The least biased estimate of the ratio ρ for the expectations of poste-
rior parameter variances from the resulting full and reduced models
equals

ρ =
EijVar {P [Λij |Λ∗,X ,Y ]}

EikVar
{
P
[
λ̂ik |λ̂∗, Γ̂∗X ,Y

]} =
n

K
. [7]

DBMR Algorithm.
Choose a random λ̂(0) (e.g., from the least biased uniform prior),

set I = 0.
Set Γ

(0)
kj to 1 if k = argmax

k′

∑m
i=1 Nij log(λ̂

(0)
ik′ ) and else to 0 for all

j and k.
Do until ‖̂l(Γ(I), λ̂(I))− l̂(Γ(I−1), λ̂(I−1))‖ becomes less than a

tolerance threshold.

Step 1: set λ̂(I+1)
ik =

∑n
j=1 NijΓ

(I)
kj∑m

i=1
∑n

j=1 NijΓ
(I)
kj

for all i, k.

Step 2: set Γ
(I+1)
kj = 1 if k = argmax

k′

∑m
i=1 Nij log(λ̂(I+1)

ik′ )

and else Γ
(I+1)
kj = 0 for all j, k.

I = I + 1.
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A proof is provided in SI Appendix, section S2.
As can be seen from Fig. 1A, the average number of DBMR

iterations (green surface in Fig. 1A) (computed from a large
ensemble of randomly generated Bayesian model reduction
problems for K = 2) does not change with the dimensions m
and n . It implies that also the overall computational complexity
of the DBMR is scaling as O (K ·min{mn,S}). DBMR estima-
tion of the reduced MSM for a medium-sized protein MD with
m =n = 105 and K = 2 takes 33 min (as mentioned above, the
extrapolated estimate of the Expectation Maximization compu-
tational time was 1,450 years under the same optimization and
hardware/software settings).

Fig. 1C represents the average relative log-likelihood differ-
ences between the results of exact iterative log-likelihood opti-
mization of Eqs. 3–5 and the DBMR results (obtained under
the same conditions). It reveals that the empirical average rela-
tive log-likelihood differences between the exact and the DBMR-
approximated results converge to zero exponentially in m . This
property implies that, for realistic high-dimensional applica-
tions, the log-likelihood difference between the reduced mod-
els obtained with the DBRM algorithm and those obtained with
the optimization of the exact log-likelihood can be expected to
become negligible—meaning that the reduced models obtained
with the DBRM algorithm will have essentially the same poste-
rior probability for explaining the observed full data as the exact
reduced models.

The main feature of the two algorithms presented above is
that they allow for obtaining the reduced model (Eq. 2) directly
from the available observational data {X (1),X (2), . . . ,X (S)}
and {Y (1),Y (2), . . . ,Y (S)}—completely omitting a need for
computation/estimation of the full relation matrix Λ in Eq. 1.
The only tunable parameter in both of the algorithmic proce-
dures introduced above (in the direct sequential optimization of
the exact log-likelihood (Eqs. 4–6) and the DBMR algorithm) is
the reduced process dimension K . The optimal integer value of
K can be obtained by performing the algorithms with different
numbers of K (i.e., K = 1, 2, 3, . . . ) and then selecting the best
reduced model (Eq. 2) according to one of the standard model
selection criteria [e.g., cross-validation criterion, information cri-
teria like Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC), or approaches like L curve] (22,
23). To select an optimal K for the examples below, we have
used the standard L-curve method (23) that identifies the opti-
mal K as the edge point of the curve that describes a depen-
dence of the optimal value of the maximized function (Eq. 3 or
6 in our case) from K (a practical example is in SI Appendix,
Fig. S2).

When dealing with real-life applications, it is also important to
have an option for adjusting a set of collective variables accord-
ing to a physical intuition or some prior knowledge (1). For
example, one could have some prior physical information that
certain dimensions of the original problem have a higher rele-
vance for the dynamics than some other physically less relevant
dimensions. In SI Appendix, section S3, we present a compu-
tationally scalable way [with computational iteration complex-
ity of O (mK + n(K − 1) log[n(k − 1)])] to impose such a pri-
ori information—cast into a form of the weighted graph—on
the DBMR algorithm. The resulting DBMR graph algorithm is
presented in SI Appendix, section S4, and a practical applica-
tion of this information-imposing clustering method to reduced
Bayesian model inference is given in the breast cancer diagnos-
tics example 2 below.

A MATLAB library of algorithms implementing the meth-
ods introduced in this manuscript—as well as different variants
of the constrained Nonnegative Matrix Factorization (12, 24)
and PLSA methods (13, 14)—can be found in SI Appendix and
is available as open access via a general public license from
https://github.com/SusanneGerber.

Results
Example 1: Reduced Model of the 10-Alanine Dynamics in Water.
First, we consider a colvar identification for a polypeptide
molecule [deca-alanine (10-ALA)] from results of the MD sim-
ulation. This dataset represents an output of the 0.5-µs simula-
tion (with a 2-fs time step) of a 10-ALA polypeptide in explicit
water at the room temperature performed with the Amber99sb-
ildn force field (25). These MD data were produced and provided
by Frank Noe and Antonia Mey, Free University (FU) Berlin,
Berlin. For additional analysis, the values of torsion angles φi

and ψi (i = 1, . . . , 8) inside of the molecular backbone (i.e.,
ignoring the two end groups and the ωi angles) are grouped into
the Ramachandran states 1–3 for every i (SI Appendix, Fig. S1,
Left) with a time step resolution of 100 ps, resulting in eight cat-
egorical Ramachandran time series with 5,000 time points each.
Based on these eight local junction time series, we create a series
of global molecular states X (s) (s = 1, . . . , 5,000), where every
particular combination of eight Ramachandran states is assigned
to a particular category; in our case, it is a categorical series with
n = 531 of such eight-component combinations with S = 5,000
time instances. As a 531D X (s) variable to be reduced, we use
this set of global states; as reference variables Yi , we choose
the individual Ramachandran series of junctions (i.e., with m = 3
each) at time s + 1. Thereby, we are casting the reduction prob-
lem to a setting of discrete Markov processes in time.

We start with setting K = 2 and comparing the practical per-
formance of algorithms introduced in this paper with the PLSA
method (13, 14). Results of this comparison are summarized in
SI Appendix, Fig. S5. As can be seen from SI Appendix, Fig. S5,
methods based on optimization of Eqs. 3 and 6 provide colvars
that are better in terms of the log-likelihood measure as well as
in terms of the information theoretical measures, like the robust
AIC and BIC (22). AIC and BIC take into account the model
quality and penalize model uncertainty—for the same quality
(log-likelihood), these measures would provide smaller values
for the models that are less uncertain (22).

Second, we do the identification of reduced models (Eq. 2) for
each of the peptide junctions (i = 1, . . . , 8). Values of the result-
ing optimal solutions for reduced log-likelihoods l̂i (i = 1, . . . , 8)
as functions of K are shown in SI Appendix, Fig. S2. These results
reveal that the reduced log-likelihood does not exhibit any non-
negligible increase for all i when the number of colvars K is
becoming larger than three to seven, meaning that the maximal
number of the nonredundant colvars is not greater than seven
for this system. Next, we inspect the identified colvars for all of
the Yi . As can be seen from SI Appendix, Fig. S3 (as an exam-
ple, representing a case of Yi being the Ramachandran time
series of the junction 4 for K = 3), the three identified colvars
almost perfectly—to 97%—coincide with the discretization that
is solely based on this junction and disregard all other junctions
in the peptide chain. In only 3% of the cases, the nonlocal infor-
mation about the Ramachandran states of the peptide residues
from other junctions is important. Therefore, relations in terms
of temporal causality between the peptides MD dynamics can
be almost (in 97% of the cases) described by a sequence of
spatially independent Markov processes in each of the peptide
junctions—for example, collected together in a form of the Ising
model (26). To verify the validity of the obtained colvars as well
as test the performance of the resulting reduced model (Eq. 2),
we use these colvars to produce a long Monte Carlo time series
of the reduced molecular simulation (Eq. 2) and compute statis-
tics of the geometrical configurations for the entire molecule. As
shown in Fig. 2, reduced dynamics based on just a few colvars can
reliably represent the overall spatial statistics of molecular con-
figurations in 3D—obtained from the full MD trajectory. These
3% of nonlocal dependence cases identified in SI Appendix, Fig.
S3 seem to be crucial: without them, the corresponding box plot
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Fig. 2. Probabilities for different proportions of the chain in the same local
Ramachandran state; 100% means that all of the residues in the chain are in
this Ramachandran state, and 0% means that there is not a single residuum
in this state. The blue lines indicate the values of this distribution obtained
from the full MD simulation data, and the box plots show the probabil-
ity distribution and its 95% confidence intervals obtained from the optimal
reduced model run with seven colvars (K = 7) and nonlocal causality boxes.
Red points denote the statistical outliers of the reduced model (meaning
that they are outside of the 99% confidence interval). Respective distribu-
tions for a completely independent model (i.e., for a model where 100% of
causality boxes are local) are shown in SI Appendix.

of the reduced Monte Carlo run is not capable of reproducing
the true statistics of geometrical configurations from MD (SI
Appendix, Fig. S4).

Example 2: Reduced Model for the Breast Cancer Diagnostics Based
on the Standard BI-RADS Data. For the second example, we con-
sider analysis and reduction of the standard Breast Imaging
Reporting and Data System (BI-RADS) dataset for breast can-
cer diagnostics—available as an open access data file at the Uni-
versity of California Irvine (UCI) Machine-Learning Reposi-
tory: mlr.cs.umass.edu/ml/datasets/Mammographic+Mass. This
dataset contains information about 403 healthy (benign) and
427 malignant breast cancer patients. For each of the patient
entries, the age and three categorical variables obtained from
the mammography images are provided together with the basic
result (“cancer”/“no cancer”) obtained from the invasive anal-
ysis of the tissue—as well as assessments based on the stan-
dard noninvasive mammography diagnostics procedure called
BI-RADS. The three categorical variables provide qualitative
characteristics of the mammographic image features used in BI-
RADS—such as the shape of the intrusion (with four categories),
characteristics of the intrusion margins (with five categories),
and intrusion density (with four categories). This standard cat-
egorical dataset is widely used to access the quality of various
computer-aided diagnostic (CAD) tools, with the general aim
of identifying such a CAD tool that would use the noninvasive
information of age and mammographic image features for the
precise diagnostics of breast cancer and providing lower rates
of false positive and false negative diagnoses than the standard
BI-RADS procedure currently used by medical doctors (27).
The widely used measure of CAD performance adopted in the
medical literature is called area under curve (AUC) (28). The
closer the AUC value is to 1.0, the better the performance of
the respective CAD tool and the lower the probability of false
positive and false negative diagnoses. To compute the AUC val-

ues of different CAD tools together with the 99% confidence
intervals of AUC, we use a methodology described in ref. 28
and available in the open source software library that can be
downloaded at https://github.com/brian-lau/MatlabAUC. CAD
tools based on the pattern recognition artificial neuronal net-
works (ANNs) have been reported to have the highest AUC for
the breast cancer diagnostics issue (27). Training such ANNs
on these data from 830 patients results in AUC of 0.85 with
the 99% confidence interval of [0.82, 0.91], whereas we obtain
AUC of 0.82 with the 99% confidence interval of [0.78, 0.87] for
a standard BI-RADS diagnostics (on the same data and com-
puted deploying the same methodology from ref. 28). There-
fore, despite the fact that the AUC value of ANNs is somewhat
larger than the AUC of BI-RADS, their confidence intervals are
largely overlapping—meaning that, from the view point of statis-
tics, this standard dataset does not reveal an advantage of the
ANNs compared with BI-RADS. In addition, ANN has many
free adjustable parameters (e.g., weights and biases of neurons,
transfer functions, etc.), which increase the danger of overfit-
ting for such relatively small data. The application of the cate-
gorical reduction procedure described in this paper results in an
optimal set of just two collective variables that are both com-
pletely defined by information from a single categorical vari-
able “margin.” Very unexpectedly, obtained optimal decompo-
sition into two colvars turns out to be completely independent
from all other variables and can be summarized in a very sim-
ple diagnostic rule: if the intrusion margin on the mammogra-
phy image is circumscribed, then the risk of breast cancer is
low (12%), and if not, the risk of breast cancer is high (72%).
Applying the same open source methodology for AUC confi-
dence intervals on the same standard data as above, we find
that this very simple rule (with no free tunable parameters at
all) has the AUC value of 0.835 with the 99% confidence inter-
val of [0.79, 0.88] (i.e., in terms of the AUC performance, it is
not worse than the ANN with approximately 20 free adjustable
parameters).

Discussion
The most important features distinguishing the methodology
presented in this paper from other approaches described in the
literature are that it allows highly scalable (Fig. 1) identification
of reduced Bayesian relation models, their uncertainty quantifi-
cation, and inclusion of a priori physical information and does
not rely on the prior knowledge or a necessity of estimation of
the full matrix Λ (Eq. 1) of system’s relations in any step. It
allows an identification of the colvars and the reduced relation
models (Eq. 2)—as well as the MSMs—directly from the obser-
vational data.

According to the above theorem, the least biased estimate of
the ratio ρ for the expectations of posterior parameter variances
from the resulting full and reduced models equals n/K—where
n is the number of the original dimensions, and K is the reduced
dimensionality. In application examples 1 and 2 shown above, ρ
is of the order of 100—meaning that the reduced models (Eq.
2) can be estimated from much shorter data series than those
required for the full model without reduction. In the context
of MD and other multiscale applications, this feature can be
a used to bridge the gap toward longer time scales in simula-
tions. In particular, in both examples, we have shown how the
interpretation of the obtained colvars can provide clues about
the locality or nonlocality of relations in the system. Applica-
tion of this methodology in both examples revealed essentially
local models (i.e., models where colvars mostly coincide with
only one of the original systems dimensions). In example 1, we
have shown that the relation between the local geometry changes
of single peptide units in time is local to 97% and that, only
in 3% of the original system’s states assembled to colvar, they
are nonlocal (and distinctively defined by the peptide junction
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configuration farther away in the chain). In example 2, the two
identified colvars were completely defined through only one of
the original data dimensions and are entirely independent from
all other information on the system. This seemingly oversimplifi-
cation of the obtained reduced models could, however, be under-
mined by the comparison of results and predictions obtained for
these very simple reduced models (Fig. 2 or the results of AUC
comparison in example 2). The proposed methodology is very
simple to implement and to use—we also provide a MATLAB
toolbox with all of the methods from this manuscript as open
access via the https://github.com/SusanneGerber. As was shown

for two application examples, obtained results are straightfor-
ward to interpret and provide insights in the underlying systems
as well as situations when the system’s dimension n is large (e.g.,
n = 531 for the example 1) and standard approaches may be
subject to the overfitting issues.
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